
Multi-Strategy Based Train Re-Scheduling During Railway
Traffic Disturbances

S.M.Z. Iqbal, H. Grahn, and J. Törnquist Krasemann
School of Computing, Blekinge Institute of Technology, SE-371 79 Karlskrona, Sweden,

e-mail: {Muhammad.Zeeshan.Iqbal, Hakan.Grahn, Johanna.Tornquist}@bth.se

Abstract
Disruptions and delays in railway traffic networks due to different types of disturbances is
a frequent problem in many countries. When disruptions occur, the train traffic dispatchers
may need to re-schedule the traffic and this is often a very demanding and complicated task.
To support the train traffic dispatchers, we propose to use a parallelized multi-strategy based
greedy algorithm. This paper presents three different parallelization approaches: (i) Single
Strategy with a Partitioned List (i.e. the parallel processes originate from different starting
points), (ii) Multiple Strategies with a Non-Partitioned List, and (iii) Multiple Strategies
with a Partitioned List. We present an evaluation for a busy part of the Swedish railway
network based on performance metrics such as the sum of all train delays at their final des-
tinations and the number of delayed trains. The results show that parallelization helps to
improve the solution quality. The parallel approach (iii) that combines all re-scheduling
strategies with a partitioned list performs best among the three parallel approaches when
minimizing the total final delay. The main conclusion is that the multi-strategy based par-
allel approach significantly improves the solution for 11 out of 20 disturbance scenarios,
as compared to the sequential re-scheduling algorithm. The approach also provides an in-
creased stability since it always delivers a feasible solution in short time.

Keywords
Railway traffic, Disturbance Management, Optimization, Re-scheduling, Parallel Comput-
ing

1 Introduction

Railway networks with heterogeneous traffic and a high capacity-utilization are often sen-
sitive to disturbances, such as infrastructure malfunctioning, accidents, and rolling-stock
failures. In dense networks, a small delay caused by a disturbance may propagate from
one train to other trains and result in large consecutive delays. This is especially true in
Sweden and the Southern main line, where slow freight trains, express commuter trains and
long-distance passenger trains share the same tracks during large parts of the day. When
disruptions occur, the Swedish train traffic dispatchers may need to re-schedule the traffic
and this is often a very demanding and complicated task where decision-support would be
very helpful. The complexity lies in the combination of a very intense and heterogeneous
traffic flow, the merging of several single-tracked lines onto the double-tracked line and
a bi-directional network which permits track swapping at double-tracked line sections (i.e.
the dispatchers can dedicate both tracks for traffic in the same direction if necessary). Worth

1



mentioning is also the effect imposed by the deregulation where the railway network man-
ager, Trafikverket, is fully separated from the many different train operators that are running
the train services. Consequently, Trafikverket needs to act neutral with a system perspec-
tive and not favor any operator when prioritizing between trains during the re-scheduling
process. Recently, quality fees were introduced in Sweden to stimulate all operators as well
as Trafikverket to proactively decrease the occurrence of initial sources of delays imposed
by themselves. One component in this is also the effect of the real-time traffic management
and the consequences and fees it may give rise to, which naturally further motivates the use
of decision-support to overview the effects of the alternative dispatching decisions.

To support the train traffic dispatchers, we propose to use a parallelized multi-strategy
based algorithm. The purpose of using parallelization is threefold: It enables us to (1) cover
a larger part of the search space, (2) make the search more robust since we are not dependent
on the success of a single process, and (3) incorporate different objectives and performance
attributes in the search in a more straightforward way that is also easier to control. Despite
these benefits, the application of parallelization for real-time railway traffic re-scheduling
has so far been relatively limited.

In this paper, we propose and evaluate three different parallel approaches based on a
greedy Depth-First-Search (DFS) branch-and-bound method [13]: (i) Single Strategy with
a Partitioned List (i.e., the list contains the train events to be re-scheduled at the disturbance
time T0), (ii) Multiple Strategies with a Non-Partitioned List, and (iii) Multiple Strategies
with a Partitioned List. The motivation behind the list partitioning at T0 is to search in
different parts of the search space, hence, increasing the subspace diversity.

The performance of the three approaches is assessed with a number of experiments using
data from a busy part of the Swedish railway network. With a 90 minute time horizon, we
have studied and solved 20 disturbance scenarios of three different categories.

Our results show that in several scenarios, the use of parallelization and multiple strate-
gies helps to find improved solutions as compared to the best found solution of the sequential
algorithm. The number of scenarios for which an improved solution is found are 11 out of
20 disturbance scenarios. We also compare the results to the optimal solutions found by the
commercial solver Cplex version 12.2.

The paper is organized as follows: Section 2 presents related work. Section 3 outlines
the re-scheduling strategies and Section 4 presents the parallel algorithm along with the
three parallel approaches. In Section 5 and 6, the experimental methodology and results are
presented and discussed. Finally, we present our conclusions and future work in Section 7.

2 Related Work

Railway traffic re-scheduling during disturbances is an important problem to address and
where research can make a significant contribution. Since the early seventies, several studies
have been done with different perspectives and different solution approaches ranging from
simple, transparent rules to sophisticated optimization methods. An extensive survey is done
in [10], where published work is differentiated based on e.g. infrastructure representation,
objective function and solution approach. A more recent review can be found in [6].

