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Abstract

We consider a fundamental number theoretic problem where practial
applications abound. We decompose any rational number a

b in c ratios as
evenly as possible while maintaining the sum of numerators and the sum
of denominators. The minimum a

b c
and maximum a

b c
of the ratios

give rational estimates of a
b from below and from above. The case c = b

gives the usual floor and ceiling functions. We furthermore define the
difference a

b c
, which is zero iff c ≤ GCD(a, b), quantifying the distance

to relative primality.
A main tool for investigating the properties of a

b c
, a

b c
and a

b c
is

the Stern-Brocot tree, where all positive rational numbers occur in lowest
terms and in size order. We prove basic properties such that there is a
unique decomposition that gives both a

b c
and a

b c
. It turns out that

this decomposition contains at most three distinct ratios.
The problem has arisen in a generalization of the 4/3−conjecture in

computer science.

Keywords: Floor function, ceiling function, mediant, relative primality,
Stern-Brocot tree.

1 Introduction
In this paper we study optimal ways to decompose a rational number a

b in c
ratios, while preserving the sum of numerators and the sum of denominators.
This is done so that all ratios are as close as possible to a

b . We are interested
in the minimum, maximum of the ratios, and of the difference of these two
numbers. The problem is a fundamental number theoretic problem, and has
very practical implications. However, the problem has arisen in a computer
science context. The main results in the present paper are important in the
companion paper [7], which otherwise is independent. In that paper a general
version of the 4/3-conjecture, well known in computer science, is solved.
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The present paper is purely mathematical. Here we take advantage of the
Stern-Brocot tree to prove the existence of optimal decompositions in c ratios,
and to find these decompositions.

Given three integers a, b and c where 1 ≤ c ≤ b, we consider sets of c
quotients a1

b1
, ...,acbc so that a =

Pc
1 ai and b =

Pc
1 bi. Here all ai are integers

and all bi are positive integers, i.e. 1 ≤ bi ≤ b for all i. Such a set is called a
c-decomposition of a

b . Pick a c-decomposition where min(
a1
b1
, ..., acbc ) is maximal.

For such a decomposition we denote
¥
a
b

¦
c
= min(a1b1 , ...,

ac
bc
).We call

¥
a
b

¦
c
the c-

floor ratio of a and b. This term is motivated by the fact that we have
¥
a
b

¦
1
= a

b

and
¥
a
b

¦
b
=
¥
a
b

¦
, so the quantity generalizes the floor function. We refrain from

writing
¥
a
b

¦
c
with a fraction bar, as

¥
a
b

¦
c
, since

j
da
db

k
c
6=
¥
a
b

¦
c
in general.

We may similarly define a generalized ceiling function. For a decomposition
a1
b1
, ..., acbc where max(

a1
b1
, ..., acbc ) is minimal, we denote

§
a
b

¨
c
= max(a1b1 , ...,

ac
bc
),

which is the c-ceiling ratio of a and b. We prove that there is a decomposition
fulfilling both the minimum and the maximum, i.e. where

¥
a
b

¦
c
= min(a1b1 , ...,

ac
bc
)

and
§
a
b

¨
c
= max(a1b1 , ...,

ac
bc
) (Lemma 18).

We furthermore define the ceiling-floor difference asha
b

i
c
=
la
b

m
c
−
ja
b

k
c
.

We have
£
a
b

¤
c
= 0 if and only if c ≤ GCD(a, b), since only if c ≤ GCD(a, b)

there are decompositions so that all ratios are equal. If a is not a multiple of b the
difference

£
a
b

¤
c
increases from 0 to 1 when c increases from 1 to b. The quantity£

a
b

¤
c
quantifies the distance to divisibility of a by b, where c can be seen as a

crudeness parameter. This is reflected in the property
h
da
db

i
c
=
£
a
b

¤
dc/de (Lemma

11). The difference
£
a
b

¤
c
has practical interpretations. One is the "unavoidable

unfairness" if a objects are shared among b persons who are subdivided in c
groups (see Section 4).

The sequences of floor or ceiling ratios may be denoted without index, i.e.ja
b

k
=

³ja
b

k
1
, ...,

ja
b

k
b

´
, andla

b

m
=

³la
b

m
1
, ...,

la
b

m
b

´
.

The sequence
¥
a
b

¦
is decreasing from a

b to
¥
a
b

¦
as a function of c, while

§
a
b

¨
is

increasing from a
b to

§
a
b

¨
. We here use the terms "increasing" and "decreasing"

in the forms that allow equality — e.g. f(x) is increasing if f(x) ≤ f(y) for all
x < y.
The parameter c specifies the number of ratios in which to divide a

b , slightly
similarly to how the denominator b in a

b specifies the number of parts in which
to divide a. The notion of c as an "extra denominator" of a special kind is
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supported by that the abbreviation formula da
db =

a
b can be generalized to also

include c, since we have¹
da

db

º
dc

=
ja
b

k
c
,
»
da

db

¼
dc

=
la
b

m
c
, and

∙
da

db

¸
dc

=
ha
b

i
c

for any positive integer d (Lemma 12). It is however more to the point to
describe c as the degree of crudeness in how we estimate a

b , alternatively to
regard b − c + 1 as the degree of accuracy. This is natural since c = 1 give
maximal accuracy,

¥
a
b

¦
1
=
§
a
b

¨
1
= a

b , while it is minimal for c = b where we get
the floor and ceiling functions

¥
a
b

¦
b
=
¥
a
b

¦
and

§
a
b

¨
1
=
§
a
b

¨
.

In this paper we give basic properties of
¥
a
b

¦
c
and

§
a
b

¨
c
and show how the c-

floor and c-ceiling ratios effectively may be calculated by using the Stern-Brocot
tree. The main reference for the Stern-Brocot tree is [4]. In this tree all positive
rational numbers are generated exactly once, and all occur in shortest terms.
The link between the c-floor and c-ceiling ratios and the Stern-Brocot tree is
provided by the operation

a1
b1
⊕ a2

b2
=

a1 + a2
b1 + b2

,

here denoted by ⊕. The number a1+a2
b1+b2

is called the mediant of a1
b1
and a2

b2
. It is

the main operation of construction of the Stern-Brocot tree, and expresses that
the sums of numerators and denominators are preserved in a decomposition. In
Section 4 applications in number theory and discrete linear algebra are described
briefly.
The operation ⊕ has natural practical applications. Consider a situation

where we have a1 kg of a certain gas in a container of volume b1 litres, with
density a1/b1, and similarly for a2 kg of a certain gas in a neighbouring container
of volume b2 litres. If the containers are merged, for example by removing a
wall between the containers, we get the density (a1+ a2)/(b2+ b2) in the larger
merged volume. This instance has obvious discrete counterparts if a1, a2, b2 and
b2 are all integers.
In this paper we are interested in the inverse mediant operation, meaning

that we will go backwards in the Stern-Brocot tree. Given two numbers a and
b, we want to find a decomposition with a1

b1
⊕ ... ⊕ ac

bc
= a

b . We are interested
in a decomposition that is uniform, i.e., the ratios a1

b1
, ..., acbc should be as equal

as possible. This problem is trivial for continous sets of numbers, in which case
all ratios can be taken to be equal. It is not trivial if ai ∈ Z and bi ∈ Z+ for
all i, and the difference

£
a
b

¤
c
=
§
a
b

¨
c
−
¥
a
b

¦
c
quantifies the distance to an even

distribution. For discrete sets we thus define:

Definition 1 Assume that a ∈ Z and b ∈ Z+. A decomposition a
b =

a1
b1
⊕

...⊕ ac
bc
is uniform from below if there is no other decomposition with larger

min(a1b1 , ...,
ac
bc
). Similarly, it is uniform from above if there is no other de-

composition with smaller max(a1b1 , ...,
ac
bc
). It is uniform if it has both properties.
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It turns out that for any a
b there exist a uniform partition. Furthermore it

is unique and contains at most three distinct ratios (Lemma 18). The Stern-
Brocot tree also provides a fast algorithm to calculate the numbers

§
a
b

¨
c
and¥

a
b

¦
c
.

