
A PARALLEL RESCHEDULING ALGORITHM FOR RAILWAY TRAFFIC
DISTURBANCE MANAGEMENT – INITIAL RESULTS

Håkan Grahn and Johanna Törnquist Krasemann*

School of Computing
Blekinge Institute of Technology, Sweden

ABSTRACT
In Sweden, the railway traffic and demand for track capacity
have increased significantly the last years resulting in a high
traffic density where even small disturbances propagate. This
makes it hard for the traffic managers to overview the
consequences of disturbances and their decisions when
rescheduling the traffic.

In previous research, we have developed and
experimentally evaluated a greedy depthfirst search
algorithm. This algorithm aims to support the traffic managers
by computing alternative rescheduling solutions in order to
minimize the train delays. The simulation experiments were
based on real traffic data and the algorithm proved to be very
effective for many types of disturbances and delivers optimal
or close to optimal solutions in a few seconds. However, the
experiments also indicated a need for improvements when
solving more severe disturbances related to major
infrastructure failures. The improvements concern primarily
the need to explore larger parts of the search space quickly
and to branch more effectively by avoiding exploring
nonpromising nodes.

This paper presents results from an analysis of where and
when successful branching decisions are made. The analysis
showed that the successful branching decisions were generally
made quite far down in the search space tree, but somewhat
higher up during more severe disturbance scenarios. We also
present an improved version of the greedy algorithm and a
parallel implementation of it. The parallelization is composed
of eight different threads allocated to one processor each
starting to branch at the highest branching level. The
experimental results show that it improves the solutions for
difficult disturbance scenarios.

Keywords: Railway traffic, Disturbance Management,

Rescheduling, Parallel algorithm, Multiprocessor.

INTRODUCTION
In Sweden, the demand for track capacity on the main
railway lines is increasing for every year and in
particular during peak hours. The reasons are two-fold:
(i) The amount of people travelling by rail and the
corresponding services have increased, and (ii) the
deregulation has resulted in an increasing number of
operators which are posing conflicting slot requests.

This increasing demand has resulted in capacity
insufficiencies and a high traffic density with low
punctuality since even smaller disturbances now
propogate through the network. This is especially true
for the intercity and fast long-distance trains on the main
lines between Stockholm - Malmö and Stockholm -
Göteborg, which interact with many other trains services,
e.g., local, regional, and freight trains. The fast
long-distance trains on those lines had a punctuality of
30-86% during 2010. That is, the worst months only
30% of these trains were on time, while the best months
showed a punctuality of 86%. The punctuality was
lowest during the winter season and highest during the

spring and fall. The numbers only consider trains
reaching their final destinations and where a train is
considered punctual if it reaches its final destination
with a delay of maximum five minutes [7]. This
increased vulnerability and frequency of disturbances
shows the need for efficient re‐scheduling support for
the traffic managers. Efficient support enables them to
proactively and quickly overview and analyze how the
different trains influence each other and how to
re-schedule them to avoid knock-on (i.e., consecutive)
delays.

Since the problem of network saturation and
vulnerability is present not only in Sweden but also in
many other European countries, the research dealing
with the topic of real-time re-scheduling of railway
traffic during disturbances is significant. Reviews of
related work can be found in [8], [5], [2], and more
recently in [1]. Depending on the problem setting in
focus, the suggested models and methods handle the
re-scheduling problem to some extent differently.

In our previous research funded by Trafikverket (the
Swedish Transport Administration), we have developed
and evaluated the use of mathematical models
describing how the traffic can be re‐scheduled and
optimization‐based algorithms to solve the re‐scheduling
problem. These models and algorithms serve to provide
the traffic managers with suggestions in real‐time on
how to re‐schedule the traffic based on information
relevant to make a good plan and in line with the
objectives and deliverables Trafikverket has assigned to.
The most recent re-scheduling algorithm we have
developed is a greedy depth-first search algorithm which
effectively delivers good solutions within the permitted
time (30 seconds) for most types of scenarios.

In this paper, we present an improved version of the
greedy algorithm and a parallel implementation of it to
speed up the search for solutions during severe
disturbance scenarios. We have evaluated its
performance in simulation experiments based on real
data and realistic scenarios.