The approaches based on traditional optimization to solve the train re-scheduling prob-
lem with the use of commercial software, e.g., used in [12], are often associated with large
memory requirements and long computation times which becomes problematic in a practi-
cal context. Consequently, the majority of the proposed approaches rely on heuristics and

2



rule-based algorithms.
The train scheduling problem is often formulated as a job shop scheduling problem, as

in [9] and [5], where train trips are jobs which are scheduled on tracks that are considered
as resources. Conte [2] and Schachtebeck [9] studied the problem from the capacity, ro-
bustness, and dependency perspectives. A variable speed dispatching system is proposed
in [5] to control railway traffic by considering acceleration and deceleration time when
modeling. Further, conflicts are resolved with three classes of algorithms: dispatching rules
(First Come First Served), AMCC (Avoid Most Critical Completion Time) greedy heuris-
tic, and a branch-and-bound algorithm. The work in [5] is extended in [3] with detailed
microscopic and comprehensive models to fulfill additional requirements.Computational
complexity studies are presented in e.g. [4] and [11] with the intention to handle distur-
bances in larger railway networks. A performance evaluation of centralized and distributed
strategies for dispatching trains is given in [4], where both types of strategies face increas-
ing difficulty to find feasible solutions with an increasing time horizon. In [1], the model
proposed in [12] is used, but along with two solution methods: (i) right-shift re-scheduling
to produce the initial feasible solution and (ii) local search to limit the search.

Previously proposed approaches do not fully address the complexity imposed by our
Swedish setting as described earlier, although a few approaches address similar networks
and scope (see e.g. the contributions in [4]). Furthermore, the use of parallelization in
this domain has received very little attention so far. We have earlier proposed a sequential
greedy Depth-First-Search (DFS) branch-and-bound method [13] which finds solutions of
good quality within 30 seconds. A parallelization of this sequential greedy algorithm was
later proposed in [8]. One conclusion from that study is that the ability to find good solu-
tions depends on the selection of a suitable candidate event to re-schedule in each iteration.
Therefore, alternative re-scheduling strategies for sorting the candidate list in different ways
based on e.g. earliest track release time were proposed in [7]. The main conclusion is that
the different re-scheduling strategies complement each other and consequently need to be
combined in an effective manner as investigated in this paper.

3 Re-scheduling Strategies

In Sweden, the railway timetable is designed based on a master plan [10]. A timetable shows
train movements at different times with planned start and stop times. To make the timetable
more robust to disturbances, a buffer time may be added in addition to the minimum section
runtime. The buffer time reduces the probability of consecutive delays.

Let
e an event which represents a train movement at specific track of a section
tstarte planned start time of train event e
tstope planned stop time of train event e
truntimee minimum interval occupied by a train event e at a section
tbuffere extra time in addition to truntimee

treleasee track release time of train event e
tmin starte earliest time when an event can start
tdeviatione deviation of train event e and it is calculated as tmin starte - tstarte

se A section of train event e where se ∈ {station, line}
NC A candidate list, i.e., the ordered set of ’n’ next candidate events

e ∈ {C0, C1, ..., Cn−1} in each iteration

3



te′ next event of train A to be executed and the first element in NC
te′′ next event of train B to be executed and the second element in NC

A candidate list NC contains the next event e of each train and is sorted (always in ascending
order) w.r.t tmin starte (which changes during the solution finding process).

Based on above definitions, different re-scheduling strategies are proposed in [7] and
they are explained below:

Strategy s0: s0 is the strategy implemented in [13] and gives precedence to events
that have the earliest start time. It has shown effective to find a first feasible solution.
The candidate list, NC, is sorted with respect to the following condition: tmin starte′ <
tmin starte′′ , where e′ and e′′ represent train events in NC and tmin starte is the minimum
start time for an event e. When tmin starte′ = tmin starte′′ , then tmin starte′ + truntimee′ <
tmin starte′′ + truntimee′′ is used as a second criteria. truntimee represents the section run time
of train event e.

Strategy s1: The motivation behind s1, is that strategy s0 does not consider track release
time. A train with long section run time may delay other trains significantly. Strategy s1
tries to minimize the delay caused by late track release times by sorting NC according to
treleasee′ < treleasee′′ . We divide s1 into two sub-strategies: s1α and s1β .

Strategy s1α calculates the track release time as treleasee = tmin starte + tstope − tstarte ,
where tstarte and tstope are planned start and stop times, respectively, of event e. If a set
of events have the same treleasee , we calculate the release time as treleasee = tmin starte +
truntimee as a second sorting criteria.

A railway network has both station and line sections. Therefore, we introduce strategy
s1β . The track release time is different for events on a station as compared to on a line
section. If an event has a planned stop at a station, then we consider its tstope otherwise
truntimee (i.e. it represents the minimum run time for line section events as well as the
minimum stopping time for station events.). For both types of sections, the release time is
calculated by condition (1), where se is the section type for event e.

treleasee =


tstope if se = station and planned stop = true

and tdeviatione < tbuffere

tmin starte + truntimee otherwise
(1)

Strategy s2: A timetable is designed with buffer times to absorb minor delays, where
tbuffere = tstope − tstarte − truntimee . Strategy s2 seeks to take advantage of the buffer
times and also tries to ensure that the buffer times are fully utilized, thereby aiming at
minimizing the delay. The comparison between two events is done based on the condition:
tmin starte′ + tbuffere′ < tmin starte′′ + tbuffere′′ . It is important to note that this strategy does
not consider if the train has any future buffer time. It behaves as strategy s0 for events with
no buffer time.

Strategy s3: The strategy s0 uses the truntimee partially when two events have the same
minimum start time. Therefore, we introduce a strategy that is based on the minimum section
runtime (i.e. the minimum time required by each train to use the section) and it is expected
to perform well to minimize the delay. It gives precedence to event e′ over event e′′ as
follows: tmin starte′ + truntimee′ < tmin starte′′ + truntimee′′ . Strategy s3 behaves similarly to s0
for larger delays.

4



4 Parallel Algorithms with Multiple Sorting Strategies

In this paper, three different parallel approaches are proposed and implemented based on the
same baseline parallel algorithm [8]. The approaches are: (i) Single Strategy with a Parti-
tioned List, (ii) Multiple Strategies with a Non-Partitioned List, and (iii) Multiple Strategies
with a Partitioned List. The basic execution time limit is 30 seconds which is denoted by Et

and the extended time limit is E′t = (Workerstotal/Processorstotal) ∗Et. The execution
time limit is how long the algorithm searches for re-scheduling solutions.

