
A Parallel DFS Algorithm for Train Re-scheduling During
Traffic Disturbances — Early Results

Syed Muhammad Zeeshan Iqbal, Håkan Grahn, and Johanna Törnquist Krasemann
School of Computing, Blekinge Institute of Technology

SE-371 79 Karlskrona, Sweden
{Muhammad.Zeeshan.Iqbal, Hakan.Grahn, Johanna.Tornquist}@bth.se

ABSTRACT
Railways are an important part of the infrastructure in most
countries. As the railway networks become more and more
saturated, even small traffic disturbances can propagate and
have severe consequences. In this paper, the train re-scheduling
problem is studied in order to minimize the final delay for
all trains in the scenarios. We propose a parallel algorithm
based on a depth-first search branch-and-bound strategy.
The parallel algorithm is compared to a sequential algo-
rithm in terms of the quality of the solution and the number
of nodes evaluated, as well as to optimal solutions found
by Cplex, using 20 disturbance scenarios. Our parallel al-
gorithm significantly improves the solution for 5 out of 20
disturbance scenarios, as compared to the sequential algo-
rithm.

1. INTRODUCTION
Railways are an important part of the infrastructure in most
countries. In Sweden, the Swedish Transport Administra-
tion, Trafikverket, is managing the railway network both in
terms of timetabling and traffic management while the train
operators arrange and run the train services. The differ-
ent train operators apply for timetable slots in competition
with each other and Trafikverket assigns slots according to
predefined market-based routines.

The demand for track capacity has increased the past years
in Sweden as well as the number of operators [12]. As an ef-
fect, the network is becoming more and more saturated, and
even small traffic disturbances can propagate and have se-
vere consequences. When disturbances occur, the timetable
quickly needs to be re-defined to minimize the delays. How-
ever, the large number of constraints and complex infras-
tructure make re-scheduling difficult and time consuming.
Unfortunately, traditional optimization techniques often re-
quire huge amount of memory space and computation time.

Comprehensive reviews of related work can be found in, e.g.,
[11, 2, 9] and it has been studied from different perspectives

such as capacity, robustness, and delays. Analysis of heuris-
tics and integer solution methods for solving re-scheduling
delay management problems are given in, e.g., [9]. The ca-
pacitated delay management problem [9] is a special case
of the job shop scheduling (JSS) problem, where train trips
are jobs which are scheduled on tracks that are considered
as resources. A JSS formulation is also proposed in [7].

More recently, the delay management problem has been
studied by [3], where mathematical models along with al-
gorithm enhancements are proposed. The same problem
is studied in [12], where an Mixed-Integer Linear Program
(MILP) formulation is proposed and solved using commer-
cial software (Cplex). In [13], a greedy depth-first search
branch-and-bound re-scheduling algorithm was developed
and it was further improved in [4].

Our research is different from related work done in other
countries since all tracks and sections in the Swedish rail-
way network permit bi-directional traffic. This flexibility is
also used on double-tracked line sections, where track swap-
ping is allowed and both tracks can be used for traffic in one
direction when necessary. These properties complicate the
problem and make it harder to solve. Furthermore, paral-
lelization has not previously been used to solve the railway
traffic re-scheduling problem.

In this paper, we present a fast and effective approach for
railway traffic re-scheduling which aims to minimize the de-
lays during a disturbance by the use of heuristics and paral-
lelization techniques. The approach is a parallel depth-first
search branch-and-bound (B&B) algorithm based on a se-
quential greedy algorithm proposed by [13, 4]. In the experi-
mental evaluation, the performance of the parallel algorithm
is compared to the sequential algorithm and to state-of-the-
art optimization software, i.e., Cplex 12.2, for 20 disturbance
scenarios in terms of the quality of the solution and the num-
ber of nodes explored. Our results show that the parallel
algorithm significantly improves the solution for 5 out of 20
scenarios, as compared to the sequential one.

In the following section, some related work is presented. Sec-
tion 3 outlines the problem domain and its context as well as
a description of the sequential greedy algorithm. Sections 4
and 5 present the parallel algorithm and the experimental
methodology, respectively. Finally, in Section 6, the experi-
mental results and our conclusions are presented.