THE GREEDY RESCHEDULING ALGORITHM
The main objective of the greedy algorithm is to quickly
retrieve a feasible and good enough solution and
therefore performs a depth-first search. It uses an
evaluation function to prioritize when conflicts arise and
then branches according to a set of criteria. When a first
good and feasible solution has been found the algorithm
continues to search for improvements if the time limit
permits it. The objective is to minimize the delay of the
trains at their final destination. The algorithm is outlined

* Corresponding author – Address: Box 214, SE374 24 Karlshamn, Sweden; Tel: +46 (0)4553858 81; Email: Johanna.Tornquist@bth.se

2nd International Conference on
Models and Technologies for Intelligent Transportation Systems

22-24 June, 2011, Leuven, Belgium

in more detail in [9].

The performance of the algorithm was evaluated by
simulating its application in different types of
disturbance scenarios using real traffic data provided by
Trafikverket. The scenarios consisted of traffic during 90
minutes in afternoon rush hour on one of the major lines
in Sweden. This line is double-tracked and the tracks are
bi-directional enabling trains to overtake also between
stations.

The algorithm proved to be very effective for most
types of disturbances and delivers in many cases optimal
or close to optimal solutions in a few seconds. The
results from the experimental evaluation showed that the
greedy algorithm quickly finds a first, good solution. In
most cases it also quickly finds a second, improved and
close-to optimal solution but not always the optimal one.
A third improvement is often not found which indicates
that the benefit of certain re-scheduling decisions (e.g.,
swapping the chosen track or swapping the order of
trains on a certain section) is not seen immediately. Thus,
they can be hard to identify if the branching is continued
based on a utility function corresponding to the change
in the total traffic delay. This is especially true for severe
disturbance scenarios such as a signalling error
enforcing a speed restriction of 40 and 70 km/h instead
of 200 km/h. In such scenarios, queues are quickly built
up and depending on where trains are going, certain
trains may need to overtake others and so forth to avoid
further propogation on the main lines.

IMPROVEMENTS OF THE GREEDY ALGORITHM
The improvements of the algorithm concern primarily
the need to a) branch more effectively by avoiding
exploring non-promising nodes and b) explore larger
parts of the search space quickly. There are several
possible strategies to identify and discard non-promising
nodes or branches that would lead to an already existing
solution.

The first strategy we have implemented focuses on
the later and forbids branching on station tracks where
the stations are symmetric. i.e., the end result is not
affected if track 1 or track 2 is chosen. To illustrate this
consider Fig. 1, where sections 1, 3, 5, and 7 are stations
and sections 2, 4, and 6 are line sections. The algorithm
iteratively tries to find the most promising event to
execute next from a candidate list. This list is composed
of all trains’ next event to be executed. For the example
in Figure 1, this list would be composed of events A5
(train A on section 5), B5, C3, D1, E7, G1, H1, J7, and
I1 in chronological order w.r.t. earliest starting time.

The sequence of already executed events
corresponds to a branch in a search space tree. The root
and first consecutive nodes of that tree constitute the
events there were active at time T0, i.e., A6, B4 and C2.
If A5 is considered as the best candidate event to execute
after C2 there are as many possible branches as available
tracks on section 5 (if all tracks are unoccupied). If
section 5 is a symmetric station with for example three

parallel tracks, there are three different and possible
branches for train A from C2, which would lead to one
and the same solution. The cruder network description
that is used, the more effective this strategy is. In our
case, it also stabilized the algorithm when backtracking
and solving deadlocks as well as speeded up the search.

1

2

3

4

16:04 16:12 16:19 16:26 16:33 16:40 16:48 16:55 17:02 17:09

Time

ToSections

Train
A

Train
E

Train
J

Tr
ai
n
H

Tr
ai
n
GTrain

F

Tr
ai
n
B

Tr
ai
n
C

Tr
ai
n
D

Tr
ai
n
I

3

5

7

1

2

3

4

16:04 16:12 16:19 16:26 16:33 16:40 16:48 16:55 17:02 17:09

Time

ToSections

Train
A

Train
E

Train
J

Tr
ai
n
H

Tr
ai
n
GTrain

F

Tr
ai
n
B

Tr
ai
n
C

Tr
ai
n
D

Tr
ai
n
I

3

5

7

Fig. 1: Illustration of railway traffic on a double-tracked line
composed of four stations and three line sections. The time stamp
T0 indicates the time when Train C just has left section 1 and
experiences an engine failure. The itinerary of Train C will then
look different than from the planned one.