4.1 Parallel Algorithm

The parallel algorithm [8] is based on a sequential greedy Depth-First-Search (DFS) branch-
and-bound algorithm [13] and addresses the train re-scheduling problem. The search pro-
cess of the algorithm is divided into three phases: (i) pre-processing, (ii) depth-first search,
and (iii) backtracking and branching on potential nodes.

The parallel algorithm uses a master-slave paradigm as shown in Figure 1, where the
master is responsible for phase (i). In the pre-processing phase, all events that were active at
the disturbance time T0 are executed by allocating a start time and a track. A lower bound is
calculated and the sorted candidate list (i.e. sorted w.r.t the earliest possible starting time of
the event), denoted by NC, holds the first waiting event of each train. After that it applies
parallelization at the disturbance time T0, and as many slaves are created as the number of
candidate events to re-schedule at the disturbance time T0.

C0 C2 Cn-1C1

Active Events

Disturbance Time: T0

Candidate List

MASTER SLAVE

deadlock

1st solution

Improved solution

Candidate List
sorted with 
assigned 
strategy ’s’

T0
Backtrack
 LimitNC_s

Figure 1: Master/Slave Paradigm

Each worker/slave performs phase (ii) and phase (iii). Phase (ii) starts with the removal
and execution of a feasible candidate event (i.e. deadlock or conflict free, etc.) from the
candidate list one by one. Upon execution of an event, the candidate list is updated with the
next waiting event of the train and re-sorted. This process continues until a feasible solution
is found. Further, each worker communicates with other workers by sharing the found
solution value through a shared memory area called ”White Board”. The White Board is

5



updated if the new solution found is better than the previously best solution. Furthermore, it
is kept updated with the currently best solution value during the search. The found solution
Solfound is improved in phase (iii) with backtracking and a branch & bound process. With
the solution Solfound backtrack and start branching from a node with a value less than
Solfound. It continues searching for the improved solutions until the execution time limit
Et is not reached.

The ability to find a good re-scheduling solution is dependent on the selection of a
suitable candidate to re-schedule in each iteration. How the candidates in the list are sorted
has shown to affect the results significantly [7, 8].

4.2 Approach 1: Single Strategy with a Partitioned List

In Approach 1, parallelism comes from the decomposition of the candidate list into disjoint
parts. In this way of parallelizing the sequential greedy algorithm, the strategy is to create
as many workers as there are candidates at the disturbance time T0 (i.e. the same as the
number of trains). It forces each worker to search in different parts of the search space with
the same assigned sorting strategy.

This approach is shown in Figure 2, where the master sorts the initial candidate list at the
disturbance time T0 according to the current sorting strategy. After that it creates a worker
(i.e. slave) per candidate which encapsulate the initial candidate to execute, the candidate
list, and the assigned sorting strategy.

Each worker executes the assigned candidate first and then starts searching for a so-
lution. All of the workers search in different parts of the search space independently and
inform each other about the found solutions by using a shared memory area called ”White
Board”. Each worker takes the currently best solution value to improve the branch-and-
bound process. When the execution time limit Et elapses, the White Board contains the
best found solutions. In this way, all five strategies are evaluated, but separately.

4.3 Approach 2: Multiple Strategies with a Non-Partitioned List

The idea behind this parallel approach is to execute five copies of the corresponding sequen-
tial algorithm but each with a different sorting strategy.

The proposed Approach 2 is shown in Figure 3, which relies on two principles. First,
create the number of workers equal to the total number of sorting strategies. As a result, we
create five workers in total. Second, each worker is assigned one strategy each. The master
sorts the initial candidate list at the disturbance time T0 with the sorting strategy and spawn
a worker for each strategy.

A worker holds the candidate list and the sorting strategy. After that they start search for
solution and continues until the execution time limit Et elapses. Upon finding a solution,
each worker shares it with others using the ”White Board”. When the execution time limit
Et elapses, White Board contains the best found solutions. The advantage of this approach
is that each worker starts with a different sorting strategy. Such strategy diversity increases
the likelihood that the workers explore different solutions.

6



Master

C0 C1 Cn-1

WORKER

*cIndex:C0
*sStrategy:{S0}

NC_S0

WORKER

*cIndex:C1
*sStrategy:{S0}

NC_S0

WORKER

*cIndex:Cn-1
*sStrategy:{S0}

NC_S0

*sStrategy:{S0-S3}

NC_S0

When the time limit has 

elapsed, White Board 

contains the best 

found solutions. 

IF Improved_Sol_Found 

Update White Board

Read White Board

IF Event Executed

Figure 2: Parallel Approach 1: Single Strategy with a Partitioned List, here with strategy s0

4.4 Approach 3: Multiple Strategies with a Partitioned List

The disadvantage of Approach 1 is the dependency on one specific strategy while the dis-
advantage of Approach 2 is that it does not start searching with as many subspaces at the
disturbance time T0 as in the Approach 1. The third parallel approach consequently tries
to use and combine the advantages of Approach 1 and Approach 2. Hence, it creates five
workers per candidate at T0, and each of these five workers takes one strategy each (e.g., 5
strategies x 48 candidates = 240 workers).

In Figure 4, the master sorts the initial candidate list at the disturbance time T0 with the
assigned sorting strategy and creates a worker per candidate. Every worker has a candidate
list, the first candidate to execute, and the sorting strategy. This process is repeated for each
strategy, as a result, the total number of workers are StrategiesTotal*Cn. Every worker
searches for solutions until the execution time limit Et elapses. It shares and get the best
solution from the ”White Board”. The master gets the found solutions when all of the
workers finish their work.

The only difference between Approach 3 and 1 is that Approach 3 evaluates all the
strategies at the same time while Approach 1 evaluates them individually. However, the
disadvantage of Approach 3 is that when the number of workers exceeds the number of
processors available (e.g., 8 cores vs. 240 workers), the execution time limit and CPU
resource allocation may affect the results negatively. Some workers may not find improved
solutions before the execution time limit Et elapses. Therefore, we also use the extended
execution time limit E′t.