2. RELATED WORK
The railway traffic delay management and re-scheduling prob-
lem has been considered an important and difficult problem
since quite some time. It has been studied from different
perspectives such as capacity, robustness, as well as pas-
senger delay and dissatisfaction. Comprehensive reviews of
related work can be found in, e.g., [11, 2, 9]. Analysis of
heuristics and integer solution methods for solving capaci-
tated re-scheduling delay problems are given in, e.g., [9].

The capacitated delay management problem [9] is a special
case of the job shop scheduling (JSS) problem, where train
trips are jobs which are scheduled on tracks that are consid-
ered as resources. A JSS formulation is also proposed in [7]
where a blocking parallel-machine JSS is used to model the
train dispatching.

A branch and bound (B&B) procedure is proposed for resource-
constrained project scheduling formulation by incorporating
an exact lower bound rule and a beam search heuristic is
used for tight upper bound [14]. A four step heuristic is
proposed in [6], in which 0/1 integer linear programing are
used to accept or reject the solution.

More recently, the delay management problem has been
studied in [3], where the complexity of dispatching is dis-
cussed, and mathematical models based on an alternative
graph formulation along with algorithm enhancements are
proposed. The same problem, but with a different prob-
lem setting, is studied in [12] where a Mixed-Integer Linear
Program (MILP) formulation for dispatching trains during
disturbances is proposed and solved using commercial soft-
ware. The MILP model showed to be too time-consuming to
solve using the existing solver for more severe disturbances.
Therefore, a greedy depth-first search branch-and-bound al-
gorithm was developed for addressing the re-scheduling prob-
lem [13]. The algorithm was further improved in [4] with a
more efficient branching strategy.

In [5], a survey of parallel search methods in combinatorial
optimization problems (COP) in connection to artificial in-
telligence is discussed. The work in [1] can be considered as
an extension of [5], while adopting the same searching meth-
ods (i.e. DFS or BFS) with branch and bound. Branching
strategies named lazy and eager (i.e. in eager, branching is
performed before bound calculation but in lazy vice versa)
are introduced with performance results [1]. The search pro-
cedures are improved by parallel implementations on mul-
tiprocessors in the context of constraint programming [8].
The advantages and disadvantages of central or distributed
together with mixed control schemes for implementation of
parallel B&B are discussed [10]. Further, a parallel search
engine has been devised using different time limits [8].

The focus of this paper is different from related research in
other countries since all tracks and sections in the Swedish
railway network permits bi-directional traffic. Also on double-
tracked line sections, we can allow track swapping as well as
use both tracks for traffic in one direction. These proper-
ties complicate the problem and make it harder to solve.
Furthermore, the application of parallelization has not been
previously addressed to solve the railway re-scheduling prob-
lem.

3. PROBLEM DESCRIPTION

3.1 Railway network representation
The railway network consists of station and line sections,
tracks, blocks, and events. Each station and line section
can have one or more parallel tracks. All tracks are bi-
directional, i.e., the track can be used for traffic in both
directions depending on the schedule. A train uses exactly
one track on a station or line section, but which specific
track to use is often not predefined and therefore part of the
re-scheduling problem. Each track is composed of one or
several blocks connected serially and separated by signals.
Each block can only be used by at most one train at a time
due to the safety restriction imposed by line blocking. A
track with two blocks can in theory hold two trains in the
same direction, but not two trains in opposite direction due
to the lack of a meeting point. Figure 1 shows the traffic area
in Sweden that we use in our experiments, and it consists of
both single- and double-tracked line sections.

Each train has an individual, fixed route (i.e., the sequence
of sections to occupy) which is represented as a sequence of
train events to execute. A train event is when a certain train
occupies a certain section. A train event has certain static
properties such as minimum running time but also some
dynamic properties, e.g., track allocation and start and end
times on the section.

3.2 Problem specification
In the train re-scheduling problem we have a disturbance
in the railway traffic network forcing us to modify the pre-
defined timetable in line with certain objective(s) and con-
straints. We have a set of n trains, T = {t1, t2, . . . , tn} on
a set of m sections, S = {s1, s2, . . . , sm} where each section
sj ∈ {station, line} have a number of tracks p ∈ {1, . . . , pj}.
A station is called symmetric if the choice of track to occupy
has no, or negligible, effect on the result.

Each train i has a set of events, Ki, and the set of all train
events is denoted as K = {K1, K2, . . . , Kn} and its cardi-

nality is: C =
P|T |

i=1 |Ki|. Each train event k has a pre-

defined start time tstart
k and end time tend

k in line with the
timetable and which needs to be modified based on the min-
imum running time dk. It also belongs to a specific section
sk ∈ {s1, s2, . . . , sm}. Each event is executed on exactly one
track of its section.