A second strategy to speed up the search and
potentially find better solutions within the permitted
time limit it to make use of parallel computing, see e.g.
[4], by duplicating the algorithm and explore different
parts of the search tree simultaneously.

When parallellizing search algorithms, the selection
of the most promising branches to explore is critical, as
Clausen and Perregaard [3] shows, and when to generate
new parallel threads (i.e., when to split up the search
tree). Alternative approaches are, e.g., (i) when the value
of the objective function changes, (ii) when a conflict
arises, or (iii) when there is a risk for an unbalanced
search tree. Furthermore, sharing large amounts of
knowledge discovered during the parallel execution may
be a limiting factor for the scalability of the algorithm as
Ralphs et al. [6] show.

Our first parallel implementation of the improved
greedy algorithm was done by creating eight threads;
each one allocated to an individual processor. The
threads start at the highest level in the tree, i.e., at time
T0, corresponding to the node C2 in the previous
example. Thread 1 starts branching on the first possible
candidate (e.g., A5), and Thread 2 the second best one
(e.g., B5) and so forth. The threads communicate only
by updating a global variable holding the current best
objective value found and the currently best solution,
which enables branching and cutting from a global
perspective.

We have found that letting Thread 1 first find a
feasible solution (i.e., running the sequential greedy
algorithm) works better than letting all threads start at
the same time and without any reference value when

2nd International Conference on
Models and Technologies for Intelligent Transportation Systems

22-24 June, 2011, Leuven, Belgium

branching. The time loss for this is insignificant since
the first thread finds the first feasible solution within less
than a second, and it stabilizes the parallelization and
makes the search more effective.

The scenarios simulated are the ones presented in
Table 1 in [9]. A few minor modifications to these are,
however, made to avoid that the event list of a train ends
with an event in the middle of a set of consecutive line
sections, e.g., as between the stations Åby and
Norrköping. A small number of additional events are
therefore included in the scenarios used in this context.
The disturbance scenarios are of three types:

1. Scenarios 1-10 have initially a temporary single

source of delay, e.g., a train comes into the traffic
management district with a certain delay or it
suffers from a temporary delay at one section within

the district.
2. In scenarios 11-15, a train has a ‘permanent’

malfunction resulting in increased running times on
all line sections it is planned to occupy.

3. In scenarios 16-20, the disturbance is an
infrastructure failure causing, e.g., a speed reduction
on a certain section, which results in increased
running times for all trains running through that
section.

The experiments were performed on a server with

two quad-core processors (Intel Xeon E5335, 2.0 GHz)
and 16 GB main memory. Experimental results from the
parallelization and a time horizon of 90 minutes and a 30
seconds execution time, i.e., the time our algorithm
searches for a solution, can be seen in Table 1.

Table 1. Experimental results for 20 scenarios using a time horizon of 90 minutes and 30 seconds execution time.

2nd International Conference on
Models and Technologies for Intelligent Transportation Systems

22-24 June, 2011, Leuven, Belgium

The results show that in scenarios 17, and 20 the
parallel implementation found better final solutions
(marked in bold) than the sequential one. It is not so
surprising that it occurs for the more challenging
scenarios where queues easily build up. Interesting to
note is also that the intermediary solutions for scenario
20 are not the same. The algorithm was also evaluated
on the same scenarios with a 60 minute time horizon but
the effect was less significant.

Table 1 also shows the optimal solutions found by
Cplex 12.2 with a time limit of 24 hours. Comparing the
solutions found with our algorithm with the Cplex
solutions reveal that our algorithm often finds a close to
optimal solution, e.g., scenarios 6, 7, 10, 11, 13, and 16.
However, in some scenarios, e.g., 5, 14, and 20, the
difference is larger. We also executed Cplex with a time
limit of 30 seconds for all scenarios. Cplex did not find
any feasible integer solution at all within this time.

As already described, we let the threads in our first
parallel implementation start branching from the highest
point in the tree. However, it is not obvious that the most
critical decision always is taken at such an early stage,
but perhaps later (i.e., lower down in the search tree). If
the algorithm is branching on events that do not have a
strong dependency, the branches could lead to the same
or very similar solutions. Since the sequence of events
corresponding to a branch in the search tree, does not
have to be in a chronological order as long as the order
and safety constraints on the sections and logical order
constraints for train events are satisfied, this may
happen.