7



Strategy:s0 Strategy:s1

Master

WORKER

*sStrategy:{S0}

NC_S0

WORKER

*sStrategy:{S1}

NC_S1

WORKER

*sStrategy:{S3}

NC_S3

Strategy:s3

When the time limit 

has elapsed, 

White Board 

contains 

the best 

found solutions. 
IF Improved_Sol_Found 

Update White Board

Read White Board

IF Event Executed

Figure 3: Parallel Approach 2: Multiple Strategies with a Non-Partitioned List

5 Experimental Methodology

In this study, we will address the following issues: (i) What impact does parallelization have
on the solution quality in terms of delay minimization for each strategy? (ii) What effect
does each re-scheduling strategy with a Partitioned List have on the solution improvement?
(iii) What effect do re-scheduling strategies combined with parallelization have on the num-
ber of improvements? (iv) Is the proposed multi-strategy based re-scheduling effective with
respect to the performance metrics?

5.1 Experimental Input Data

The Swedish railway network depicted in Figure 5 consists of both single- and double-
tracked line sections where all sections are bi-directional and several of them have multiple
blocks. The 28 stations have 2 to 14 tracks each except Norsholm (i.e. a junction point and
no train is ever planned to stop there) with only one track. The stations Åby, Strångsjö, and
Simonstorp are modelled in more detail by defining all the forbidden paths into and out of
the stations explicitly, see Appendix B in [13]

The performance analysis of the approaches is based on 20 realistic disturbance scenar-
ios presented in Table 1 and are slightly modified from the scenarios in [13]. The few minor
modifications are done to avoid that the event list of a train ends with an event in the middle
of a set of consecutive line sections, e.g., as between the stations Åby and Norrköping. A
small number of additional events are therefore included in the scenarios used in this paper.

8



Master

C0 Cn-1

WORKER

*cIndex:C0
*sStrategy:{S0}

NC_S0

WORKER

*cIndex:Cn-1
*sStrategy:{S0}

NC_S0

NC_S0
C0 Cn-1

NC_S3

WORKER

*cIndex:C0
*sStrategy:{S3}

NC_S3

WORKER

*cIndex:Cn-1
*sStrategy:{S3}

NC_S3

Strategy:S0 Strategy:S3

When the time limit 

has elapsed, 

White Board 

contains 

the best 

found solutions. 
IF Improved_Sol_Found 

Update White Board

Read White Board

IF Event Executed

Figure 4: Parallel Approach 3: Multiple Strategies with a Partitioned List

For a 90 minute long time horizon, the third column in Table 1 shows the total number of
trains be scheduled, the total number of events, and the number of binary variables required
for the corresponding MILP formulation solved by Cplex. The disturbance scenarios cover
three types of disturbances:

1. Scenarios 1-10 have initially a temporary single source of delay, e.g., a train comes
into the traffic management district with a certain delay, or it suffers from a temporary
delay at one section within the district.

2. In scenarios 11-15, a train has a ’permanent’ malfunction resulting in increased run-
ning times on all line sections it is planned to occupy.

3. In scenarios 16-20, the disturbance is an infrastructure failure causing, e.g., a speed
reduction on a certain section, which results in increased running times for all trains
running through that section.

The sequential and parallel algorithms are implemented in Java using the multithreaded
API with JDK 1.6, and all experiments are conducted on a server running Ubuntu 10.04
and equipped with two quad-core processors (Intel Xeon E5335, 2.0 GHz) and 16 GB main
memory. Cplex (version 12.2) was run on an AMD Opteron 285 quad-core processor and in
parallel, deterministic mode with 4 threads and given a time limit of 24 hours. We also set
the time limit for Cplex to 30 seconds, but it did not manage to provide any feasible solution
in any of 20 disturbance scenarios within this time.

9



Figure 5: The traffic area in Sweden that are used in the study. It has in total 28 stations, all
line sections are bi-directional, wide lines indicate double-tracked sections, and thin lines
single-tracked.

5.2 Performance Metrics

In order to demonstrate the performance of the proposed parallel approaches, a comparative
study for 20 disturbance scenarios has been carried out. The objective of a parallel approach
is to find a solution of good quality within the assigned execution time limit. Therefore, the
choice of performance metrics for these parallel approaches involves:

(i) the minimization of the total final delay for all trains at their destination (TFD) (i.e.
the main objective function), see Table 3;

(ii) the number of trains delayed from 3 to 5 minutes,

(iii) the number of trains delayed more than 5 minutes,

(iv) the total final delay for all the trains delayed more than 5 minutes at their destination
(T ′FD), and

(v) the minimum, the maximum, and the average delay for the set containing more than
5 minutes delayed trains, see Table 4.

The solutions provided by the parallel approaches might differ structurally, which is
interesting when it comes to discussing with dispatchers what a suggested solution means
and how it relates to the alternative solutions. In case of complex disturbance scenarios, the
analysis of solution based on the minimum and maximum delay may help to get information
about what types of trains are delayed and where they suffer from the larger delays.

10



Table 1: Description of the 20 disturbance scenarios used in this study.

No. Scenario description #trains/events/
binary variables

1 Long-distance pax train 538, north-bound, delay 12 minutes Linköping-Linghem. 50/549/8214
2 Long-distance pax train 538, north-bound, delay 6 minutes Linköping-Linghem. 50/549/8214
3 Pax train 2138, south-bound, delay 12 minutes Katrineholm-Strångsjö. 50/553/8326
4 Pax train 2138, south-bound, delay 6 minutes Katrineholm-Strångsjö. 50/553/8326
5 Pax train 80866 (north-bound), delayed 12 minutes Linköping-Linghem. 51/565/8430
6 Pax train 80866 (north-bound), delayed 6 minutes Linköping-Linghem. 51/565/8430
7 Pax train 8764 (north-bound), delayed 12 minutes Mjölby-Mantorp. 52/556/8425
8 Pax train 8764 (north-bound), delayed 6 minutes Mjölby-Mantorp. 52/556/8425
9 Pax train 539 (south-bound), delayed 12 minutes Katrineholm-Strångsjö. 52/558/8369

10 Pax train 539 (south-bound), delayed 6 minutes Katrineholm-Strångsjö. 52/558/8369

11 Pax train 538 w. permanent speed reduction causing 50% increased run times on
line sections starting at Linköping-Linghem

50/549/8214

12 Pax train 2138 w. permanent speed reduction causing 50% increased run times on
line sections starting at Katrineholm-Strångsjö.

