Converting conventional stereo pairs to multi-view sequences using morphing

Document type: Conference Papers
Peer reviewed: Yes
Author(s): Roger Olsson, Vamsi Kiran Adhikarla, Sebastian Schwarz, Mårten Sjöström
Title: Converting conventional stereo pairs to multi-view sequences using morphing
Journal: Proceedings of SPIE - The International Society for Optical Engineering
Conference name: Stereoscopic Displays and Applications XXIII
Year: 2012
Volume: 8288
Pagination: Article number828828
ISBN: 978-081948935-7
ISSN: 0277-786X
Publisher: SPIE
City: Burlingame, CA
URI/DOI: 10.1117/12.909253
Organization: Blekinge Institute of Technology
Department: School of Engineering - Dept. of Mathematics & Natural Sciences (Sektionen för ingenjörsvetenskap - Avd.för matematik och naturvetenskap)
School of Engineering S-371 79 Karlskrona
+46 455 38 50 00
Language: English
Abstract: Autostereoscopic multi view displays require multiple views of a scene to provide motion parallax. When an observer changes viewing angle different stereoscopic pairs are perceived. This allows new perspectives of the scene to be seen giving a more realistic 3D experience. However, capturing arbitrary number of views is at best cumbersome, and in some occasions impossible. Conventional stereo video (CSV) operates on two video signals captured using two cameras at two different perspectives. Generation and transmission of two views is more feasible than that of multiple views. It would be more efficient if multiple views required by an autostereoscopic display can be synthesized from these sparse set of views. This paper addresses the conversion of stereoscopic video to multiview video using the video effect morphing. Different morphing algorithms are implemented and evaluated. Contrary to traditional conversion methods, these algorithms disregard the physical depth explicitly and instead generate intermediate views using sparse sets of correspondence features and image morphing. A novel morphing algorithm is also presented that uses scale invariant feature transform (SIFT) and segmentation to construct robust correspondences features and qualitative intermediate views. All algorithms are evaluated on a subjective and objective basis and the comparison results are presented.
Subject: Mathematics\General
Keywords: 3D; field morphing; stereo to multiview conversion; view synthesis; warping