The paper is organized as follows. In Section 2 we present basic properties of
the mediant and of the Stern-Brocot tree, concluding with previous research. In
Section 3 we present and prove basic properties of the c-floor and the c-ceiling
ratios, and the ceiling-floor difference. In Section 4 a few applications of these
functions are discussed.

2 The mediant and the Stern-Brocot tree

2.1 Previous research

2.1.1 Number theory and the Stern-Brocot graph

Moritz Abraham Stern (1807—1894) succeeded Carl Friedrich Gauss in Göttin-
gen. In 1858 he published the article Über eine zahlentheoretische Funktion [8],
which contains the first publication of a tree which later came to be known
as the Stern-Brocot tree. Independently, the clockmaker Achille Brocot 1861
presented the same tree in a paper about efficient use of systems of cogwheels
[2]. Thus, from the very beginning the number theoretic content of the tree was
accompagnied by applications, similarly to how this paper has emerged from
problems in the computer science companion paper [7] (see Section 4). The
Stern-Brocot tree was reintroduced by R. Graham, D. Knuth and O. Patasnik
in [4], and has since then been the subject of research. For example, in [6] M.
Niqui devises algoritms for exact algorithms for rational and real numbers based
on the Stern-Brocot tree.

2.1.2 Computer science

Computer science problems are often very close to pure combinatorial or number
theoretic problems. In a well-known binpacking problem we have n positive
numbers x = (x1, ..., xn) and want to find a partition A of these numbers in k
sets A1, ..., Ak , k < n, so that f(A,x) = max1≤j≤k(

P
i∈Aj xi) is minimal. We

may denote this minimum by ef(x) = minA f(A,x)
In the 4/3-conjecture two cases of binpacking are compared in the case

k = 2. Normal binpacking, as above, is compared to a counterpart with an
extra liberty during the packing. Here one of the numbers xi may be split in
two positive numbers xi,1 and xi,2 whose sum is xi. We denote by f 0(A,x) =

minsplit a xi(max1≤j≤k(
P

i∈Aj xi)) and
ef 0(x) = minA f 0(A,x). It is trivial that

minx(f/f
0) = 1. The 4/3-conjecture states that maxx(f/f 0) = 4/3. This state-

ment was conjectured by Liu 1972 [5] and proved by Coffman and Garey 1993
[3], all in a computer science context.
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In computer science context, a set of numbers (x1, ..., xn) may represent a
parallel program, the k partition sets correspond to the processors of a multi-
processor with k processors, a partition A is a schedule of the parallel program,
and a split of a program from xi into xi,1 and xi,2, where xi = xi,1 + xi,2, is
called a preemption. A partition where splits are allowed is then called a pre-
emptive schedule. Braun and Schmidt proved 2003 a formula that compares
preemptive schedules with i preemptions to a schedule with unlimited number
of preemptions in the worst case, using a multiprocessor with m processors [1].
The comparison is made in terms of the ratio of completion times for a program
that maximizes this ratio, when assuming optimal schedules in both cases. They
show that no more than m − 1 preemptions are needed in the unlimited case.
They generalized the bound 4/3 to the formula 2 − 2/(m/(i + 1) + 1), which
also may be written as 2m/(m+ i+ 1).
The paper [7] generalizes the problem considered by Braun and Schmidt into

an optimal comparison of i preemptions to j preemptions, using a multiprocessor
with m processors. In the case j ≤ m− i− 1 we find the optimal bound

2
bj/(i+ 1)c+ 1
bj/(i+ 1)c+ 2 .

It turns out that in the case j ≤ m− i− 1, the floor ratio provides an explicit
formula: 2

j
i+j+1
2i+j+2

k
min(m,i+j+1)−j

. This problem was a source for the present
paper.

2.2 The mediant — basic properties

In this section we consider properties of the mediant operation a1
b1
⊕ a2

b2
= a1+a2

b1+b2
.

First we formulate immediate properties.
It is obvious that a1

b1
< a1+a2

b1+b2
< a2

b2
if a1b1 < a2

b2
, unless a1

b1
= a2

b2
, in which case

a1
b1
= a1+a2

b1+b2
= a2

b2
. The strict inequalities are important for the Stern-Brocot

tree. The mediant operation is associative, (a1b1 ⊕
a2
b2
)⊕ a3

b3
= a1

b1
⊕ (a2b2 ⊕

a3
b3
), so

we may simply write a1
b1
⊕ a2

b2
⊕ a3

b3
, and commutative a1

b1
⊕ a2

b2
= a2

b2
⊕ a1

b1
. We will

also need the rule a1+db1
b1
⊕ a2+db2

b2
⊕ ...⊕ ac+dbc

bc
= a1

b1
⊕ a2

b2
...⊕ ac

bc
+d.We assign

higher priority to ⊕ than +, so that a1
b1
⊕ a2

b2
+ d is to be read (a1b1 ⊕

a2
b2
) + d.

The mediant can be regarded as a weighted mean value. The quantity w1x1+
w2x2 is the arithmetic weighted mean value of the two numbers x1 and x2,
where the sum of the weights w1 and w2 is required to be one: w1 + w2 = 1.
The medianta+cb+d of

a
b and

c
d can be thought of as a weighted mean value, as

a+ c

b+ d
=

b

b+ d

a

b
+

d

b+ d

c

d
,

i.e, the weights w1 = b
b+d and w2 =

d
b+d are determined by the denominators

only. We have similarly for n numbers

a1
b1
⊕ ...⊕ an

bn
=

b1
b1 + ...+ bn

a1
b1
+ ...+

bn
b1 + ...+ bn

an
bn

.
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We will use this mean value property in Section 3 (Lemma 17). Of course, when
considering weighted mean values, the weights w1, ..., wn are usually considered
to be independent of x1, ..., xn. The above remark has a significance as a way of
more exactly specify where a+c

b+d is positioned relatively to
a
b and

c
d . Note also

that this mean value is not a well-defined mean value of rational numbers, since
da1
db1
⊕ a2

b2
6= a1

b1
⊕ a2

b2
in general. It is rather a mean value of pairs of numbers.

We remark that the mediant operation a1
b1
⊕ a2

b2
= a1+a2

b1+b2
is isomorfic to the

vector addition in linear algebra:

(a1, a2) + (b1, b2) = (a1 + b1, a2 + b2).

This connection is further discussed in Section 4.2.