The objective is to minimize the sum of the final delay suf-
fered by each train at its final destination within the problem
instance. The quality of the solution is thus given by this ob-
jective value, where a lower value indicates an improvement.
The optimal solution is the one found by the optimization
software (Cplex 12.2 in our case). The search space explored
is quantified by the number of nodes visited.

In Figure 2, 9 trains are shown. Train A has 7 events and
each event is associated with a section (e.g., A1 at section
1). There are totally 7 sections, where sections 1, 3, 5, and
7 are stations and sections 2, 4, and 6 are line sections. The
time stamp T0 indicates the time when Train C just has left
section 1 and experiences an engine failure. The itinerary of
Train C will then look different than from the planned one.

Figure 1: The traffic area in Sweden that is used in the study. It has in total 28 stations, all line sections are
bi-directional, wide lines indicate double-tracked sections, and thin lines single-tracked.

Figure 2: Railway traffic example of a double-
tracked line with 4 stations and 3 line sections.

3.3 A sequential greedy algorithm
The main objective of the sequential greedy algorithm is to
quickly find a feasible and good-enough solution, and there-
fore it performs a depth-first search (DFS). It uses an evalu-
ation function to prioritize when conflicts arise and branches
according to a set of criteria. When a first feasible solution
has been found the algorithm continues to search for im-
provements if the time limit permits it. In our experiments
we have set the time limit to 30 seconds. A detailed descrip-
tion of the algorithm is given in [13].

The search tree is built iteratively by selecting the earliest
event of each train, collecting them into a candidate list and
executing the best event in this list and adding it to the tree.
An event represents a train movement, i.e., a train running
on a certain section with a start time, a minimum running
time, a preferred track to occupy, and an end time. Each
node in the search tree represents either an active event (i.e.
a track has been allocated and a new start time has been
set), or a terminated event (i.e., the train has left the as-
signed track and the corresponding event has been assigned
an end time). In each node, an optimistic cost estimation
is made of the solution which this branch at its best could
generate.

The tree building process is divided into three phases: (i)
pre-processing, (ii) depth-first search, and (iii) solution im-
provement using backtracking and branching on potential
nodes. In the pre-processing phase, all events which were
active at the disturbance time T0 (see Figure 2) are exe-
cuted by allocating a start time and a track. A candidate
list which holds the next event of each train is created and
sorted w.r.t the earliest starting time of the events.

In the second phase, feasible (i.e., deadlock free, without
conflicts, etc.) candidate events are executed. The candi-
date list is updated accordingly with the next event of the
train that just executed an event (if it has any events left to
execute). This is repeated until a feasible solution is found,
i.e., all events are executed.

The third phase starts as soon as the first feasible solution
has been found and it aims to improve the best solution
found so far by backtracking to a potential node. A potential

Table 1: Notations used when describing the parallel
DFS algorithm.

Symbol Definition
NC = C1, C2, ..., Cn where NC is the candidate list
PS = partial solution branch
T0 = the time when the disturbance occurs
ETLimit = execution time limit (30 sec in our experiments)
Ci = candidate index to start with
Tc = total number of candidates
BVw = branching value
GBV = global best value communicated via the white board
CVw = cost estimation value of the current node
W = total number of workers
w = worker index
S(w) = solution branch found by worker w

node is a node that has an estimated cost that is lower than
the currently best solution, and another branch from this
node is then explored. The improvement process continues
until the time limit is reached or a feasible solution with an
objective value as low as the lower bound is found.

4. PARALLEL DFS BRANCH & BOUND
Our parallel algorithm is based on the sequential greedy al-
gorithm described in Section 3.3, and where the B&B proce-
dure is improved by sharing improved solutions among work-
ers using a synchronized white board. We use a master-slave
parallelization strategy. Initially, only the master is active
and the workers (slaves) are waiting to get the initial unex-
plored subspaces. Using the notations in Table 1, we outline
the parallel algorithm starting with the master thread.

