Bounding the minimal Euclidean distance for any PSK block codes of alphabet size 8

Document type: Conference Papers
Peer reviewed: Yes
Author(s): Efraim Laksman, Håkan Lennerstad, Magnus Nilsson
Title: Bounding the minimal Euclidean distance for any PSK block codes of alphabet size 8
Translated title: Gränser för det minimala euklidiska avståndet för PSK blockkoder me alfabetstorlek 8
Conference name: Information Theory Workshop
Year: 2009
Pagination: 46-49
City: Taormina, Italy
Organization: Blekinge Institute of Technology
Department: School of Engineering - Dept. of Mathematics & Natural Sciences (Sektionen för ingenjörsvetenskap - Avd.för matematik och naturvetenskap)
School of Engineering S-371 79 Karlskrona
+46 455 38 50 00
http://www.bth.se/ing/
Authors e-mail: hln@bth.se
Language: English
Abstract: We consider a bound for the minimal Euclidean distance of any PSK block code with eight symbols. The main result was established in [6] - here we prove that the bound is in fact stronger than was proven there. The bound is deduced by generalizing Elias' method of a critical sphere. It is not asympthotic, as previous Elias' sphere bounds, but valid for any specific word length and code size. Many known codes fulfil the bound with equality, proving the sharpness of the bound for these parameter values as well as the optimality of these codes.
Summary in Swedish: Vi visar att en tidigare gräns för det minimala euklidiska avståndet för en block kod är starkare. Gränsen uppfylls med likhet av många kända koder, vilket visar att både koderna och gränsen är optimala för dessa parametervärden.
Subject: Telecommunications\Coding Theory
Mathematics\General
Keywords: block code, Elias sphere, Euclidean distance, phase shift keying
Edit