50/553/8326

13 Pax train 80866 w. permanent speed reduction causing 50% increased run times
on line sections starting at Linköping-Linghem.

50/566/8382

14 Pax train 8764 w. permanent speed reduction causing 50% increased run times on
line sections starting at Mjölby-Mantorp.

52/556/8425

15 Pax train 539 w. permanent speed reduction causing 50% increased run times on
line sections starting at Katrineholm-Strångsjö.

52/558/8369

16 Speed reduction for all trains between Strångsjö and Simonstorp (all trains get a
runtime of 27 min, cf. 5-10 min planned runtime) starting w. freight train 43533.

48/509/7059

17 Speed reduction for all trains between Åby and Simonstorp (all trains get a runtime
of 20 min) starting w. train 2138.

53/558/8516

18 Speed reduction for all trains between Åby and Norrköping (all trains get a runtime
of 8 min) starting w. train 2138.

51/554/8224

19 Speed reduction for all trains between Mjölby and Mantorp (all trains get a runtime
of 20 min) starting w. train 8764.

52/556/8224

20 Speed reduction for all trains between Linköping and Linghem (all trains get a
runtime of 15 min) starting w. train 538.

50/549/8214

6 Experimental Results

6.1 Overall Performance Evaluation

In our experiments, we focus on the quality of the found solutions. Therefore, we first
evaluate the performance of the sequential algorithm for each of the sorting strategies in
terms of the total final delay for all trains at their destination TFD, only. After that, we
compare the performance of the parallel approaches with the performance of the base sorting
strategy s0.

We show the results of both the sequential algorithm and parallel approaches for 20
disturbance scenarios in Table 2 and 3, respectively. In Table 2, the first column shows
the scenario number, the last column contains the optimal solution found by Cplex in 24h,
and others show the results found by the sequential algorithm with the assigned strategy
within the execution time limit Et. Similarly, Table 3 shows the results for the proposed
approaches with the execution time limits Et and E′t. Note that, the maximum tolerated
time limit is naturally depending on the setting and the traffic intensity, but the intention of

11



the decision support implies that it is crucial to receive a feasible, reliable solution within a
few minutes. In our scenarios we have set the limit to 30 seconds.

Sequential Strategy
The overall performance of the sequential algorithm with the assigned sorting strategy is
evaluated in terms of the solution quality. The results in Table 2, highlighted in bold, shows
the improvement over the base sorting strategy s0.

Table 2: Experimental results for a 90 minutes time horizon and a Et execution time limit.

TFD

Sequential Algorithm Cplex version
Sc. S0 S1α S1β S2 S3 12.2 in 24h
1 1175 995 1103 1489 1103 855
2 437 288 396 751 396 226
3 781 686 740 1150 740 570
4 421 326 380 790 380 210
5 930 1111 1300 1604 1300 686
6 53 53 68 592 68 30
7 499 499 568 1109 568 486
8 207 332 401 1003 401 176
9 800 768 837 1405 837 731

10 269 269 338 874 338 256
11 1233 1084 1192 1233 1192 1022
12 680 585 639 1049 639 469
13 2245 2231 2488 2900 2504 2230.5
14 1519 1677 1856 1999 1958 1112.5
15 1659 1850 1913 2264 1912 1598.5
16 13850 13850 13850 13850 13850 13850
17 7069 7105 9128 7069 9128 7038
18 4295 - 4739 4130 4739 4130
19 28883 28883 28883 28883 28883 28740
20 23587 21898 - 22954 - 18971

1 Bold means an improvement over s0.
2 ’-’: no feasible solution is found.
3 Et: the basic execution time limit, see Section 4.
4 TFD : the total final delay(i.e., in seconds) for all the trains delayed at
their destination.

We can observe that the individual strategies reduces the delay in a number of scenarios
(e.g., s1α finds the improved solution for 9 out of 20 scenarios). Further, the number of
improvements is large for disturbance scenarios of category 1 and category 2 because these
are less complex and hence, less risk of deadlock. However, an improved solution is found
only for 2 out of 5 scenarios of category 3, since they are more complex where all trains
on a particular section are delayed. Some strategies are not able to find any solution for
scenarios belong to category 3 (e.g., s3 does not find any solution for scenario 20). The
algorithm goes into a cycle, which means that there is no event in the candidate list that is
suitable to execute.

It is interesting to note that only strategy s2 finds an improved solution for scenario
18. Further, the base strategy s0 finds the best solution in some cases, e.g., scenario 5 and
15. Based on these observations, we conclude that the results of the sequential strategy
complement each other and a single sorting strategy is not superior to others.

12



Approach 1

To investigate the effect of parallelization, we compare the results of Approach 1 and the
sequential greedy algorithm for each of the strategies.

Table 3: Experimental results for a 90 minutes time horizon with Et and E′t execution time
limits.