Let NC and PS be empty, and the disturbance occurs at
time T0. As in the sequential algorithm, identify the events
that are active at T0, execute them, and put them into PS.
Populate the NC with the next event to execute of each
train, sorted w.r.t the earliest starting time, and compute
the theoretical lower bound. Determine the values of Tc and
W where W = Tc in these experiments. A unique copy of
the problem along with ETLimit, Ci and PS are sent to each
worker. Looking at the example in Figure 2, PS contains
A6, B4 and C2 (i.e., train A associated to section 6 as event
A6 etc.), while NC consists of A5, B5, C3, D1, E7, F1, G1,
H7, and I1.

The outline of the worker threads is as follows:

Candidate selection: First execute the candidate Ci,
determine the new NC and get a suitable candidate
based on the depth-first search node selection rule.

Stopping criteria: If the bounds in term of execution
time limit ETLimit is exceeded or the lower bound is
reached, then terminate and output the best result. If
the candidate to execute, i.e., Ci, is not suitable then
stop execution and return.

Read white board: Read the white board for availability
of improved solutions found by any other worker; if
available, then update BVw in line with GBV.

B&B process: When CVw is greater than or equal to
BVw, discard the node, backtrack and try other al-
ternatives, and discard new branches from symmetric
stations (see Section 3.2).

Feasible solution: If all of the train events are termi-
nated and an improved solution is found, then update
GBV on the white board with the improved solution.
With an updated value of BVw, backtrack and start
branching from the node with a value less than BVw.

Deadlock handling: In case of no track available due
to deadlock, backtrack and start branching where the
wrong decision was made.

Results: After termination, send back the solution S(w)
to master.

5. EXPERIMENTAL SETUP
In our experiments we consider a dense traffic area of Sweden
that consists of both single- and double-tracked line sections
as shown in Figure 1. The 28 stations have 2 to 14 tracks
except Norsholm with only one track and all sections are
bi-directional. For a fast passenger train, such as train 538
and 539 in our experiments, it takes approximately one hour
from Katrineholm to Mjölby during normal conditions. We
have considered a time horizon of 90 minutes, which means
that we include all trains on this network that were sched-
uled in the timetable for the 90 minutes following the time
of the disturbance,T0.

We use 20 disturbance scenarios to evaluate the performance
of our algorithms. The disturbance scenarios are presented
in Table 2, and they cover three types of disturbances:

1. Scenarios 1-10 have a temporary single source of delay,
e.g., a train comes into the traffic management district
with a certain delay or it suffers from a temporary
delay at one section within the district.

2. In scenarios 11-15, a train has a ’permanent’ malfunc-
tion resulting in increased running times on all line
sections it is planned to occupy.

3. In scenarios 16-20, the disturbance is an infrastructure
failure causing, e.g., a speed reduction on a certain
section, which results in increased running times for
all trains running through that section.

The sequential and parallel algorithms are implemented in
Java with JDK 1.6. All experiments are conducted on a
server running Ubuntu 10.04 and equipped with two quad-
core processors and 16 GB main memory. The execution
time limit ETLimit is set to 30 seconds.

6. RESULTS AND CONCLUSIONS
In our experimental evaluation, we compare the parallel al-
gorithm with the sequential algorithm and the optimal solu-
tions found by Cplex for all 20 disturbance scenarios found
in Table 2. Our evaluation metrics are the solution quality,
i.e., the sum of the final delay of all trains, and the number
of nodes explored, see Section 3.2.

Table 2: Description of the 20 disturbance scenarios used in this study.

No. Scenario description #trains/events/binary variables

1 Long-distance pax train 538, north-bound, delay 12 minutes Linköping-Linghem. 50/549/8214
2 Long-distance pax train 538, north-bound, delay 6 minutes Linköping-Linghem. 50/549/8214
3 Pax train 2138, south-bound, delay 12 minutes Katrineholm-Str̊angsjö. 50/553/8326
4 Pax train 2138, south-bound, delay 6 minutes Katrineholm-Str̊angsjö. 50/553/8326
5 Pax train 80866 (north-bound), delayed 12 minutes Linköping-Linghem. 51/565/8430
6 Pax train 80866 (north-bound), delayed 6 minutes Linköping-Linghem. 51/565/8430
7 Pax train 8764 (north-bound), delayed 12 minutes Mjölby-Mantorp. 52/556/8425
8 Pax train 8764 (north-bound), delayed 6 minutes Mjölby-Mantorp. 52/556/8425
9 Pax train 539 (south-bound), delayed 12 minutes Katrineholm-Str̊angsjö. 52/558/8369
10 Pax train 539 (south-bound), delayed 6 minutes Katrineholm-Str̊angsjö. 52/558/8369

11 Pax train 538 w. permanent speed reduction causing 50% increased run times on
line sections starting at Linköping-Linghem

50/549/8214

12 Pax train 2138 w. permanent speed reduction causing 50% increased run times
on line sections starting at Katrineholm-Str̊angsjö.

