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A Short Vita

Karl H. Hofmann was born on October 3,

1932 in Heilbronn, Germany.

He finished his Ph.D. in 1958 and his Habili-

tation in 1962 at the University of Tübingen.

In 1982 he moved to the Technical University,

Darmstadt as a Professor until his retirement

in 1998, but has remained active there as

a Professor Emeritus, teaching courses and

seminars.



He has made major contributions across the

spectrum in topological algebra: continuous

lattices and domain theory, rings and sheaves,

C∗-algebras, Lie semigroups, the exponential

function, transformation groups.

He is a dedicated teacher, commited to good

pedagogy, and has been the advisor for thirty-

seven Ph.D. students.

He is also a talented artist, and has done

weekly illustrated poster announcements of

the Darmstadt colloquia, a front-page for the

AMS Notices and illustrated the well-known

Proofs from the Book.

Fika is very important to him and he

loves good cake!







The Star of Bethlehem

The Star of Bethlehem, or Christmas Star,

appears in the story of the Gospel of Matthew,

where ”wise men from the East” are inspired

by the star to travel to Jerusalem, which

leads them to Jesus’.

Many Christians believe that the star was

a miraculous sign to mark the birth of the

Christ (or Messiah). Some theologians claim

that the star fulfilled a prophecy, known as

the Star Prophecy.



The Star of an Algebra

In the early 20th century ”wise men from
the East” (u.a. von Neumann, Kaplansky,
Gelfand, and Naimark) realized the full power
of so-called ∗-algebras, which lead them, e.g.,
to the mathematical foundation of quantum
mechanics and the rich theory of so-called
C∗-algebras.

Definition: ∗-Algebras

A ∗-algebra, or involutive algebra, is a pair
(A,∗ ) consisting of a complex algebra A and
an antilinear map ∗ : A → A of order 2, i.e.,

(i) (a+ b)∗ = a∗+ b∗ for all a, b ∈ A.

(ii) (z · a)∗ = z · a∗ for all z ∈ C and a ∈ A.

(iii) (a∗)∗ = a for all a ∈ A.



Examples:

1. The complex numbers C together with its

canonical multiplication and conjugation

z∗ := x+ ıy = x− ıy = z

define a ∗-algebra.

2. Let X be a topological space. Then the

space C(X) of continuous functions on

X with pointwise multiplication and con-

jugation

f∗(x) := f(x) for all x ∈ X.

3. For every n ∈ N the space Mn(C) of C-

valued n × n-matrices together with its

canonical multiplication and conjugation

M∗ := M
T

define a ∗-algebra.



4. Let H be a Hilbert space. Then the space

B(H) of bounded linear operators on H
together with composition of operators

and conjugation by taking adjoints, i.e.,

given T ∈ B(H) define T ∗ by

〈Tx, y〉 = 〈x, T ∗y〉 for all x, y ∈ H,

is a ∗-algebra.

5. Let G be a group. The the corresponding

group algebra C[G], i.e., the free vector

space on G, together with its convolution

product and conjugation

a∗ :=

 ∑
g∈G

ag · g

∗ :=
∑
g∈G

ag · g−1

is a ∗-algebra.



More Definitions: Let (A,∗ ) be a ∗-algebra.

(i) An element e ∈ A is called an idempotent
if e2 = e.

(ii) An idempotent p ∈ A is called self-adjoint
if p = p∗.

Examples:

1. The only idempotents in C are 0 and 1.

2. A topological space X is connected if and
only if 0 and 1 are the only idempotents
in C(X).

3. There are plenty of idempotents in B(H).
In fact, there is a 1:1 correspondence be-
tween self-adjoint idempotents in B(H)
and closed subspaces of H.



Some Interesting Prophecies:

1. Each idempotent e ∈ C[G] is essentially
self-adjoint, that is, there is a self-adjoint
idempotent p ∈ C[G] with eC[G] = pC[G].
Geometrically, this means that the space
eC[G] has an orthogonal complement.

2. (Gospel of Kaplansky) If G is a torsion-
free group, then every idempotent in C[G]
is trivial, i.e., equal to 0 or 1.

3. (Gospel of Baum–Connes) The Baum-
Connes prophecy suggests a link between
the K-theory of the reduced C∗-algebra
of a group and the K-homology of the
classifying space of proper actions of that
group, i.e., an interesting correspondence
between different areas of mathematics
such as geometry and analysis.

