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ABSTRACT 
In  Sweden,  the  railway  traffic  and demand  for  track  capacity 
have  increased  significantly  the  last years  resulting  in a high 
traffic density where even small disturbances propagate. This 
makes  it  hard  for  the  traffic  managers  to  overview  the 
consequences  of  disturbances  and  their  decisions  when 
rescheduling the traffic.   

In  previous  research,  we  have  developed  and 
experimentally  evaluated  a  greedy  depthfirst  search 
algorithm. This algorithm aims to support the traffic managers 
by  computing  alternative  rescheduling  solutions  in  order  to 
minimize  the  train  delays.  The  simulation  experiments were 
based on real traffic data and the algorithm proved to be very 
effective  for many  types of disturbances and delivers optimal 
or  close  to  optimal  solutions  in  a  few  seconds. However,  the 
experiments  also  indicated  a  need  for  improvements  when 
solving  more  severe  disturbances  related  to  major 
infrastructure  failures. The  improvements  concern primarily 
the  need  to  explore  larger  parts  of  the  search  space  quickly 
and  to  branch  more  effectively  by  avoiding  exploring 
nonpromising nodes.   

This paper presents results from an analysis of where and 
when  successful  branching  decisions  are made. The  analysis 
showed that the successful branching decisions were generally 
made quite  far down  in  the search space  tree, but somewhat 
higher up during more severe disturbance scenarios. We also 
present  an  improved  version  of  the  greedy  algorithm  and  a 
parallel  implementation of  it. The parallelization  is composed 
of  eight  different  threads  allocated  to  one  processor  each 
starting  to  branch  at  the  highest  branching  level.  The 
experimental  results  show  that  it  improves  the  solutions  for 
difficult disturbance scenarios.   
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INTRODUCTION 
In Sweden, the demand for track capacity on the main 
railway lines is increasing for every year and in 
particular during peak hours. The reasons are two-fold: 
(i) The amount of people travelling by rail and the 
corresponding services have increased, and (ii) the 
deregulation has resulted in an increasing number of 
operators which are posing conflicting slot requests.  

This increasing demand has resulted in capacity 
insufficiencies and a high traffic density with low 
punctuality since even smaller disturbances now 
propogate through the network. This is especially true 
for the intercity and fast long-distance trains on the main 
lines between Stockholm - Malmö and Stockholm - 
Göteborg, which interact with many other trains services, 
e.g., local, regional, and freight trains. The fast 
long-distance trains on those lines had a punctuality of 
30-86% during 2010. That is, the worst months only 
30% of these trains were on time, while the best months 
showed a punctuality of 86%. The punctuality was 
lowest during the winter season and highest during the 

spring and fall. The numbers only consider trains 
reaching their final destinations and where a train is 
considered punctual if it reaches its final destination 
with a delay of maximum five minutes [7]. This 
increased vulnerability and frequency of disturbances 
shows the need for efficient re‐scheduling support for 
the traffic managers. Efficient support enables them to 
proactively and quickly overview and analyze how the 
different trains influence each other and how to 
re-schedule them to avoid knock-on (i.e., consecutive) 
delays.  

Since the problem of network saturation and 
vulnerability is present not only in Sweden but also in 
many other European countries, the research dealing 
with the topic of real-time re-scheduling of railway 
traffic during disturbances is significant. Reviews of 
related work can be found in [8], [5], [2], and more 
recently in [1]. Depending on the problem setting in 
focus, the suggested models and methods handle the 
re-scheduling problem to some extent differently.  

In our previous research funded by Trafikverket (the 
Swedish Transport Administration), we have developed 
and evaluated the use of mathematical models 
describing how the traffic can be re‐scheduled and 
optimization‐based algorithms to solve the re‐scheduling 
problem. These models and algorithms serve to provide 
the traffic managers with suggestions in real‐time on 
how to re‐schedule the traffic based on information 
relevant to make a good plan and in line with the 
objectives and deliverables Trafikverket has assigned to. 
The most recent re-scheduling algorithm we have 
developed is a greedy depth-first search algorithm which 
effectively delivers good solutions within the permitted 
time (30 seconds) for most types of scenarios.  

In this paper, we present an improved version of the 
greedy algorithm and a parallel implementation of it to 
speed up the search for solutions during severe 
disturbance scenarios. We have evaluated its 
performance in simulation experiments based on real 
data and realistic scenarios. 

THE GREEDY RESCHEDULING ALGORITHM   
The main objective of the greedy algorithm is to quickly 
retrieve a feasible and good enough solution and 
therefore performs a depth-first search. It uses an 
evaluation function to prioritize when conflicts arise and 
then branches according to a set of criteria. When a first 
good and feasible solution has been found the algorithm 
continues to search for improvements if the time limit 
permits it. The objective is to minimize the delay of the 
trains at their final destination. The algorithm is outlined 
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in more detail in [9]. 

