Real Time Realistic Skin Translucency

Document type: Journal Articles
Article type: Original article
Peer reviewed: Yes
Full text:
Author(s): Jorge Jimenez, David Whelan, Veronica Sundstedt, Diego Gutierrez
Title: Real Time Realistic Skin Translucency
Translated title: Halvgenomskinligt Realistiskt Skin i Realtid
Journal: IEEE Computer Graphics & Applications
Year: 2010
Volume: 30
Issue: 4
Pagination: 32-41
ISSN: 0272-1716
Publisher: IEEE
URI/DOI: 10.1109/MCG.2010.39
Organization: Blekinge Institute of Technology
Department: School of Computing (Sektionen för datavetenskap och kommunikation)
School of Computing S-371 79 Karlskrona
+46 455 38 50 00
Authors e-mail:
Language: English
Abstract: Diffusion theory allows the production of realistic skin renderings. The dipole and multipole models allow for solving challenging diffusion-theory equations efficiently. By using texture-space diffusion, a Gaussian-based approximation, and programmable graphics hardware, developers can create real-time, photorealistic skin renderings. Performing this diffusion in screen space offers advantages that make diffusion approximation practical in scenarios such as games, where having the best possible performance is crucial. However, unlike the texture-space counterpart, the screen-space approach can't simulate transmittance of light through thin geometry; it yields unrealistic results in those cases. A new transmittance algorithm turns the screen-space approach into an efficient global solution, capable of simulating both reflectance and transmittance of light through a multilayered skin model. The transmittance calculations are derived from physical equations, which are implemented through simple texture access. The method performs in real time, requiring no additional memory usage and only minimal additional processing power and memory bandwidth. Despite its simplicity, this practical model manages to reproduce the look of images rendered with other techniques (both offline and real time) such as photon mapping or diffusion approximation.
Subject: Digital Game Development\General
Computer Science\General
Keywords: Subsurface scattering, Real time, Skin, Translucency, Perception, Computer graphics, Graphics and multimedia
Note: July/Aug