Analysis of Structural Dynamic Properties and Active Vibration Control Concerning Machine Tools and a Turbine Application

Document type: Dissertations
Full text:
Author(s): Henrik Åkesson
Title: Analysis of Structural Dynamic Properties and Active Vibration Control Concerning Machine Tools and a Turbine Application
Series: Blekinge Institute of Technology Doctoral Dissertation Series
Year: 2009
Issue: 5
Pagination: 163
ISBN: 978-91-7295-172-3
ISSN: 1653-2090
Publisher: Blekinge Institute of Technology
City: Karlskrona
Organization: Blekinge Institute of Technology
Department: School of Engineering - Dept. of Electrical Engineering (Sektionen för ingenjörsvetenskap - Avd. för elektroteknik)
School of Engineering S-371 79 Karlskrona
+46 455 38 50 00
Authors e-mail:
Language: English
Abstract: Vibration in metal cutting is a common problem in the manufacturing industry, especially when long and slender tool holders or boring bars are involved in the manufacturing process. Vibration has a detrimental effect on machining. In particular the surface finish is likely to suffer, but tool life is also most likely to be reduced. Tool vibration also results in loud noise that may disturb the working environment.
The first part of this thesis describes the development of a robust and manually adjustable analog controller capable of actively controlling boring bar vibrations related to internal turning. This controller is compared with an adaptive digital feedback filtered-x LMS controller and it displays similar performance with a vibration attenuation of up to 50 dB.
A thorough experimental investigation of the influence of the clamping properties on the dynamic properties of clamped boring bars is also carried out in second part of the thesis. In relation to this, it is demonstrated that the number of clamping screws, the clamping screw diameter size, the screw tightening torque and the order the screws are tightened, have a significant influence on a clamped boring bar’s eigenfrequencies as well as on its mode shape orientation in the cutting speed - cutting depth plane. Also, an initial investigation of nonlinear dynamic properties of clamped boring bars was carried out.
Furthermore, vibration in milling has also been studied in relation to millingtool holders with a long overhang. A basic investigation concerning the spatial dynamic properties of the tool holders of milling machines, both when not cutting and during cutting, has been carried out. Also, active control of milling tool holder vibration has been investigated and a first prototype of an active milling tool holder was implemented and tested. The challenge of transferring electrical power while maintaining good signal quality to and from a rotating object is addressed and a solution to this is proposed.
Finally, vibration is also a problem for the hydroelectric power industry. In Sweden, hydroelectric power plants stand for approximately half of Sweden’s electrical power production and are also considered to be a so-called green source of energy. When renovating water turbines in small-scale hydroelectric power plants and modifying them to optimize efficiency, it is not uncommon that disturbing vibrations occur in the power plant. These vibrations have a negative influence on the production capacity and will wear various components quickly. Occasionally, these vibrations may cause severe damage to the power plant. To identify this vibration problem, experimental modal analysis and operating deflection shape analysis were utilized. To reduce the vibration problem, active control using inertial mass actuators was investigated. Preliminary results indicate a significant attenuation of the vibrations.
Subject: Signal Processing\General
Keywords: Active Vibration Control, Structural dynamics, Nonlinearities, Turning, Milling
URN: urn:nbn:se:bth-00452