Sc. TFD

Et E′
t

Approach 1 Approach Approach Approach
S0 S1α S1β S2 S3 2 3 3

1 1172× 9951 1103 1486× 1103 995∗ 1103∗ 995�
2 437 288 396 751 396 288∗ 366∗ 288�
3 781 686 740 1150 740 686∗ 686∗ 686
4 421 326 380 790 380 326∗ 326∗ 326
5 701× 956× 1338 1190× 878× 930 701∗ 701
6 53 53 68 592 68 53 53 53
7 499 499 568 1109 568 499 499 499
8 207 332 401 1003 401 207 207 207
9 744× 768 837 1349× 837 768∗ 744∗ 744
10 269 269 338 874 338 269 269 269
11 1233 1084 1192 1233 1192 1084∗ 1084∗ 1084
12 680 585 639 1049 639 585∗ 585∗ 585
13 2245 2231 2488 2900 2504 2231∗ 2245 2231�
14 1519 1677 1888 1999 1888× 1519 1519 1519
15 1659 1844× 1913 2264 1912 1659 1659 1659
16 13850 13850 13850 13850 13850 13850 13850 13850
17 7069 7105 9128 7069 9128 7069 7069 7069
18 4295 4242× 4739 4130 4739 4130∗ 4130∗ 4130
19 28883 28883 28883 28883 28883 28883 28883 28883
20 23144× 21898 - 22954× - 21898∗ 21898∗ 21898

1 TFD : the total final delay(i.e., in seconds) for all the trains delayed at their destination.
2 ’-’: no feasible solution is found.
3 ′�′: an improvement over Approach 3 with the execution time limit Et.
4 Et and E′

t: the basic and extended execution time limits, see section 4.
5 ′×′ and ′∗′: an improvement over the sequential algorithm with corresponding strategy and the strategy S0,
respectively, in Table (2).

As we can see in Table 3, Approach 1 finds improved solutions, as highlighted in bold.
This is explained by the fact that each worker has its own subspace to search in, and such
subspace diversity increases the chance to find an improved solution, see scenario 1, 14, and
15 for s0, s3, and s1α, respectively. We conclude that parallelization increases the proba-
bility of finding a solution of good quality. Here, the total number of scenarios, for which
an improved solution is found, are 7 out of 20 disturbance scenarios. Further, the results
show that an improved solution is found in different scenarios for each strategy. The reason
is that the sorting strategy that determines the event order in the candidate list is different
in the different strategies. Based on this observation, we draw the conclusion that no single
strategy is superior as compared to the others. Instead, the strategies complement each other
and therefore should be combined in an effective way with the use of parallelization.

13



Approach 2
Next we study the benefit of combining the strategies, as in Approach 2. Executing a worker
per strategy offers a diversity due to multiple strategies.

The results in Table 3 show that Approach 2 found better solutions than those obtained
by the base line sequential algorithm with the strategy s0 in Table 2 and Approach 1, e.g.,
see scenario 1, 11, and 20. Further, the number of scenarios, for which an improved solution
is found, is increased from 7 to 10 as compared to Approach 1. The reason is that Approach
2 is similar to taking the best solution found by each worker. Furthermore, analyzing the
results for Approach 2, it shows that combining different strategies is effective and paral-
lelization enables this. Based on these observation, we conclude that the performance of
Approach 2, in terms of solution improvement and the number of scenarios where an im-
proved solution is found is more effective, as compared to Approach 1 and the base line
sequential algorithm.

Approach 3
In order to obtain the results about the use of multiple strategies and subspace diversity,
Approach 3 is evaluated.

The results are reported in Table 3 where the improved solutions, as compared to the
base line sequential algorithm with the strategy s0, are highlighted. The results show that
Approach 3 finds the same number of improved solutions as found in Approach 2. That
is explained by the fact that each subspace has multiple strategies (i.e. one worker per
strategy) which can be very efficient. On the other hand, Approach 3 can be considered a
combination of Approach 1 and 2.

The aim of Approach 3 is to get the best solution found in Approach 1 and Approach 2,
but in scenario 1, 2, and 13, the solution value is worse as compared to the corresponding
value of Approach 2. The reason is that when the number of workers exceeds the number
of processors available (e.g., 8 processors and 250 workers), the context switching among
threads may affect the results. In this way, Approach 3 uses the time limit E′t besides of Et,
and Table 3 contains the newly found solutions. As a result, the number of scenarios are 11
in total where improved solution is found as compared to other approaches. Based on above
observations, we conclude that the Approach 3 is effective in terms of solution quality and
the number of scenarios where an improved solution is found.

Summary
It can be concluded that the developed parallel approaches are successful to find an improved
solution. In Approach 1, the intention is to explore as many subspaces as possible at the
disturbance time T0 and to analyze the effect of parallelization with the assigned strategy.
In Approach 2, however, the aim is to combine the strategies and take the best solution found
by them. With the use of multiple strategies per subspace, Approach 3 performs better than
the other approaches (i.e. it finds the improved solution for 11 out of 20 scenarios). We
conclude that Approach 3 is the best among the proposed parallel approaches and offers
superior performance in the extended time limit E′t.

6.2 Comparative evaluation

In our evaluation, we focus on one performance metric,i.e., TFD, as our main quality metric
of the found solutions. However, there are also other aspects and values that need to be

14



considered. (i) What are the number of delayed trains? (ii) What impact do the parallel ap-
proaches have on the objective function value T ′FD? (iii) What is the minimum, maximum,
and average delay in the set containing the trains delayed more than 5 minutes?

We use another set of performance metrics to get the answers of questions mentioned
before. Their values are shown in Table 4 for the sequential greedy algorithm, for Approach
1 with the assigned strategy s0, and the other two approaches also. The values shown are the
number of trains delayed from 3 to 5 minutes (NDT3−5) or delayed more than 5 minutes
(NDT>5). The second subset includes the total final delay for all the trains delayed at their
destination more than 5 minutes (T ′FD), the minimum, the maximum, and the average delay.
These values are taken after the final improved solution is found.

Referring to Table 4, we can observe that some rows have zero value, e.g., see scenario
6. The reason is that it includes the trains which are delayed less than 3 minutes. Further,
it is observed that only the value of NDT3−5 is greater than zero in scenario 2. The reason
is that there is no train which is delayed more than 5 minutes. Furthermore, the value of
NDT>5 is equal but the value of T ′FD differs in scenario 20 for the sequential algorithm
and Approach 1. It shows that the delay of one of the trains delayed more than 5 minutes is
reduced.