2.3 The Stern-Brocot tree

2.3.1 Stern-Brocot sequences

The Stern-Brocot tree is generated by starting with the sequence 0
1 ,

1
0 . Itera-

tively, longer sequences are generated by inserting mediants in all intermediate
spaces. Hence, the first Stern-Brocot sequences are

S0 = (
0

1
,
1

0
)

S1 = (
0

1
,
1

1
,
1

0
)

S2 = (
0

1
,
1

2
,
1

1
,
2

1
,
1

0
)

S3 = (
0

1
,
1

3
,
1

2
,
2

3
,
1

1
,
3

2
,
2

1
,
3

1
,
1

0
)

S4 = (
0

1
,
1

4
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
3

4
,
1

1
,
4

3
,
3

2
,
5

3
,
2

1
,
5

2
,
3

1
,
4

1
,
1

0
).

The following figure shows the common way to depict Stern-Brocot tree in the
literature, here including up to the fifth generation.
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Fig. 1 The Stern-Brocot tree - S5.

Since the mediant is a weighted mean value, the numbers are distinct, and
all sequences Sn are in increasing order.

2.3.2 Generations

If we omit numbers that are already generated, we can talk about generations
of numbers, which will be important in this paper. The first generations are
then the following:

G0 = (
0

1
,
1

0
)

G1 = (
1

1
)

G2 = (
1

2
,
2

1
)

G3 = (
1

3
,
2

3
,
3

2
,
3

1
)

G4 = (
1

4
,
2

5
,
3

5
,
3

4
,
4

3
,
5

3
,
5

2
,
4

1
).

Clearly, Sn = ∪ni=0Gi and Gn = Sn\Sn−1. We denote the generation number
of a ratio a

b by g(ab ), i.e.
a
b ∈ Gg( ab )

. Each positive rational number has a
unique generation number, this follows from that each rational number occur
exactly once in the tree (Theorem 2). It is obvious that |Gn| = 2n−1 except
that |G0| = 2, and that |Sn| = 2n + 1.
Each number is a mediant of two numbers. These two numbers may by the

terminology of graph theory be called parents. Since every second number in a
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Stern-Brocot sequence is generated in the last step, and all other numbers in
earlier steps, each number has one parent that belong to the previous generation
and another that belongs to an earlier generation. The number 1

1 is the only
exception to this. We call a parent in the previous generation the close parent,
and the other parent the distant parent.

2.3.3 The tree and the graph

When depicting the Stern-Brocot tree in the literature, it is a tradition to denote
the tree in a simplified and somewhat incorrect way. Edges to close parents are
represented only. When disregarding the other edges, the Stern-Brocot tree is
a binary tree, exept for the generation consisting of 0

1 and
1
0 . When taking

both kinds of edges into account, the graph is not a tree, if it is regarded as an
undirected graph. For the results in this paper we need both kinds of edges. In
the following figure the distant parent-offspring edges are marked with a dotted
line.

Fig 2 The Stern-Brocot graph up to fifth generation — S5 = ∪5i=0Gi.

When we expicitely need both kinds of edges, we will talk about the Stern-
Brocot graph. We then regard the graph as a directed graph where the edges
are directed from lower to higher generations. As a directed graph it is a tree
since there are no cycles. We use the term Stern-Brocot graph to emphasize
that both kinds of egdes are equally important.
In the following argument, we exempt the nodes 01 and

1
0 . Considering close

edges only, each node has one parent and two offsprings. Considering all edges,
each node has two parents and an infinite number of offsprings, two in each
higher generation. The graph is infinitely large, alternatively sufficiently large.
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We furthermore remark that the size order among the entries from left to right
is always preserved. Geometrically this means that the graph is a planar graph
— the branches do not cross. The branches do not even shadow each other if we
imagine the sun above the tree positioned in zenit.

2.3.4 Stern-Brocot pairs

Nodes that are co-parents, i.e. has a common offspring, play an important role
in this paper. A pair of rational numbers that are parents to a

b is called the
Stern-Brocot pair of a

b , and is denoted by SB(ab ). By the construction, each
ratio a

b has a unique pair of parents. Note that (a1b1 ,
a2
b2
) = SB(ab ) implies

a1
b1
⊕ a2

b2
= a

b , but the converse implication is usually false. For example, (
2
5 ,

3
7)

is the Stern-Brocot pair of 5
12 , but (

1
5 ,

4
7 ) is not, although

1
5 ⊕

4
7 =

5
12 . We write

the pair in size order, so if (a1b1 ,
a2
b2
) is a Stern-Brocot pair we know that a1

b1
< a2

b2
.

The significance of Stern-Brocot pairs is that it provides a decomposition
where the numbers are as close as possible to the decomposed number. Note
that if (a1b1 ,

a2
b2
) is a Stern-Brocot pair there are no ratios in lowest terms in the

interval (a1b1 ,
a2
b2
) that have denominator smaller than b1 + b2. Except for the

Stern-Brocot pair ( 01 ,
1
0), the two members of a Stern-Brocot pair always belong

to different generations. Each Stern-Brocot pair (a1b1 ,
a2
b2
) defines an infinite

branch in the tree by repeated mediant-addition of the element that belongs to
the lower generation. If g(a1b1 ) > g(a2b2 ) the branch runs to the right immediately
below the element a2

b2
:

BR(
a2
b2
) = {a1 + na2

b1 + nb2
, n = 0, 1, 2, ...},

while if g(a1b1 ) < g(a2b2 ) it goes to the left below the ratio
a1
b1
:

BL(
a1
b1
) = {na1 + a2

nb1 + b2
, n = 0, 1, 2, ...},

Note that BR(
a2
b2
) goes to the right but appears to the left of a2b2 , and analogously

for BL (see Fig 3). For example, the first two branches in the tree are BL(
0
1)

and BL(
1
0), where BL(

0
1) consist of all ratios where the numerator is 1, {

1
n , n ∈

N}, while BR(
1
0) is the set of natural numbers N ={1, 2, 3, ...}. The next two

branches are BR(
1
1 ) = {

n
n+1 , n ∈ N} and BL(

1
1 ) = {

n+1
n , n ∈ N}.

Let us consider a certain node in the tree as a distant parent. Then all close
co-parents to that node are located in the two branches below. Thus, the set of
all co-parents to a

b in higher generations is C(
a
b ) = BL(

a
b ) ∪BR(

a
b ). Of course,

the two branches never intersect.

9



Fig 3 Branches BL(
1
2) and BR(

1
2) below

1
2 .

2.3.5 Anchestor sequences

We use the term ancestor sequence A(ab ) to a ratio
a
b for the sequence containing

all parents, parent’s parents, and so on, in size order. The ratio itself is included
in the anchestor sequence. We only include one of the anchestors 0

1 and
1
0 . If

a
b ≤ 1 the anchestor

0
1 is included, otherwise

1
0 is included. It follows from the

construction that the anchestor sequence contains exactly one member for each
generation from 0 to g(ab ). The anchestor sequence A(

a
b ) is a subsequence to

S(g(ab )), and forms a conelike set in the Stern-Brocot tree. For example, the
anchestor sequence of 25 is A(

2
5) = (

0
1 ,

1
3 ,

2
5 ,

1
2 ,

1
1).

10



Fig 4 A( 58) — anchestor set of
5
8 inside double lines.

