Antenna Array Design using Dual Nested Complex Approximation

Document type: Conference Papers
Peer reviewed: Yes
Full text:
Author(s): Mattias Dahl, Ingvar Claesson, Sven Nordebo
Title: Antenna Array Design using Dual Nested Complex Approximation
Conference name: 7th International Symposium on DSP for Communication Systems, DSPCS’2003
Year: 2003
City: Coolangatta
Organization: Blekinge Institute of Technology
Department: Dept. of Signal Processing (Institutionen för signalbehandling)
Dept. of Signal Processing S-372 25 Ronneby
+46 455 38 50 00
Authors e-mail:
Language: English
Abstract: This paper presents a new practical approach to complex Chebyshev approximation by semi-infinite linear programming. The approximation problem may be general with arbitrary complex basis functions.

By the new front-end technique, the associated semi-infinite linear programming problem is solved exploiting the finiteness of the related Lagrange multipliers by adapting finite--dimensional linear programming to the dual semi--infinite problem, and thereby taking advantage of the numerical stability and efficiency of conventional linear programming software packages.
Furthermore, the optimization procedure is simple to describe theoretically and straightforward to implement in computer coding. The new design technique is therefore highly accessible. The new algorithm is formally introduced as the linear Dual Nested Complex Approximation (DNCA) algorithm.

The DNCA algorithm is versatile and can be applied to a variety of applications such as narrow-band as well as broad-band beamformers with any geometry, conventional Finite Impulse Response (FIR) filters, analog and digital Laguerre networks, and digital FIR equalizers.

The proposed optimization technique is applied to several numerical examples dealing with the design of a narrow-band base-station antenna array for mobile communication. The flexibility and numerical efficiency of the proposed design technique are illustrated with these examples where hundreds of
antenna elements are optimized without numerical difficulties.
Subject: Signal Processing\General
Signal Processing\Beamforming
Keywords: Optimization, Antenna Array, Beamforming, Filter Design, Semi infinite programming, complex approximation, linear programming