50/553/8326

13 Pax train 80866 w. permanent speed reduction causing 50% increased run times
on line sections starting at Linköping-Linghem.

50/566/8382

14 Pax train 8764 w. permanent speed reduction causing 50% increased run times
on line sections starting at Mjölby-Mantorp.

52/556/8425

15 Pax train 539 w. permanent speed reduction causing 50% increased run times on
line sections starting at Katrineholm-Str̊angsjö.

52/558/8369

16 Speed reduction for all trains between Str̊angsjö and Simonstorp (all trains get a
runtime of 27 min) starting w. freight train 43533.

48/509/7059

17 Speed reduction for all trains between Åby and Simonstorp (all trains get a runtime
of 20 min) starting w. train 2138.

53/558/8516

18 Speed reduction for all trains between Åby and Norrköping (all trains get a runtime
of 8 min) starting w. train 2138.

51/554/8224

19 Speed reduction for all trains between Mjölby and Mantorp (all trains get a run-
time of 20 min) starting w. train 8764.

52/556/8224

20 Speed reduction for all trains between Linköping and Linghem (all trains get a
runtime of 15 min) starting w. train 538.

50/549/8214

In Table 3, we present the results from a comparative eval-
uation between the sequential and parallel algorithms, along
with a comparison with the optimal solutions found be Cplex.
Note that the sequential and parallel algorithms are only ex-
ecuted 30 seconds, while Cplex are executed 24 hours in or-
der to find the best solution. More important, Cplex did not
find any feasible solution at all within 30 seconds. Starting
with the quality of the solution, we observe that the parallel
algorithm finds better solutions (i.e., a smaller final delay for
all trains), than the sequential algorithm in disturbance sce-
narios 1, 5, 9, 17, and 20 (shown in bold). For example, the
parallel algorithm finds a solution with a final delay of 701
seconds in scenario 5, while the best solution found by the
sequential algorithm has a total delay of 930 seconds. Com-
paring the best parallel solutions with the optimal solutions
found by Cplex, we observe that in most cases the solutions
found by the parallel algorithm are close to optimal.

The other aspect we compare is how large part of the search
space the sequential and the parallel algorithms explore. We
measure this by counting the number of nodes visited by
each of the algorithms. By comparing column 2 and 3 in
Table 3, we observe that the parallel algorithm explores be-
tween 5-6.3 times more nodes than the sequential version.

To conclude, results from this experimental study shows that
our parallel depth-first search branch-and-bound algorithm
effectively solves the railway traffic re-scheduling problem
for most of the disturbance scenarios. All solutions were

found within a few seconds, which shows that the parallel
algorithm is fast and efficient. However, our results also
indicates that certain improvements can be made - especially
for more complex and difficult scenarios, e.g. scenario 20
and 14. We are therefore working on different strategies and
improved cost estimations to enable earlier identification of
promising branches and redundant solutions.

Acknowledgments
We would like to thank Trafikverket(the Swedish Transport
Administration), formerly known as Banverket, for provid-
ing financial support for the project EOT (Effektiv operativ
Omplanering av T̊aglägen vid Driftstörningar).

7. REFERENCES
[1] J. Clausen and M. Perregaard. On the best search

strategy in parallel branch-and-bound: Best-First
search versus lazy Depth-First search. Annals of
Operations Research, 90:1–17, 1999.

[2] C. Conte. Identifying dependencies among delays. PhD
thesis, Niedersächsische Staats-und
Universitätsbibliothek Göttingen, Germany, 2008.

[3] F. Corman. Real-time Railway Traffic Management:
Dispatching in complex, large and busy railway
networks. Ph.D. thesis, Technische Universiteit Delft,
The Netherlands, December 2010. 90-5584-133-1.

[4] H. Grahn and J. T. Krasemann. A parallel
re-scheduling algorithm for railway traffic disturbance

Table 3: Experimental results for all scenarios using a time horizon of 90 minutes and 30 sec. execution time.