As we shall see, the numbers in A(ab ) are the numbers that occur in the
sequences

§
a
b

¨
and

¥
a
b

¦
. The floor sequence consists of a

b and the numbers in
A(ab ) to the left of

a
b , while the ceiling sequence consists of

a
b and those to the

right. In Section 3 we prove this and specify exacly how c is related to the
members in the set A(ab ).
We sometimes use the term anchestor set, instead of anchestor sequence, if

the order is irrelevant

2.3.6 Proofs of basic properties of the Stern-Brocot tree

We next establish fundamental properties of the Stern-Brocot tree. The proofs
follow those in [4].

Theorem 2 Each non-negative rational number occurs exactly once in the Stern-
Brocot tree, and in lowest terms.

Proof : No number can occur twice or more, since a second occurence in a
Stern-Brocot sequence would violate the strict increasing order of numbers.

We next show that all numbers in the tree are in lowest terms. Of course,
the ratio l

L is in lowest terms if there are integers a and b so that la+ Lb = 1.

We show by induction that we have Lr − lR = 1 if l
L ,

r
R are adjacent numbers

in any Stern-Brocot sequence. From this it follows that both l
L and

r
R are in

lowest terms.
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It is clear that the pair 01 ,
1
0 fulfil the condition Lr−lR = 1. For the induction

it is enough to show that if we have Lr − lR = 1, then L(l + r)− l(L+R) = 1
is also true. This is a trivial calculation.

Finally we prove that any ratio a
b ≥ 0, where a and b are relatively prime,

appears in the Stern-Brocot tree. For this we use the natural binary search
algorithm in the tree, starting with ( 01 ,

1
0 ), where we in each step pick the interval

( lL ,
l+r
L+R) or (

l+r
L+R ,

r
R) that contains

a
b . A third possibility is

l+r
L+R =

a
b , in which

case we have found the appearence of a
b in the tree. We need to show that this

third case necessarily happens at some point during the search algorithm.
We will show that from the inequalities l

L < a
b < r

R and Lr − lR = 1 it
follows that l + L + r + R ≤ a + b. Since at least one of the numbers l, L, r
and R increase by at least one in each step of the iteration, while a and b are
constants, the inequalities l

L < a
b < r

R cannot be valid for an infinite number of
steps. Hence, the third case l+r

L+R =
a
b necessarily happens.

In proving l + L + r + R ≤ a + b, we start by noting that the inequalities
l
L < a

b <
r
R give aL−bl ≥ 1 and br−aR ≥ 1. If these inequalities are multiplied

by r +R respective l + L we get

(aL− bl)(r +R) ≥ r +R,

(br − aR)(l + L) ≥ l + L.

Addition of the inequalities and cancellation to the left gives

a(Lr −Rl) + b(−lr + rL) ≥ l + L+ r +R,

so from Lr − lR = 1 we get

a+ b ≥ l + L+ r +R.

The theorem is proved.

In order to describe how rapidly the ratios grows in the tree, it is well known
that the denominators of the numbers x ∈ Gn, x < 1 are at least n and at most
Fn. Here Fn is the n:th member in the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, ...,
defined iteratively by Fn+2 = Fn+1 + Fn and F0 = 1, F1 = 1.

Furthermore, the Stern-Brocot tree gives the best possible rational approxi-
mations of an irrational number. We may extend the definition of an anchestor
set to an irrational number q, by iteratively picking an interval (a1b1 ,

a2
b2
) to which

q belongs as in the proofs of Theorem 2, giving an infinite anchestor set A(q).
The set contains the best rational approximations of q with limited denominator:

Theorem 3 Suppose that q > 0 is irrational. If a
b /∈ A(q) and q < a

b , then
there is a ratio c

d ∈ A(q) so that d ≤ b and q < c
d < a

b .
Similarly, if a

b /∈ A(q) and q > a
b , then there is a ratio

c
d ∈ A(q) so that

d ≤ b and a
b <

c
d < q.

12



For a proof, see [4].
For example, the anchestor set of the golden mean φ = (

√
5 + 1)/2 ≈

1.61803... is A(φ) = {10} ∪ {Fn/Fn−1, n ∈ N}. Thus, ratios of Fibonacci num-
bers give best possible rational approximations of φ. We remark that Fn can
explicitly be calculated using φ as Fn = (φ

n − (−φ)−n/
√
5.

We conclude this section by contributing to the knowledge about the Stern-
Brocot graph with a graph theoretic observation. We here study the Stern-
Brocot graph and not the tree — both kinds of edges are important. This graph
is a directed graph where each edge has a direction from a parent to its offspring.
A path from a0

b0
to an

bn
is a sequence of nodes (a0b0 ,

a1
b1 ,

a2
b2
, ..., an−1bn−1

, anbn ), where
ak−1
bk−1

is a parent to ak
bk
for all k = 1, ..., n.

The observation says that the number of paths from a ratio to the closest
first anchestor, 01 or

1
0 , simply is given by the denominator of the ratio.

Theorem 4 For a ratio a
b ≤ 1, the number of distinct paths in the Stern-Brocot

graph from 0
1 to

a
b is b. For a ratio

a
b > 1, the number of distinct paths from 1

0
to a

b is b.

Proof : We prove this by induction.Suppose that a
b ≤ 1. The induction starts

with the observations that 11 has denominator 1 and one single path to
0
1 , which

takes care of the case a
b = 1, and that

1
2 has denominator 2 and two paths to

0
1 .

For 1
2 , there is one path directly from

0
1 , the path (

0
1 ,

1
2) and one via

1
1 , which

is the path (01 ,
1
1 ,

1
2).

For a
b < 1, let a0

b0
be the close parent and a1

b1
the distant parent. Thus,

a
b =

a0+a1
b0+b1

. By the induction hypothesis, a0
b0
has b0 paths to 0

1 and
a1
b1
has b1

paths to 0
1 .

Now, any path from a
b to

0
1 goes first to the close parent

a0
b0
or to the distant

parent a1
b1
. If the distant parent a1

b1
is the first node, a0

b0
do not belong to the

path. Hence, the set of paths starting with a0
b0
is disjoint to the set of paths

starting with a1
b1
. It follows that the total number of paths from a

b to
0
1 is b0+b1.

Since this is the denominator of a
b , the theorem is proven for a

b ≤ 1. The proof
in the case a

b > 1 is very similar.

3 Main results

3.1 Fundamental properties of
¥
a
b

¦
c
and

§
a
b

¨
c

We start by proving that for fixed a and b,
¥
a
b

¦
c
is decreasing and

§
a
b

¨
c
is

increasing as functions of c.

Lemma 5 For fixed a and b, we have for all c = 1, ..., b − 1 the inequalities¥
a
b

¦
c
≥
¥
a
b

¦
c+1

and
§
a
b

¨
c
≤
§
a
b

¨
c
.

Proof : We prove
¥
a
b

¦
c
≥
¥
a
b

¦
c+1
.