Detailed Analysis
We discuss the performance of the parallel approaches in comparison to the sequential
greedy algorithm. Approach 3 performs similar to Approach 2, therefore, we only dis-
cuss the results of Approach 2. To analyze the effect of the parallel approaches on the
performance metrics, the scenarios from the different disturbance categories are selected
and marked with * in Table 4.

The consecutive delay increases due to an increment in the initial delay. Further, a train
with a large number of events may interact with more trains, and in return may lead to more
conflicts. Therefore, consecutive delays may increase, and then the probability of finding an
improved solution decreases, e.g., scenario 7 and 8 where the delayed train have different
initial delay, similarly scenario 9 and 10. The delayed train in scenario 9 have 30 events,
which means that in general it is subjected to more interference by the surrounding traffic
, as compared to the trains having small number of events, and thus risking having a larger
delay at its final destination. In scenario 9 and Approach 2, the delay is reduced from 787
to 735 and the advantage of strategy s1α is observed. Strategy s1α prioritizes events with
early track release times which is important in order to reduce the consecutive delays for
trains with a large number of events.

In scenario 18, the value of NDT>5 is reduced but NDT3−5 increases from 6 to 7. The
reason of this is that the train which was delayed more than 5 minutes, now having the delay
value from 3 to 5 minutes. Here, the strategy s2 gives benefit by prioritizing trains having
less buffer time as compared to other trains with large buffer time.

We next analyze the solutions of Approach 2 and 3 for scenario 9 because the value of
TFD′, which represents only one train, reduces from 787 to 591 in Approach 3. Here, it
takes the advantage of subspace diversity along with strategy s0 and parallelization, which
is Approach 1. Whereas, the same train delay is 735 in Approach 2. In a situation, where
one train suffers from a larger delay as compare to others, it may be a good decision to delay
a train, which is on time or less delayed, in favor of it. In Approach 3, it is observed that
one train is delayed less than 3 minutes, as a result, the train delay, having the value 735, is
reduced to 591. Furthermore, the detailed analysis shows that the benefit is gained by swap-

15



Table 4: Experiment results for performance of parallel approaches based on performance
metrics with a 90 minutes time horizon and a Et execution time limit. The scenarios marked
with ’*’ are discussed in detail.

No. of trains No. of trains
delayed Delay (in seconds) delayed Delay (in seconds)

3-5 > 5 TFD′ MIN MAX AVG 3-5 > 5 TFD′ MIN MAX AVG
Sc. minutes minutes

Sequential Algorithm:s0 Approach 1:s0
1 2 1 736 736 736 736 2 1 736 736 736 736
2 2 0 0 0 0 0 2 0 0 0 0 0
3 1 1 570 570 570 570 1 1 570 570 570 570
4 2 0 0 0 0 0 2 0 0 0 0 0
5 0 1 816 816 816 816 1 1 319 319 319 319
6 0 0 0 0 0 0 0 0 0 0 0 0
7 0 1 486 486 486 486 0 1 486 486 486 486
8 0 0 0 0 0 0 0 0 0 0 0 0
9* 0 1 787 787 787 787 0 1 591 591 591 591
10 0 0 0 0 0 0 0 0 0 0 0 0
11 1 1 1022 1022 1022 1022 1 1 1022 1022 1022 1022
12 1 1 469 469 469 469 1 1 469 469 469 469
13 1 1 1905 1905 1905 1905 1 1 1905 1905 1905 1905
14 0 1 979 979 979 979 0 1 979 979 979 979
15 0 1 1598 1598 1598 1598 0 1 1598 1598 1598 1598
16 0 12 13850 963 1270 1154 0 12 13850 963 1270 1154
17 0 10 6910 470 838 691 0 10 6910 470 838 691
18* 6 5 1955 308 565 391 6 5 1955 308 565 391
19 0 14 28883 666 4466 2063 0 14 28883 666 4466 2063
20* 0 15 23129 517 3090 1541 1 15 22496 517 3090 1499

Approach 2 Approach 3
1 1 1 672 672 672 672 1 1 672 672 672 672
2 1 0 0 0 0 0 1 0 0 0 0 0
3 0 1 570 570 570 570 0 1 570 570 570 570
4 1 0 0 0 0 0 1 0 0 0 0 0
5 0 1 816 816 816 816 1 1 319 319 319 319
6 0 0 0 0 0 0 0 0 0 0 0 0
7 0 1 486 486 486 486 0 1 486 486 486 486
8 0 0 0 0 0 0 0 0 0 0 0 0
9 0 1 735 735 735 735 0 1 591 591 591 591
10 0 0 0 0 0 0 0 0 0 0 0 0
11 0 1 1022 1022 1022 1022 0 1 1022 1022 1022 1022
12 0 1 469 469 469 469 0 1 469 469 469 469
13 1 1 1905 1905 1905 1905 1 1 1905 1905 1905 1905
14 0 1 979 979 979 979 0 1 979 979 979 979
15 0 1 1598 1598 1598 1598 0 1 1598 1598 1598 1598
16 0 12 13850 963 1270 1154 0 12 13850 963 1270 1154
17 0 10 6910 470 838 691 0 10 6910 470 838 691
18 7 4 1534 308 565 383 7 4 1534 308 565 383
19 0 14 28883 666 4466 2063 0 14 28883 666 4466 2063
20 0 14 21295 517 3090 1521 0 14 21295 517 3090 1521

1 TFD′: the total final delay for all the trains delayed more than 5 minutes at their destination
2 MIN: minimum delay, MAX: maximum delay, and AVG: average delay.
3 Et: the basic execution time limit, see section 4.

ping the assigned track of two events (i.e. going in opposite direction) at the consecutive
line sections. Similarly, the same benefit is observed in Approach 2 for scenario 18.

