Inlämning av Examensarbete / Submission of Thesis

Syed Farzad Husain MEE10:89, pp. 56. ING/School of Engineering, 2010.

The work

Författare / Author: Syed Farzad Husain
farzadhusain@gmail.com
Titel / Title: Evaluation of Methods for 3D Environment Reconstruction with Respect to Navigation and Manipulation Tasks for Mobile Robots
Översatt titel / Translated title: Utvärdering av metoder för 3D-miljö återuppbyggnad med avseende på navigation och Manipulation Uppgifter för mobila robotar
Abstrakt Abstract:

The field of 3-D-environment reconstruction has been subject to various research activities in recent years. The applications for mobile robots are manifold. First, for navigation tasks (especially SLAM), the perception of 3-D-obstacles has many advantages over navigation in 2-D-maps, as it is commonly done. Objects that are located hanging above the ground can be recognized and furthermore, the robots gain a lot more information about its operation area what makes localization easier. Second, in the field of tele-operation of robots, a visualization of the environment in three dimensions helps the tele-operator performing tasks. Therefore, a consistent, dynamically updated environment model is crucial. Third, for mobile manipulation in a dynamic environment, an on-line obstacle detection and collision avoidance can be realized, if the environment is known.
In recent research activities, various approaches to 3-D-environment reconstruction have evolved. Two of the most promising methods are FastSLAM and 6-D-SLAM. Both are capable of building dense 3D environment maps on-line. The first one uses a Particle Filter applied on extracted features in combination with a robot system model and a measurement model to reconstruct a map. The second one works on 3-D point cloud data and reconstructs an environment using the ICP algorithm.
Both of these methods are implemented in GNU C++. Firstly, FastSLAM is implemented. The object-oriented programming technique is used to build up the Particle and Extended Kalman Filters. Secondly, 6-D SLAM is implemented. The concept of inheritance in C++ is used to make the implementation of ICP algorithm as much generic as possible. To test our implementation a mobile robot called Care-O-bot 3 is used. The mobile robot is equipped with a color and a time-of-fight camera. Data sets are taken as the robot moves in different environments and our implementation of FastSLAM and 6-D SLAM is used to reconstruct the maps.

Populärvetenskaplig beskrivning / Popular science summary: Fältet av 3-D-miljö återuppbyggnaden har varit föremål för olika forskningsinsatser under senare år. De ansökningar om mobila robotar är många. Först för navigering uppgifter (särskilt Slam), uppfattningen av 3-D-hinder har många fördelar jämfört navigering i 2-D-kartor, som det vanligtvis görs. Objekt som finns hänger över marken kan erkännas och dessutom robotarna vinna mycket mer information om dess verksamhet området vad som gör lokalisering lättare. För det andra, när det gäller tele-drift av robotar, hjälper en visualisering av miljön i tre dimensioner tele-aktör som utför uppgifter. Därför är en konsekvent, dynamiskt uppdaterade miljö modell avgörande. Tredje kan för mobila manipulation i en dynamisk miljö, en on-line hinder upptäcka och undvika kollisioner förverkligas, om miljön är känd.
Under senare forskning, till 3-D-miljö återuppbyggnaden olika strategier har utvecklats. Två av de mest lovande metoderna är FastSLAM och 6-D-Slam. Båda kan bygga täta 3D-miljö kartor on-line. Det första man använder ett partikelfilter som tillämpas på extraherade funktioner i kombination med ett robotsystem modell och en mätning modell för att rekonstruera en karta. Den andra verk på 3-D data punktmoln och rekonstruerar en miljö med hjälp av ICP algoritm.
Båda dessa metoder implementeras i GNU C. För det första är FastSLAM genomföras. Det objektorienterade programmering Tekniken används för att bygga upp Partikel-och Extended Kalman filter. För det andra är 6-D SLAM genomförs. Begreppet arv i C används för att göra genomförandet av ICP algoritm så mycket generisk som möjligt. För att testa vårt genomförande en mobil robot som heter Care-O-bot 3 används. Den mobila roboten är utrustad med en färg och en time-of-kamp kamera. Dataset tas som roboten rör sig i olika miljöer och vårt genomförande av FastSLAM och 6-D SLAM används för att rekonstruera kartorna.
Ämnesord / Subject: Signalbehandling - Signal Processing
Mathematics\Probability and Statistics
Datavetenskap - Computer Science\Artificial Intelligence
Nyckelord / Keywords: SLAM, FastSLAM, 6-D SLAM

Publication info

Dokument id / Document id:
Program:/ Programme Magisterprogram i Elektroteknik / Master of Science in Electrical Engineering
Registreringsdatum / Date of registration: 11/08/2010
Uppsatstyp / Type of thesis: Masterarbete/Master's Thesis (120 credits)

Context

Handledare / Supervisor: Dr.Siamak Khatibi
siamak.khatibi@bth.se
Examinator / Examiner: Dr.Siamak Khatibi
Organisation / Organisation: Blekinge Institute of Technology
Institution / School: ING/School of Engineering

+46 455 38 50 00
I samarbete med / In co-operation with: Fraunhofer IPA
Anmärkningar / Comments:

farzadhusain@gmail.com
Contact in Sweden
0046-762-409910

Files & Access

Bifogad uppsats fil(er) / Files attached: farzadthesis.pdf (6405 kB, öppnas i nytt fönster)