13



For any (c+1)-decomposition a1
b1
, ..., acbc ,

ac+1
bc+1

, the c-decomposition a1
b1
, ..., acbc⊕

ac+1
bc+1

has the property

min(
a1
b1
, ...,

ac
bc
⊕ ac+1

bc+1
) ≥ min(a1

b1
, ...,

ac
bc
,
ac+1
bc+1

),

sincemin(acbc ,
ac+1
bc+1

) ≤ ac
bc
⊕ac+1

bc+1
. Perhaps it is possible to find other c-decompositions

that increase the left side even more. Thus, for an optimal (c+1)-decomposition
a1
b1
, ..., acbc ,

ac+1
bc+1

, we haveja
b

k
c
≥ min(a1

b1
, ...,

ac
bc
⊕ ac+1

bc+1
) ≥ min(a1

b1
, ...,

ac
bc
,
ac+1
bc+1

) =
ja
b

k
c+1

.

By an analogus argument for
§
a
b

¨
c
, the lemma is proved.

We next consider the two cases of ratios a
b that are not represented in the

Stern-Brocot tree: negative ratios and ratios which are not in lowest terms.

3.1.1 Positive numerators are enough

By the next lemma it is enough to consider a = 0, ..., b− 1.

Lemma 6 For all a ∈ Z and b ∈ Z+, we haveja
b

k
c
= ba

b
c+

¹
amod b

b

º
c

,la
b

m
c
= ba

b
c+

»
amod b

b

¼
c

, andha
b

i
c
=

∙
amod b

b

¸
c

Proof : Consider a decomposition a1
b1
, ..., acbc . If we insert ai = bab cbi + ri,

i = 1, ..., c, into the minimum min(a1b1 , ...,
ac
bc
), we obtain

min(
a1
b1
, ...,

ac
bc
) = min(

bab cb1 + r1

b1
, ...,

bab cbc + rc

bc
)

= ba
b
c+min(r1

b1
, ...,

rc
bc
).

By summing the relations ai = bab cbi + ri, i = 1, ..., c, it also follows that

cX
i=1

ri = amod b.

Thus, for each decomposition a1
b1
, ..., acbc , there is a decomposition

r1
b1
, ..., rcbc withPc

i=1 ri = amod b and where min(a1b1 , ...,
ac
bc
) = bab c + min(

r1
b1
, ..., rcbc ). The two

first equalitites follow by maximizing or minimizing among the decompositions.

14



The third equality ha
b

i
c
=

∙
amod b

b

¸
c

follows immediately from the first two equalities and
£
a
b

¤
c
=
§
a
b

¨
c
−
¥
a
b

¦
c
. The

lemma is proven.

This lemma seems to unravel a certain asymmetry between the floor and
ceiling functions, since the floor function bab c occurs in both the floor and ceiling
ratio statements. This is however superficial, and follows from the preference to
use positive numbers if possible. Perhaps

§
a
b

¨
c
= dab e + d

amod b−b
b ec is a more

appropriate counterpart to
¥
a
b

¦
c
= bab c+ b

amod b
b cc.

In fact, the difference
£
a
b

¤
c
has an extra symmetry, from which if follows that

only at most db/2e values of a give distinct values.

Lemma 7 For all a ∈ Z and b ∈ Z+, we haveha
b

i
c
=

∙
b− a

b

¸
c

=

∙
−a
b

¸
.

Proof : Suppose that a1b1 , ...,
ac
bc
is an optimal decomposition for

§
a
b

¨
c
and

¥
a
b

¦
c

written in decreasing order, so thatmax
³
a1
b1
, ..., acbc

´
= a1

b1
andmin

³
a1
b1
, ..., acbc

´
=

ac
bc
. Then max

³
−a1

b1
, ...,−ac

bc

´
= −ac

bc
and min

³
−a1

b1
, ...,−ac

bc

´
= −a1

b1
, so¹

−a
b

º
c

= −
la
b

m
c»

−a
b

¼
c

= −
ja
b

k
c
.

Hence, ha
b

i
c
=

∙
−a
b

¸
c

,

and the lemma follows from
£−a
b

¤
c
=
h
b−a
b

i
c
, by Lemma 6.

It is furthermore enough to consider decompositions whith ratios in the
closed interval (bab c, d

a
b e).

Lemma 8 There is a decomposition
³
a1
b1
, ..., acbc

´
where ai

bi
∈ [bab c, d

a
b e] for i =

1, ..., c where max
³
a1
b1
, ..., acbc

´
=
§
a
b

¨
c
.There is also such a decomposition where

min
³
a1
b1
, ..., acbc

´
=
¥
a
b

¦
c
.
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Proof : Consider
³
a1
b1
, ..., acbc

´
, where a1

b1
is the smallest ratio and ac

bc
is the

largest, and that a1
b1

< bab c. Then the decomposition
³
a1
b1
, ..., acbc

´
can be replaced

by
³
a1+1
b1

, ..., ac−1bc

´
, where the minimum cannot be smaller and the maximum

cannot be larger. By repeating this argument, the lemma is proven.

3.1.2 a/b not in lowest terms

We next take care of the case when a/b is not in lowest terms. First we single
out the trivial cases. The most trivial case is when a is a multiple of b.

Lemma 9 If ab = n for some integer n, then
¥
a
b

¦
c
=
§
a
b

¨
c
= n for all 1 ≤ c ≤ b.

Proof : Since a = nb, the decomposition (n(b−c+1)b−c+1 , n1 , ...,
n
1 ) is best possible

for any c ≤ b.
In the next lemma, a and b may have a common divisor. We denote by

GCD(a, b) the greatest common divisor of a and b.

Lemma 10 Suppose that d = GCD(a, b). Then
¥
a
b

¦
c
=
§
a
b

¨
c
= a

b if and only
if c ≤ d. Also,

£
a
b

¤
c
= 0 if and only if c ≤ GCD(a, b).

Proof : Denote a = da0 and b = db0.Here the decomposition (
a0(d−c+1)
b0(d−c+1) ,

a0
b0
, ..., a0b0 ),

where all ratios are equal, is possible if and only if d − c + 1 ≥ 1. The lemma
follows.

Our final and exhaustive result when a and b have a common factor is the
following.

Lemma 11 Suppose that d is a positive integer. Then
j
da
db

k
c
=
¥
a
b

¦
dc/de,l

da
db

m
c
=
§
a
b

¨
dc/de and

h
da
db

i
c
=
£
a
b

¤
dc/de.

The lemma allows us to always consider ratios a
b in lowest terms. In this

lemma the ceiling function in the index is genuin — it cannot naturally be
replaced by a floor function. Lemma 11 is very natural if we consider a c-
decomposition in d subsets, where we in each subset decompose the ratio a/d

b/d

in parallel. There does not exist better decompositions than this, which follows
by Lemma 17.
Next we generalize the abbreviation formula da

db =
a
b to also include c:

Lemma 12 If a is an integer and b and c are positive integers we have¹
da

db

º
dc

=
ja
b

k
c
,
»
da

db

¼
dc

=
la
b

m
c
, and

∙
da

db

¸
dc

=
ha
b

i
c

The lemma follows by replacing c by dc in Lemma 11.
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3.2 Connection to the Stern-Brocot tree

Next we relate the quantities
¥
a
b

¦
c
,
§
a
b

¨
c
and

£
a
b

¤
c
to the Stern-Brocot tree.