We compare the results of Approach 2 and sequential algorithm with strategy s0 for
scenario 20. The value of NDT>5 reduces from 15 to 14 in Approach 2, where, the delay

16



of train (i.e. having two events), which is using only one section at consecutive line sections,
is reduced by strategy s1α. Further, the train with maximum delay (i.e. having 11 events)
also suffer from delay at consecutive line sections. These observations show that prioritizing
the trains at consecutive line sections effect the solution, significantly.

The observations show that the values of the performance metrics are sensitive to the
initial delay, the choice of suitable candidate to execute and track swapping on the consecu-
tive line sections, as well as to the complexity of the disturbance scenarios. The conclusion
is that the use of multiple strategies through parallelization can be effective to reduce the
values of performance metrics.

7 Conclusions and Future Work

This paper proposes three parallel approaches based on the sequential greedy algorithm
previously proposed to solve the train re-scheduling problem during railway traffic distur-
bances. The experimental results are reported in terms of different performance metrics,
e.g., minimization of the total final delay of the trains at their destination, the number of de-
layed trains, etc. In total 20 disturbance scenarios are evaluated, where the primary source
of delay is of three types: (1) a single train has a temporary delay; (2) a single train has a
permanent reduced speed on all line sections, and (3) all trains are delayed on a section.

The results of Approach 1 (Single Strategy with a Partitioned List) shows that the effect
of parallelizing the sequential algorithm is positive and, most importantly, also for scenarios
of the complex disturbance categories. The results also show that the different re-scheduling
strategies complement each other.

The results achieved by Approach 2 (Multiple Strategies with a Non-Partitioned List) are
significantly better than those found by the sequential greedy algorithm. The comparison of
the results indicates that the number of scenarios, for which an improved solution is found,
are 10 out of 20 disturbance scenarios. We conclude that parallelization helps to combine
different re-scheduling strategies, and as a result, the number of improvements increases.

The parallel Approach 3 (Multiple Strategies with a Partitioned List) which combines
Approach 1 and 2, is the best among the proposed approaches. The number of improved
cases, with the extended time limit, are 11 out of 20 disturbance scenarios and the solution
quality is good as compared to the sequential algorithm.

Finally, we conclude that the proposed parallel approaches significantly improve the
solution quality. Further, the results also show that for the disturbance scenarios where all
trains suffer from delay, e.g., an infrastructure problem on a section, the parallel approaches
help to reduce the values of the performance metrics. Based on the above observations, we
draw the conclusion that a multi-strategy based approach is an effective way to obtain good
solutions to the train re-scheduling problem.

The re-scheduling strategies produce better results as compared to the base line sequen-
tial greedy algorithm, but they are not optimal in reducing the consecutive delay. Generally,
the search starts thrashing (i.e., no improved solution is found) due to keeping the same
re-scheduling strategy. Therefore, in our future work, we will investigate re-scheduling
strategies based on different metrics and analyzing their effect during backtracking.

17



Acknowledgments

We would like to thank Trafikverket (the Swedish Transport Administration), formerly
known as Banverket, for providing financial support for the project EOT (Effektiv opera-
tiv Omplanering av Tåglägen vid Driftstörningar).

References

[1] R. Acuna-Agost, P. Michelon, D. Feillet, and S. Gueye. A mip-based local search
method for the railway rescheduling problem. Networks, 57(1):69–86, 2011.

[2] C. Conte. Identifying dependencies among delays. PhD thesis, Niedersächsische
Staats-und Universitätsbibliothek Göttingen, Germany, 2008.

[3] F. Corman. Real-time Railway Traffic Management: Dispatching in complex, large
and busy railway networks. Ph.D. thesis, Technische Universiteit Delft, The Nether-
lands, December 2010. 90-5584-133-1.

[4] F. Corman, A. D’Ariano, I. Hansen, D. Pacciarelli, and M. Pranzo. Dispatching trains
during seriously disrupted traffic situations. In Proc. of IEEE Int’l Conf. on Network-
ing, Sensing and Control (ICNSC), pages 323 –328, april 2011.

[5] A. D’Ariano. Improving Real-Time Train Dispatching: Models, Algorithms and Ap-
plications. Ph.D. thesis, Technische Universiteit Delft, The Netherlands, April 2008.

[6] S. S. Harrod. A tutorial on fundamental model structures for railway timetable op-
timization. Surveys in Operations Research and Management Science, 17(2):85–96,
2012.

[7] S. M. Z. Iqbal, H. Grahn, and J. Törnquist Krasemann. A comparative evaluation of
re-scheduling strategies for train dispatching during disturbances. In Proc. of the 13th
Int’l Conf. on Design and Operation in Railway Engineering (Computers in Railways
XIII), pages 567–579. WIT Press, September 2012.

[8] S. M. Z. Iqbal, H. Grahn, and J. Törnquist Krasemann. A parallel heuristic for fast
train dispatching during railway traffic disturbance – early results. In Proc. of the 1st
Int’l Conf. on Operations Research and Enterprise Systems (ICORES-2012), pages
405–414, February 2012.

[9] M. Schachtebeck. Delay Management in Public Transportation: Capacities, Robust-
ness, and Integration. PhD thesis, Niedersächsische Staats-und Universitätsbibliothek
Göttingen, Germany, 2009.

[10] J. Törnquist. Computer-based decision support for railway traffic scheduling and dis-
patching: A review of models and algorithms. In 5th Workshop on Algorithmic Meth-
ods and Models for Optimization of Railways, 2005.

[11] J. Törnquist. Railway traffic disturbance management — an experimental analysis of
disturbance complexity, management objectives and limitations in planning horizon.
Transportation Research Part A: Policy and Practice, 41(3):249–266, 2007.

18



[12] J. Törnquist and J. A. Persson. N-tracked railway traffic re-scheduling during distur-
bances. Transportation Research Part B: Methodological, 41(3):342–362, Mar. 2007.

[13] J. Törnquist Krasemann. Design of an effective algorithm for fast response to the re-
scheduling of railway traffic during disturbances. Transportation Research Part C:
Emerging Technologies, 20(1):62–78, Feb. 2012.

19