No. Nodes Visited Found solutions (s) Difference (s)
Sequential Parallel Sequential Parallel Cplex version Sequential Parallel
Algorithm Algorithm Algorithm Algorithm 12.2 in 24h Algorithm Algorithm

1 919 796 8 318 828 1489, 1175 1489, 1486, 1175, 1172 855 320 317
2 742 951 8 498 706 751, 437 751, 714, 628, 437 226 211 211
3 758 919 9 226 985 1150, 781 1150, 1087, 781 570 211 211
4 772 895 8 321 092 790, 421 790, 727, 421 210 211 211
5 858 318 7 500 516 1188, 930 1188, 793, 701 686 244 15
6 915 972 8 667 874 68, 53 68, 53 30 23 23
7 736 396 8 058 195 568, 499 568, 499 486 13 13
8 949 659 6 924 704 276, 207 276, 207 176 31 31
9 880 991 7 439 228 869, 800 869, 813, 800, 744 731 69 13
10 882 278 7 481 657 338, 269 338, 269 256 13 13
11 732 585 8 717 690 1547, 1233 1955, 1930, 1815, 1429,

1233
1022 211 211

12 760 105 8 480 011 1049, 680 6856, 1457, 1355, 876,
871, 680

469 211 211

13 849 760 7 771 656 2503, 2245 3279, 2711, 2613, 2401,
2360, 2245

2230.5 14.5 14.5

14 940 263 8 239 702 1627, 1519 1783, 1731, 1709, 1519 1112.5 406.5 406.5
15 902 186 7 886 755 1728, 1659 1728, 1659 1598.5 60.5 60.5
16 1 195 011 7 966 400 13850 13850 13850 0 0
17 945 461 7 663 925 7109, 7088 7109, 7088, 7069 7038 50 31
18 879 916 8 238 550 23940, 18692, 18672,

14679, 14419, 4494,
4295

23940, 18692, 18672,
14679, 14419, 4494,
4295

4130 165 165

19 807 655 5 648 880 28883 28883 28740 143 143
20 821 524 5 868 928 27208, 27186, 23609,

23587
27208, 26765, 23609,
23166, 23144

18971 4616 4173

management — initial results. In Proc. of the 2nd Int’l
Conference on Models and Technologies for Intelligent
Transportation Systems, pages XX–YY, June 2011.

[5] A. Grama and V. Kumar. State of the art in parallel
search techniques for discrete optimization problems.
IEEE Trans. on Knowledge and Data Engineering,
11(1):28–35, 2002.

[6] Y. Lee and C.-Y. Chen. A heuristic for the train
pathing and timetabling problem. Transportation
Research Part B: Methodological, 43(8-9):837 – 851,
2009.

[7] S. Q. Liu and E. Kozan. Scheduling trains as a
blocking parallel-machine job shop scheduling
problem. Computers & Operations Research,
36(10):2840 – 2852, 2009.

[8] L. Perron. Search procedures and parallelism in
constraint programming. In Principles and Practice of
Constraint Programming (CP’99), pages 346–361,
2004.

[9] M. Schachtebeck. Delay Management in Public
Transportation: Capacities, Robustness, and
Integration. PhD thesis, Niedersächsische Staats-und
Universitätsbibliothek Göttingen, Germany, 2009.

[10] Y. Shinano, K. Harada, and R. Hirabayashi. Control
schemes in a generalized utility for parallel
branch-and-bound algorithms. In Proc. of the 11th
Int’l Parallel Processing Symp., page 621, 1997.

[11] J. Törnquist. Computer-based decision support for
railway traffic scheduling and dispatching: A review of
models and algorithms. In 5th Workshop on
Algorithmic Methods and Models for Optimization of

Railways, 2005.

[12] J. Törnquist and J. A. Persson. N-tracked railway
traffic re-scheduling during disturbances.
Transportation Research Part B: Methodological,
41(3):342–362, Mar. 2007.

[13] J. Törnquist Krasemann. Design of an effective
algorithm for fast response to the re-scheduling of
railway traffic during disturbances. Transportation
Research Part C: Emerging Technologies, In Press,
Corrected Proof, 2010.

[14] X. Zhou and M. Zhong. Single-track train timetabling
with guaranteed optimality: Branch-and-bound
algorithms with enhanced lower bounds.
Transportation Research Part B: Methodological,
41(3):320 – 341, 2007.