We consider the sequence of the two parents ( lL ,
r
R) to

a
b , i.e. (

l
L ,

r
R) = SB(ab )

as defined by the Stern-Brocot tree (see Section 2.3.4). We say that the re-
placement of a

b by SB(ab ) is a partition
a
b . A partition sequence Pc(

a
b ) is a

sequence written in increasing order consisting of c ratios. The sequence Pc(ab )
is constructed from Pc−1(

a
b ) by partitioning the occuring ratio that belongs to

the latest generation. Since only ratios in the anchestor sequence of a
b appears,

where all ratios belong to different generations, this procedure is well-defined.
The process starts with P1(

a
b ) = (ab ), followed by P2(

a
b ) = ( lL ,

r
R ). The next

step depends on whether g( lL) or g(
r
R) is largest.

It is obvious that Pc(ab ) contains c ratios and is a c-decomposition of
a
b . We

will find that it is a uniform decomposition (Lemma 17), in fact the unique such,
and thus important for calculating

¥
a
b

¦
c
,
§
a
b

¨
c
and

£
a
b

¤
c
.

Considered as a set we have Pc(ab ) ⊂ A(ab ), but as sequences we may have
c = |Pc(ab )| > |A(ab )| = g(ab ) + 1 since Pc(

a
b ) may have many repeated ratios,

and possibly c > g(ab ) + 1. In fact, Pc(
a
b ) has always very few distinct ratios.

Lemma 13 Pc(
a
b ) contains at most three distinct ratios.

Proof : The ratio at the highest generation is partitioned into its parents,
many times if it occurs repeatedly. This give rise to multiple versions of the two
parents only, and no other ratios. Hence these three ratios are the only occuring
distinct ratios. At the step when the last ratio is partitioned, there is exactly
two distinct ratios. Only P1(

a
b ) contains one single distinct ratio. The lemma

is proved.

Thus: the partition sequences are subsets of the anchestor set that usually
have many repeated elements, builded by the algorithm from below in the tree
and upwards. Our next aim is Theorem 16, that connects the Stern-Brocot tree
to decompositions of a

b .
In Section 2.3.5 we defined a Stern-Brocot pair of a ratio a0

b0
, denoted by

SB(a0b0 ), as a pair (
a1
b1
, a2b2 ) related in that the two ratios

a1
b1
are a2

b2
are the parents

to a0
b0
in the Stern-Brocot tree.

We denote the greatest common divisor of a and b as GCD(a, b). Thus,
GCD(a, b) = 1 iff a

b is in lowest terms. Given a pair (
a1
b1
, a2b2 ) with

a1
b1
⊕ a2

b2
= a0

b0
,

we next define the Stern-Brocot operation SBO(a1b1 ,
a2
b2
). This operation maps

the pair (a1b1 ,
a2
b2
) onto another pair, which either is a Stern-Brocot pair or two

equal ratios. It is defined as follows:

SBO(
a1
b1
,
a2
b2
) =

(
SB(a1b1 ⊕

a2
b2
) if GCD(a0, b0) = 1

(a0b0 ,
(d−1)a0
(d−1)b0 ) if GCD(a0, b0) = d > 1

We mentioned earlier that ( 25 ,
3
7) is a Stern-Brocot pair, but (

1
5 ,

4
7) is not,

although 1
5 ⊕

4
7 =

5
12 . The Stern-Brocot operation replaces (

1
5 ,

4
7) by (

2
5 ,

3
7), so

SBO( 15 ,
4
7) = (

2
5 ,

3
7).
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Of course, the Stern-Brocot operation leaves Stern-Brocot pairs unchanged.
Otherwise, the new pair is closer together. This is also the case if the ratio is not
in lowest terms. This is the content of the following lemma, and the significance
of the Stern-Brocot operation.

Lemma 14 If a1
b1

< a2
b2
and SBO(a1b1 ,

a2
b2
) = (A1

B1
, A2

B2
), then either a1

b1
< A1

B1
and

a2
b2

> A2

B2
, or (a1b1 ,

a2
b2
) = (A1

B1
, A2

B2
).

Proof : In the caseGCD(a0, b0) > 1 the lemma is trivial. IfGCD(a0, b0) = 1,
we first remark that if a1 = A1, then also a2 = A2 follows from a = a1 + a2 =
A1+A2, and similarly for the denominators. So if a1b1 =

A1

B1
, then also a2

b2
= A2

B2
.

If GCD(a0, b0) = 1, both the inequalities a1
b1

> A1

B1
and a2

b2
< A2

B2
are impossi-

ble since by the construction of the Stern—Brocot tree there are no rational num-
bers in the interval (A1

B1
, A2

B2
) except such that has denominator b1+b2 = B1+B2

or larger. The lemma is proved.

We next use the Stern-Brocot operation to successively modify a decompo-
sition D into D0 by replacing a pair (a1b1 ,

a2
b2
) in D by SBO(a1b1 ,

a2
b2
). A decom-

position where the Stern-Brocot operation has no effect on any possible pair in
the decomposition is called an invariant decomposition.

Lemma 15 Any c-decomposition Dc(
a
b ) =

³
a1
b1
, ..., acbc

´
of a

b , can in a finite

number of steps be transformed into an invariant decomposition D0 by applying
the Stern-Brocot operation consecutively to all possible pairs of ratios. Then
minD ≤ minD0 and maxD ≥ maxD0.

Proof : Any c-decomposition of a
b consists of ratios where the denominators

are at most b − c+ 1. If all numbers are multiplied with b!, we obtain integers
only. Now we measure the variation of a decomposition D by the quantity
V (D), which is defined as

V

µ
a1
b1
, ...,

ac
bc

¶
=

cX
i=1

2
| ab−

ai
bi
|b!
.

This measure of variation puts an absolute priority to minimizing the vari-
ations at large distances from a

b , i.e. where |
a
b −

ai
bi
| is large. If a large distance

decreases and all larger distances are unchanged, V will decrease, even if all
smaller distances increases.
We have seen that the Stern-Brocot operation either has no effect or de-

creases the difference of the pair by moving both ratios closer. This means
that if a pair (a1b1 ,

a2
b2
) in a decomposition D is replaced by SB(a1b1 ,

a2
b2
), giving a

decomposition D0, and if SB(a1b1 ,
a2
b2
) 6= (a1b1 ,

a2
b2
), then V (D0) < V (D).

If the Stern-Brocot operation is iteratively applied to any starting decom-
position D, the same decomposition cannot reappear, since that would violate
that V is decreasing. The number of decompositions is finite, from which if
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follows that the inevitable end result of the replacement process is an invariant
decomposition. The lemma is proved.

In an invariant decomposition, all pairs are Stern-Brocot pairs, i.e. common
parents to a certain ratio. The topology of the Stern-Brocot tree allows only
very simple such decompositions.

Theorem 16 If c > 1 there exist only invariant decompositions with two or
three distinct elements.

The following figure depicts the two possible configurations, with two and
with three elements.

Figure: Invariant Stern-Brocot decompositions of two and of three members.

Proof : If an invariant decomposition has two distinct elements only, it con-
tains two elements that are parents to a third element, which is not part of the
decomposition. Each element has one distant parent and one close parent. If we
fix a distant parent A, which may appear in any location in the Stern-Brocot
tree, as described in Section 2.3.4, all possible close co-parents to A are located
in the two branches BL(A) or BR(A) below A. Any second parent B on these
two branches form an invariant decomposition with two distinct elements. The
common descendant of A and B is the next node on the same branch as B.
In the case ot three distinct elements we have to consider how to add a third

element C to the two existing parents A and B, so that C is a parent together
with both A and B. If C is distant parent together with A, then it cannot
be co-parent with B. Therefore, C has to belong to one of the two co-parent
branches BL(A) or BR(A). In order to be a co-parent also to B, there are only
two possible locations for C: immediately above or immediately below B, on
the same branch.
We next consider if an invariant decomposition is possible with four elements.