The performance of the algorithm was evaluated by 
simulating its application in different types of 
disturbance scenarios using real traffic data provided by 
Trafikverket. The scenarios consisted of traffic during 90 
minutes in afternoon rush hour on one of the major lines 
in Sweden. This line is double-tracked and the tracks are 
bi-directional enabling trains to overtake also between 
stations.  

The algorithm proved to be very effective for most 
types of disturbances and delivers in many cases optimal 
or close to optimal solutions in a few seconds. The 
results from the experimental evaluation showed that the 
greedy algorithm quickly finds a first, good solution. In 
most cases it also quickly finds a second, improved and 
close-to optimal solution but not always the optimal one. 
A third improvement is often not found which indicates 
that the benefit of certain re-scheduling decisions (e.g., 
swapping the chosen track or swapping the order of 
trains on a certain section) is not seen immediately. Thus, 
they can be hard to identify if the branching is continued 
based on a utility function corresponding to the change 
in the total traffic delay. This is especially true for severe 
disturbance scenarios such as a signalling error 
enforcing a speed restriction of 40 and 70 km/h instead 
of 200 km/h. In such scenarios, queues are quickly built 
up and depending on where trains are going, certain 
trains may need to overtake others and so forth to avoid 
further propogation on the main lines.  

IMPROVEMENTS OF THE GREEDY ALGORITHM   
The improvements of the algorithm concern primarily 
the need to a) branch more effectively by avoiding 
exploring non-promising nodes and b) explore larger 
parts of the search space quickly. There are several 
possible strategies to identify and discard non-promising 
nodes or branches that would lead to an already existing 
solution.  

The first strategy we have implemented focuses on 
the later and forbids branching on station tracks where 
the stations are symmetric. i.e., the end result is not 
affected if track 1 or track 2 is chosen. To illustrate this 
consider Fig. 1, where sections 1, 3, 5, and 7 are stations 
and sections 2, 4, and 6 are line sections. The algorithm 
iteratively tries to find the most promising event to 
execute next from a candidate list. This list is composed 
of all trains’ next event to be executed. For the example 
in Figure 1, this list would be composed of events A5 
(train A on section 5), B5, C3, D1, E7, G1, H1, J7, and 
I1 in chronological order w.r.t. earliest starting time. 

The sequence of already executed events 
corresponds to a branch in a search space tree. The root 
and first consecutive nodes of that tree constitute the 
events there were active at time T0, i.e., A6, B4 and C2. 
If A5 is considered as the best candidate event to execute 
after C2 there are as many possible branches as available 
tracks on section 5 (if all tracks are unoccupied). If 
section 5 is a symmetric station with for example three 

parallel tracks, there are three different and possible 
branches for train A from C2, which would lead to one 
and the same solution. The cruder network description 
that is used, the more effective this strategy is. In our 
case, it also stabilized the algorithm when backtracking 
and solving deadlocks as well as speeded up the search. 
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Fig. 1: Illustration of railway traffic on a double-tracked line 
composed of four stations and three line sections. The time stamp 
T0 indicates the time when Train C just has left section 1 and 
experiences an engine failure. The itinerary of Train C will then 
look different than from the planned one.  
 

A second strategy to speed up the search and 
potentially find better solutions within the permitted 
time limit it to make use of parallel computing, see e.g. 
[4], by duplicating the algorithm and explore different 
parts of the search tree simultaneously.  

When parallellizing search algorithms, the selection 
of the most promising branches to explore is critical, as 
Clausen and Perregaard [3] shows, and when to generate 
new parallel threads (i.e., when to split up the search 
tree). Alternative approaches are, e.g., (i) when the value 
of the objective function changes, (ii) when a conflict 
arises, or (iii) when there is a risk for an unbalanced 
search tree. Furthermore, sharing large amounts of 
knowledge discovered during the parallel execution may 
be a limiting factor for the scalability of the algorithm as 
Ralphs et al. [6] show.  

Our first parallel implementation of the improved 
greedy algorithm was done by creating eight threads; 
each one allocated to an individual processor. The 
threads start at the highest level in the tree, i.e., at time 
T0, corresponding to the node C2 in the previous 
example. Thread 1 starts branching on the first possible 
candidate (e.g., A5), and Thread 2 the second best one 
(e.g., B5) and so forth. The threads communicate only 
by updating a global variable holding the current best 
objective value found and the currently best solution, 
which enables branching and cutting from a global 
perspective.  

We have found that letting Thread 1 first find a 
feasible solution (i.e., running the sequential greedy 
algorithm) works better than letting all threads start at 
the same time and without any reference value when 
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branching. The time loss for this is insignificant since 
the first thread finds the first feasible solution within less 
than a second, and it stabilizes the parallelization and 
makes the search more effective.  