To illustrate, let us assume that section 5 in Fig. 1
has several available tracks. Then, Train A and B do not
have a strong dependency to each another. The branch
that continues from node C2 with node A5 followed by
B5 would structurally look different from the branch
-C2-B5-A5- but would result in the same re-scheduling
solution (i.e., the trains would be allocated the same
departure and arrival times as well as tracks).

In order to improve the branching strategy of the
algorithm, it is important to know where and when
successful branching decisions are made. Therefore, we
analyzed where the sequential algorithm made decisions
leading to improvements by comparing how equal the
branches of two different solutions are. For the 20
scenarios, we have made pair-wise comparisons of all
solutions found. We classify two branches as deviating
when they have different events at the same level, or the
same event but allocated different tracks. The analysis
showed that, in general but not always, the branches are
not starting to differ until quite far down in the tree and
they share between 350 and 562 nodes.

DISCUSSION AND CONCLUSIONS
We have presented initial results from a parallel
implementation of an improved greedy depth-first search
algorithm. Our results show that for less severe
disturbances the sequential greedy algorithm performs as

well as its parallel version and also for a 60 minutes time
horizon. The strength of the parallelization is foremost in
more complex scenarios and longer time horizons. Our
analysis of different solutions indicates that creating
threads further down in the search tree needs to be
investigated. Furthermore, we plan to evaluate the
parallel depth-first search against a parallel best-first
search strategy, which has not been done in the context
of railway traffic optimization and re-scheduling.

Finally, the search for improvements of a few
minutes may seem irrelevant for a practitioner. In
practice, the dispatchers do not aim for the optimal
solution but one that is good-enough with respect to the
main objective(s). The computation for re-scheduling
solutions assumes to some extent that the traffic is
deterministic while it is clear that this is not the case.
The solution, or small set of alternative solutions to
choose from, therefore also needs to fulfill several other
aspects and attributes such as stability (i.e., how
sensitive it is to uncertainty and inaccuracy of data),
complexity (i.e., does the solution contain a lot of critical
traffic movements such as overtaking with small time
margins), traveler-friendliness (e.g., are there confusing
and time-consuming platform changes to commuter
services), etc. The potential of using a parallelized
search for solutions enables us to find several alternative
solutions and to use different objectives and weights to
evaluate and benchmark them.

ACKNOWLEDGMENTS
The research presented in this paper has been financially
supported by and in cooperation with Trafikverket within
the research project EOT (Effektiv operativ Omplanering
av Tåglägen vid driftstörningar).

REFERENCES
[1] Corman, F. (2010). Real-Time Railway Traffic Management –

dispatching in complex, large and busy railway networks. Ph D
thesis, TRAIL at TU Delft, Netherlands.

[2] D’Ariano, A., Pranzo, M. (2009). An advanced real-time train
dispatching system for minimizing the propagation of delays in a
dispatching area under severe disturbances. Network Spatial
Economy 9, pp. 63-84.

[3] Clausen, J., Perregaard, M. (1999). On the Best Search Strategy in
Parallel Branch and Bound: Best-First Search Versus Lazy
Depth-First Search. Annals of Operations Research 90, pp. 1-17.

[4] Grama, A., Gupta, A., Karypis, G.,Kumar, V. (2003). Introduction
 to Parallel Computing, 2nd edition, Addison-Wesley.
[5] Jacobs, J. (2008). Rescheduling, in: Hansen, I., Pachl J. (Eds.).

(2008) Railway Timetable & Traffic. Analysis, Modelling,
Simulation, Hamburg: Eurailpress.

[6] Ralphs, T.K., Ladányi, L., Saltzman, M.J. (2003). Parallel branch,
cut, and price for large-scale discrete optimization. Mathematical
Programming B98, pp. 253-280.

[7] SJ statistics http://www.sj.se/sj/jsp/polopoly.jsp?d=1205&l=sv
 (2011-02-25).
[8] Törnquist, J. (2005). Computer-based decision support for railway

traffic scheduling and dispatching: A review of models and
algorithms. Proceedings of ATMOS2005, Palma de Mallorca,
Spain, October 2005, http://drops.dagstuhl.de/portals/ATMOS/.

[9] Törnquist Krasemann, J. (2011). Design of an effective algorithm
for fast response to the re-scheduling of railway traffic during
disturbances. Transportation Research Part C (in press).