We then try to add one fourth element D to the three existing, A, B and C.
Again, if D is distant parent with A, then it cannot be co-parent with B or
C. So the co-parenthood with A requires that D is located on one of the two
branches below A. Similarly it has to be next to B or C on the same branch
in order to co-parent with one of them. But then it will necessarily not be a
co-parent with the remaining element on the same branch, C or B, to which it
is not adjacent. Hence there is no invariant decomposition with four elements.
When considering invariant decompositions of five or more elements, we note

that each subset of four element need to be an invariant decomposition in iteself.
Since this is impossible, there does not exist an invariant decomposition of four
or more distinct elements. The proof is complete.

Note that we have not yet ruled out the possibility that there may be several
different invariant decompositions, one of which is uniform from above and one
from below. By the next lemma there is only one invariant decomposition, and
it is Pc(ab ), which is defined by a simple successive partition algorithm.
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Lemma 17 Pc(
a
b ) is an invariant decomposition of

a
b , and a unique uniform

c-decomposition of a
b .

Proof : Pc(
a
b ) is generated by successively partitioning the element of the

highest generation. The two elements that result from such a partition are
thus co-parents. The other two possible pairs are also co-parents. This follows
from the fact that one Stern-Brocot sequence is generated from the previous by
adding offsprings in the intermediate spaces between two elements, where one is
an offspring of the other. Hence, in terms of the conventional graph terminology
applied to the Sterm-Brocot tree, we have that an offspring and the close parent
are always co-parents to another offspring.
It remains to prove that there can be no other invariant decomposition than

Pc(
a
b ) that also is a uniform decomposition. Suppose that Pc(ab ) has the two

distinct members a1
b1
and a2

b2
and a1

b1
< a2

b2
. Then we can write a

b in two alternative
ways, where the last one is in terms of weighted mean values:

a1
b1
⊕ ...⊕ a1

b1| {z }
c1

⊕ ..
a2
b2
⊕ ...⊕ a2

b2| {z }
c2

=

c1
b1

b1 + b2

a1
b1
+ c2

b2
b1 + b2

a2
b2

=
a

b
,

where c1 + c2 = c. Suppose furthermore that g(a1b1 ) < g(a2b2 ), so
a2
b2
is on a

branch BL(
a1
b1
) below a1

b1
. Can we move a2

b2
on that branch and reach a different

c-decomposition of ab ? If we replace any of the
a2
b2
:s with ratios to the left on the

same branch, we would adjust the mean value to the left. In order to maintain
the mean value and keep a proper decomposition of a

b , we would be required
to replace any or some of the c1 a1

b1
:s by any of the ratios on the branch. But

all these changes would decrease the denominators of the ratios, so their sum
cannot still be b. If we try to replace any of the a2

b2
:s with ratios to the right

on the same branch, we would adjust the mean value to the right, and would
need to compensate this by increasing the number of a1b1 by replacements. These
changes would all increase the sum of denominators, so in this way we cannot
find any proper c-decomposition.
By very similar arguments we may disprove the possibility of other invariant

decompositions than Pc(
a
b ) if

a1
b1

> a2
b2
and if g(a1b1 ) > g(a2b2 ). Conservation

of mean value, left-right, and denominator sum, up-down, also rules out any
other invariant decomposition than Pc(

a
b ) in the case that Pc(

a
b ) consists of

three distinct elements. If all ratios are moved to a different branch, either all
denominators increase or decrease. Hence also such changes are impossible. The
uniqueness of Pc(ab ) as an invariant and uniform c-decomposition follows.
We remark the consequence that there always exist one decomposition that

gives both the minimum and the maximum.

Corollary 18 For any a ∈ Z and b, c ∈ Z+, where c ≤ b, there is a unique uni-
form decomposition, i.e. a decomposition a1

b1
, ..., acbc so that

¥
a
b

¦
c
= min(a1b1 , ...,

ac
bc
)

and
§
a
b

¨
c
= max(a1b1 , ...,

ac
bc
).
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We next geometrically construct the sequences
¥
a
b

¦
and

§
a
b

¨
of length b,

containing
¥
a
b

¦
c
and

§
a
b

¨
c
for all c : 1 ≤ c ≤ b, respectively. To this end we

split the anchestor sequence A(ab ) in two sequences, the left and right anchestor
sequences, denoted AL(

a
b ) and AR(

a
b ). Define n as the position of

a
b in A(

a
b ), i.e.

A(ab )n =
a
b .Now we defineAL(

a
b ) andAR(

a
b ) so that they contain the floor ratios

and ceiling ratios respectively, and are ordered so that a
b is first in the sequence.

Hence: AL(
a
b )i = A(ab )n−i+1 for i = 1, ..., n, and AR(

a
b )i = A(ab )n+i−1 for

i = 1, ..., |A(ab )|− n+ 1.

Theorem 19 Suppose that a
b is in lowest terms and positive. Then the se-

quences
¥
a
b

¦
and

§
a
b

¨
are constructed successively by filling the sequences from

left to right up to the length b by a number of copies of each entry of AL(
a
b )

and AR(
a
b ), respectively, taken from the left. The first entry a

b is taken in one
copy. The number of copies of any other entry equals the number of paths in
the Stern-Brocot graph from that entry to a

b .

Proof : The set Pc(ab ) contains only entries from A(ab ). We have to prove
that the number of copies of an entry equals the number of paths from that
entry to a

b . Instead we will prove a slightly different but equivalent statement.
Note that the number of copies of an entry a0

b0
in on of the sequences

¥
a
b

¦
or
§
a
b

¨
equals the number of copies c0 of a0

b0
that Pc(ab ) contains for c so that Pc+1(

a
b )

is the first where a0
b0
is partitioned. This is so since in Pc+1(

a
b ), the ratio

a0
b0
is

partitioned once, and then cannot be either floor or ceiling ratio. However the
a0
b0
is floor or ceiling ratio for all Pc−i(ab ), i = 0, ..., c0 − 1, since the partition

that leads from Pc−i(
a
b ) to Pc−i+1(

a
b ) produces one more copy of

a0
b0
.

We next show by induction that the number of paths from a0
b0
to a

b is c0.We
first prove the initial step of the induction. The close parent of ab is immediately
partitioned, so it has one copy both in the floor or ceiling sequence and in P1(ab ).
The distant parent is slightly more complicated. It may appear at any generation
earlier than or equal to g(ab ) − 2. However, each partition of the other parent
gives one more copy of the distant parent in both the floor or ceiling sequence
and in Pi(

a
b ), until the distant parent is to be partitioned.