The scenarios simulated are the ones presented in 
Table 1 in [9]. A few minor modifications to these are, 
however, made to avoid that the event list of a train ends 
with an event in the middle of a set of consecutive line 
sections, e.g., as between the stations Åby and 
Norrköping. A small number of additional events are 
therefore included in the scenarios used in this context. 
The disturbance scenarios are of three types:  
 
1. Scenarios 1-10 have initially a temporary single 

source of delay, e.g., a train comes into the traffic 
management district with a certain delay or it 
suffers from a temporary delay at one section within 

the district.  
2. In scenarios 11-15, a train has a ‘permanent’ 

malfunction resulting in increased running times on 
all line sections it is planned to occupy.  

3. In scenarios 16-20, the disturbance is an 
infrastructure failure causing, e.g., a speed reduction 
on a certain section, which results in increased 
running times for all trains running through that 
section.  

 
The experiments were performed on a server with 

two quad-core processors (Intel Xeon E5335, 2.0 GHz) 
and 16 GB main memory. Experimental results from the 
parallelization and a time horizon of 90 minutes and a 30 
seconds execution time, i.e., the time our algorithm 
searches for a solution, can be seen in Table 1.  

 
Table 1. Experimental results for 20 scenarios using a time horizon of 90 minutes and 30 seconds execution time. 
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The results show that in scenarios 17, and 20 the 
parallel implementation found better final solutions 
(marked in bold) than the sequential one. It is not so 
surprising that it occurs for the more challenging 
scenarios where queues easily build up. Interesting to 
note is also that the intermediary solutions for scenario 
20 are not the same. The algorithm was also evaluated 
on the same scenarios with a 60 minute time horizon but 
the effect was less significant.  

Table 1 also shows the optimal solutions found by 
Cplex 12.2 with a time limit of 24 hours. Comparing the 
solutions found with our algorithm with the Cplex 
solutions reveal that our algorithm often finds a close to 
optimal solution, e.g., scenarios 6, 7, 10, 11, 13, and 16. 
However, in some scenarios, e.g., 5, 14, and 20, the 
difference is larger. We also executed Cplex with a time 
limit of 30 seconds for all scenarios. Cplex did not find 
any feasible integer solution at all within this time. 

As already described, we let the threads in our first 
parallel implementation start branching from the highest 
point in the tree. However, it is not obvious that the most 
critical decision always is taken at such an early stage, 
but perhaps later (i.e., lower down in the search tree). If 
the algorithm is branching on events that do not have a 
strong dependency, the branches could lead to the same 
or very similar solutions. Since the sequence of events 
corresponding to a branch in the search tree, does not 
have to be in a chronological order as long as the order 
and safety constraints on the sections and logical order 
constraints for train events are satisfied, this may 
happen.  

To illustrate, let us assume that section 5 in Fig. 1 
has several available tracks. Then, Train A and B do not 
have a strong dependency to each another. The branch 
that continues from node C2 with node A5 followed by 
B5 would structurally look different from the branch 
-C2-B5-A5- but would result in the same re-scheduling 
solution (i.e., the trains would be allocated the same 
departure and arrival times as well as tracks).  

In order to improve the branching strategy of the 
algorithm, it is important to know where and when 
successful branching decisions are made. Therefore, we 
analyzed where the sequential algorithm made decisions 
leading to improvements by comparing how equal the 
branches of two different solutions are. For the 20 
scenarios, we have made pair-wise comparisons of all 
solutions found. We classify two branches as deviating 
when they have different events at the same level, or the 
same event but allocated different tracks. The analysis 
showed that, in general but not always, the branches are 
not starting to differ until quite far down in the tree and 
they share between 350 and 562 nodes. 

DISCUSSION AND CONCLUSIONS 
We have presented initial results from a parallel 
implementation of an improved greedy depth-first search 
algorithm. Our results show that for less severe 
disturbances the sequential greedy algorithm performs as 

well as its parallel version and also for a 60 minutes time 
horizon. The strength of the parallelization is foremost in 
more complex scenarios and longer time horizons. Our 
analysis of different solutions indicates that creating 
threads further down in the search tree needs to be 
investigated. Furthermore, we plan to evaluate the 
parallel depth-first search against a parallel best-first 
search strategy, which has not been done in the context 
of railway traffic optimization and re-scheduling. 

Finally, the search for improvements of a few 
minutes may seem irrelevant for a practitioner. In 
practice, the dispatchers do not aim for the optimal 
solution but one that is good-enough with respect to the 
main objective(s). The computation for re-scheduling 
solutions assumes to some extent that the traffic is 
deterministic while it is clear that this is not the case. 
The solution, or small set of alternative solutions to 
choose from, therefore also needs to fulfill several other 
aspects and attributes such as stability (i.e., how 
sensitive it is to uncertainty and inaccuracy of data), 
complexity (i.e., does the solution contain a lot of critical 
traffic movements such as overtaking with small time 
margins), traveler-friendliness (e.g., are there confusing 
and time-consuming platform changes to commuter 
services), etc. The potential of using a parallelized 
search for solutions enables us to find several alternative 
solutions and to use different objectives and weights to 
evaluate and benchmark them. 
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