Note: Two humble, modest, and cake loving
disciples at BTH work on 1. and 2.



Back to Karl. H. Hofmann:

By a famous Theorem of Gelfand and Naimark

each commutative C∗-algebra is isomorphic

to C(X) for some compact space X.

 Consider noncommutative C∗-algebras as

functions on a “quantum space”.

However, one might hope for a more rigorous

characterization:

The Dauns–Hofmann Theorem (mid-60s):

Each C∗-algebra is a module over the algebra

of continuous functions on its primitive ideal

space.





Praxiteles the Sculptor,
4th century BC

The poster is dedicated to Karl H. Hofmanns

successor K.-H. Neeb (my Ph.D. supervisor).

On the poster you can see Praxiteles, who

has to cut out the statue of Hercules from a

gigantic convex marble block.

Next to it is a somewhat skinny gentleman,

who acts as a model.

The illustrator might want to indicate that it

is not yet clear what kind of (mathematical)

Hercules the block will become.



Extreme Points and Convexity in
Representation Theory

Given a unital C∗-algebra A, its states, i.e.,

positive linear functionals of norm 1, form

a compact convex set whose extreme points

correspond to irreducible representations.

If, for example, A is the algebra C(X) of con-

tinuous functions on a compact space, then

its states are probability measures on X and

its extreme points are Dirac measures.

The philosophy underlying these facts can

be adapted to the representation theory of

infinite-dimensional Lie groups (such as the

unitary group of a C∗-algebra).





The Quantum Labyrinth
of the Minotaur

The Minotaur, being part man and part bull,

dwelts at the center of an elaborated Labyrinth.

Ariadne, the daughter of King Minos, gives

her beloved Athenian hero Theseus a ball of

thread, so he can kill the Minotaur and find

his way out of the Labyrinth.

The wavy walls most likely represent the wave

function describing the quantum state of the

labyrinth.



Quantum Probability

Quantum probability was developed in the

1980s as a noncommutative analog of the

Kolmogorovian theory of stochastic processes.

In classical probability theory, information is

summarized by the σ-algebra Σ of events in

a classical probability space (X,Σ, µ).

Quantum information is described in similar

algebraic. In fact, the appropriate algebraic

structure for observables is a *-algebra.



Definition: Quantum Probability Space

A quantum probability space is a pair (A, φ)

consisting of a ∗-algebra A and a state φ.

Remark:

Every classical probability space gives rise to

a quantum probability space if A is chosen

as the *-algebra of bounded measurable C-

valued functions on it.

The projections p ∈ A are the events in A,

and φ(p) gives the probability of the event p.





Schrödinger’s Cat

Schrödinger’s cat is a famous thought ex-

periment devised by Austrian physicist Erwin

Schrödinger in 1935.

The scenario presents a cat that may be si-

multaneously both alive and dead, a state

known as a quantum superposition.

It poses the question, “when does a quan-

tum system stop existing as a superposition

of states and become one or the other?”





Minimal Surfaces

Minimal surfaces can be defined in several
equivalent ways in R3 and lie at the cross-
roads of different mathematical disciplines,
especially differential geometry, calculus of
variations, potential theory, complex analysis
and mathematical physics.

Definition: Differential Equation

A surface M ⊆ R3 is minimal if and only if
it can be locally expressed as the graph of a
solution of

(1 + u2
x)uyy − 2uxuyuxy(1 + u2

y)uxx = 0.

Definition: Mean Curvature

A surface M ⊆ R3 is minimal if and only if its
mean curvature vanishes identically.



Examples:

1. The plane, of course.

2. The Catenoid.

3. The Helicoid.



Remark:

Minimal surfaces are part of the generative

design toolbox used by modern designers.

In architecture there has been much interest

in tensile structures, which are closely related

to minimal surfaces.

A famous example is the Olympiapark in Mu-

nich by Frei Otto, inspired by soap surfaces.





Ph.D. and not Further.
Women in Academia.

Only 17 percent of professors in Germany -

6.700 out of 38600 in total - were female in

2010. In mathematics it is even worse.





Cooperative problem-solving with
realistic tasks - German experiences
with the Dutch A-lympiade

The A-lympiad is a mathematical contest for

teams of 3 or 4 students organized by the

Freudenthal institute of Utrecht University in

the Netherlands.

The teams work on an assignment in which

mathematical problem solving and higher or-

der thinking skills must be used to solve a

real world problem.





Thank you for your attention!

I’d be happy about any kind of resonance.