The general step of the induction is similar. Suppose that Pc(ab ) has the
two distinct members a1

b1
, a2b2 , with c1 copies of a1

b1
and c2 copies of a2

b2
, and that

a1
b1

< a2
b2
and g(a1b1 ) < g(a2b2 ). By the induction hypothesis, there exist c1 paths toa1

b1
and c2 paths to a2

b2
. Then a2

b2
is partitioned c2 times giving rise to a new ratio

a3
b3
. The edge from a2

b2
to a3

b3
then allows c2 paths from a3

b3
to a

b , since there is c2
paths from a2

b2
to a

b . If g(
a3
b3
) > g(a1b1 ) we are done. If g(

a3
b3
) < g(a1b1 ), partitions

of a1
b1
give c1 new copies of a3

b3
. This is in accordance with that the edge from

a1
b1
to a3

b3
allows c1 new paths from a3

b3
to a

b . since there are c1 paths from
a1
b1

to a
b . The partition of

a1
b1
gives a new ratio a4

b4
. If g(a3b3 ) > g(a4b4 ) we are done,

otherwise we can proceed with a similar argument until we are done. The proof
is complete.
A ratio a

b that may be negative or not in lowest terms can be handled with
Theorem 19 by slight preparations.

21



Theorem 20 For a general a
b , let d = GCD(a, b), and denote a0 = a/d and

b0 = b/d. Then the sequences
j
a0mod b0

b0

k
and

l
a0mod b0

b0

m
are given by Theorem

19. Now the sequences
¥
a
b

¦
and

§
a
b

¨
can be constructed by adding ba0/b0c to all

entries and duplicating each entry of
j
a0mod b0

b0

k
and

l
a0mod b0

b0

m
respectively in

d copies without changing their order.

Proof : The theorem follows from Theorem 19, Lemma 6 and Lemma 11.

3.3 Algorithms for calculating
¥
a
b

¦
c
and

§
a
b

¨
c

We next give a self-contained algorithm for finding the values of
¥
a
b

¦
c
and

§
a
b

¨
c

for any allowed combination of integers a, b and c. The following theorem does
not require knowledge of the proofs in the paper.
In the following theorem the arrow ← is used as an assignment operator in

the following three different ways:
1. If x is a number, "x ← y" signifies assignment of the value of y to the

variable x.
2. If x is a sequence, A or G, "x

p← y" means insertion of the value y between
positions p and p+1 in the vector x. Thus, values to the right of p in the vector
x are all juxtapositioned one step to the right, and the length of the vector x is
incremented.
3. If x is a sequence, F or C, "x

(i)← y" means insertion of i copies of the
value y after the last position in x. The length of the vector thus increases with
i.
The algorithm works in two steps. First we construct the anchestor se-

quence A(ab ) and the corresponding generation information G(
a
b ). In the second

algorithm we work backwards in the anchestor sequence to construct the ap-
propritate c-values and the sequences

¥
a
b

¦
and

§
a
b

¨
, i.e. the values of

¥
a
b

¦
c
and§

a
b

¨
c
for all c : 1 ≤ c ≤ b.

Theorem 21 If a
b = n for some integer n, then

¥
a
b

¦
c
=
§
a
b

¨
c
= n for all

1 ≤ c ≤ b. Otherwise, the sequences
¥
a
b

¦
and

§
a
b

¨
are calculated by the following

two algorithms.
Algorithm 1 — constructing A(ab )
1. Let d = GCD(a, b). Assign a ← a/d and b ← b/d. Also assign a ←

amod b.
2. Initialize: A = ( 01 ,

1
1), G = (0, 1), l ← 0, L ← 1, r ← 1, R ← 1, g = 2,

p = 2.

3. Do A
p← l+r

L+R , G
p← g and g ← g + 1, and go to the appropriate case 4a,

4b or 4c.
4a. If a

b =
l+r
L+R , exit the iteration, i.e. go to 5.

4b. If a
b <

l+r
L+R , do r← l + r and R← L+R, and go to 3.

4c. If a
b >

l+r
L+R , do l← l + r, L← L+R and p← p+ 1 and go to 3.
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5. After the iteration, add bab c to all values in A. Now the maximal value in
G is p = g(ab ).
Algorithm 2 — searching A(ab )
1. The algorithm starts with values defined by Algorithm 1. Furthermore,

initialize as follows: F and C are empty sequences, d = LGD(a, b), x← p− 1,
F

(d)← a
b , F

(d)← A(x), y = p+ 1, C
(d)← a

b , C
(d)← A(y), u← d, v ← d, q ← p.

2. q ← q − 1.Pick i so that G(i) = q.
3a. If q = 0, exit the iteration, i.e. go to 4.

3b. If i < p, F
(u)← A(x), x← x− 1, v ← v + u. Go to 2.

3c. If i > p, C
(u)← A(y), y ← y + 1, u← v + u. Go to 2.

4.
¥
a
b

¦
= F,

§
a
b

¨
= C.

The complexity of the algorithm is O(b).

Proof : The algorithm is an implementation of Lemma 6, Theorem 19 and
Theorem 20.

4 Further work and applications
Other than the computer science application described in Section 2, we here
mention two futher problem areas.

4.1 Number theory and practical applications

We here limit the discussion to applications of the ceiling-floor difference
£
a
b

¤
c
. It

can be given an fundamental application concerning the divisibility of numbers.
It can be thought of not only answering whether two numbers are divisible, but
also, if the answer is no, to quantify the distance to divisibility. Lemma 10
states that

£
a
b

¤
c
= 0 if and only if c ≤ GCD(a, b), but if c > GCD(a, b), the

number
£
a
b

¤
c
> 0 is this quantification. For example, we remark that∙

i

in+ j

¸
i

=
1

n(n+ 1)

for all i = 2, 3, ... and for all 1 ≤ j ≤ i − 1. This is not difficult to prove by
considering optimal decompositions, or by studying the branch BL(

0
1) in the

Stern-Brocot tree.
An instance of the divisibility problem is the following: If a objects are to

be distributed among b persons, each person obtains a/b objects in the mean.
If a objects are to be distributed among b persons divided in c groups, then the
ceiling-floor difference

£
a
b

¤
c
is the unaviodable unfairness. It is the mean amount

given to each person in the most favoured group minus the mean amount for
each person in the least favoured group, if the partition is made to minimize
the unfairness.
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One possible instance of this is if 14 persons obtain 11 baskets of fruit and
cheese to divide among themselves after they have formed 6 groups. Another is 7
divers who need to return to the surface rapidly. They can distribute themselves
among 7 submarines, and have in total 16 tubes of oxygen, which also need to be
divided as fairly as possible. Here, by the above formula, the minimal unfairness
is 1/6 gas tubes.

4.2 Discrete linear algebra

The problem may be reformulated into a problem for integer vectors, i.e. vectors
(a, b) where a and b are integers, and b ≥ 1. The inverse problem can then be
reformulated as a problem of decomposing the vector (a, b) into a sum of vectors
(a1, b1), ..., (ac, bc) with positive y-components, where the directions ai/bi of the
component vectors should be as unchanged as possible compared to the initial
vector direction a/b. This formulation can naturally be generalized from 2 to n
dimensions if we let the scalar product

a1b1 + ...+ anbnp
a21 + ...+ a2n

p
b21 + ...+ b2n

measure the direction deviance between the integer vectors (a1, ..., an) and
(b1, ..., bn), generalizing (a1, a2) and (b1, b2) or a1/a2 and b1/b2. We may here
assume that all integers are positive. Linear algebra with integer vectors have
essential applications in computer geometry.
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