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Abstract 
 

We develop a model to account for the long memory property in a bivariate count data framework. We 

propose a bivariate integer-valued fractional integrated (BINFIMA) model and apply the model to high 

frequency stock transaction data. The BINFIMA model allows for both positive and negative correlations 

between the counts. The unconditional and conditional first and second order moments are given. The 

CLS and FGLS estimators are discussed. The model is capable of capturing the covariance between and 

within intra-day time series of high frequency transaction data due to macroeconomic news and news 

related to a specific stock. Empirically, it is found that Ericsson B has mean recursive process while 

AstraZeneca has long memory property. It is also found that Ericsson B and AstraZenica react in a similar 

way due to macroeconomic news. 
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1 Introduction 
 

This paper introduces a bivariate integer-valued fractionally integrated moving average (BINFIMA) 

model and applies the model to high frequency stock transaction data. This model is an extension of an 

INARFIMA model introduced by Quoreshi (2006). This paper focuses on modelling the long memory 

property of time series of count data in a bivariate setting and on applying the model in a financial setting. 

The long range dependence or the long memory implies that the present information has a persistent 

impact on future counts. Note that the long memory property is related to the sampling frequency of a time 

series. A manifest long memory may be shorter than one hour if observations are recorded every minute, 

while stretching over decades for annual data. A time series of count data is an integer-valued and non-

negative sequence of count observations observed at equidistant instants of time. In the current context 

series typically have small counts and many zeros. Models for long memory, continuous variable time 

series are not applicable for integer-valued time series. This is so with respect to both interpretation and 

inference. 

 

The long memory phenomenon in time series was first considered by Hurst (1951, 1956). In these studies, 

he explained the long term storage requirements of the Nile River. He showed that the cumulated water 

flows in a year depends not only on the water flows in recent years but also on water flows in years much 

prior to the present year. Mandelbrot and van Ness (1968) explain and advance the Hurst’s studies by 

employing fractional Brownian motion. In analogy with Mandelbrot and van Ness (1968), Granger 

(1980), Granger and Joyeux (1980) and Hosking (1981) develop Autoregressive Fractionally Integrated 

Moving Average (ARFIMA) models to account for the long memory in time series data. Ding and 

Granger (1996) point out that a number of other processes can also have the long memory property. An 

empirical study regarding the usefulness of ARFIMA models is conducted by Bhardwaja and Swanson 

(2005), who found strong evidence in favor of ARFIMA in absolute, squared and log-squared stock index 

returns. 

 

This paper introduces a Bivariate Integer-Valued Fractional Integrated Moving Average (BINFIMA) 

model. The BINFIMA is developed to capture covariance in and between stock transactions time series. 

Each transaction refers to a trade between a buyer and a seller in a volume of stocks for a given price. A 
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transaction is impounded with information such as volume, price and spread. The trading intensity or the 

number of transactions for a fixed interval of time and the durations can be seen as inversely related since 

the more time elapses between successive transactions the fewer trades take place. Easley and O’Hara 

(1992) shows that a low trading intensity implies no news. Engle (2000) models time according to the 

autoregressive conditional duration (ACD) model of Engle and Russell (1998) and finds that longer 

durations are associated with lower price volatilities. Quoreshi (2006a, 2008) introduces Bivariate Integer-

Valued Moving Average (BINMA) and Vector Integer-Valued Moving Average Model (VINMA). 

BINMA model is a special case of VINMA. These models emerge from Integer-Valued Moving Average 

(INMA) model. The INMA model class has been studied by, e.g. Al-Osh and Alzaid (1988), McKenzie 

(1988) and Brännäs and Hall (2001). One obvious advantage of the BINMA and VINMA model over 

extensions of the ACD model is that there is no synchronization problem due to different onsets of 

durations in count data time series. Hence, the spread of shocks and news is more easily studied in the 

BINMA or VINMA framework. Like BINMA, the BINFIMA allows for both negative and positive 

correlation in the count series and the integer-value property of counts is taken into account. The 

BINFIMA can be considered as a special case of BINMA with infinite lag lengths where the long memory 

properties are taken into account. 

 

The paper is organized as follows. The BINFIMA models are introduced in Section 2. The conditional and 

unconditional moment properties of the BINFIMA models are obtained. The estimation procedures, CLS 

and FGLS for unknown parameters are discussed in Section 3. A detailed description of the empirical data 

is given in Section 4. The empirical results for the stock series are presented in Section 5 and the 

concluding comments are included in the final section. 

 

2 BINFIMA and Number of Stock Transactions 
 

Many economic time series, e.g., the number of transactions, the number of car passes during an interval 

of time, comprise integer-valued count data. It is reasonable to assume that this type of data may also have 

long memory. However, if employing the previous workhorse, the ARFIMA model, integers cannot be 

generated. By combining features of the INARMA and ARFIMA models, Quoreshi (2006b) introduced a 

count data (integer-valued) autoregressive fractionally integrated moving average (INARFIMA) model 

that takes account of both the integer- valued property of counts and incorporates the long memory 

property. BINFIMA model is an extension of a special case of INARFIMA model in a bivariate setting.  

 

2.1 The BINFIMA Model 

 

Assume that there are two intra-day series, y1t and y2t, for the number of stock transactions in t = 1, . . . , T 

time intervals have long memory properties. Assume further that the dependence between y1t and y2t 

emerges from common underlying factor(s) such as macro-economic news, rumors, etc. Moreover, news 

related to the y1t series may also have an impact on y2t and vice versa. The covariation within and between 

the count data variables with long memory properties can be modeled by a BINFIMA model. Like 

INARFIMA (0,d,0) introduced by Quoreshi (2006b), the model which we call BINFIMA (d1, d2) in its 

simplest form can be defined as follows 
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Note that y1t and y2t have long memory in a sense that the variables have slow decaying autocorrelation 

functions and the parameters             [           ],       and           where     . 

Note that     are considered thinning probabilities and hence     [   ]. It is worth mentioning here that 

if the parameters are independent and the lag lengths are finites, the model will take the more general form 

of BINMA (q1,q2) Quoreshi (2006a). The macro-economic news are assumed to be captured by {   }, 

      and filtered by {   } through the system. The binomial thinning operator is used to account for the 

integer-valued property of count data. This operator can be written 
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 an iid sequence of 0-1 random variables, such that   (    )   α = 1-Pr(       

Conditionally on the integer-valued  ,     is binomially distributed with      |      and 

     |            Unconditionally it holds that           and             
         where        and        . Obviously,     [   ]. 
 

Assuming independence between and within the thinning operations and {    } an iid sequence with mean 

   and variance   
       , the unconditional first and second order moments can be given as follows: 
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where γik denotes the autocovariance function at lag k and υi > 0. It is obvious from (3) that the mean, 

variance and autocovariance take only positive values since λi , σ
2

i and     are all positive and 

that ∑    
 
    is required for {   } to be a stationary process. Note also that the variance may be larger 

than the mean (overdispersion), smaller than the mean (underdispersion), or equal to the mean 

(equidispersion) depending on whether υi > 1, υi   (0, 1) or υi = 1, respectively. 
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Macro-economic news, rumors, etc. can enhance the intensity of trading in both stocks or lead the 

intensities in opposite directions. This implies that investors in different stocks may react after the news in 

similar or different ways. For example, investors may increase their investments in one stock leading to a 

possible increase in price, while reducing their investments in another stock creating a possible price 

decrease. Thus, even though the prices of the two stocks move in different directions, the intensities of 

trading in both stocks may increase. For a fixed time interval [t − 1, t) the macro-economic news are 

assumed to be captured by uit for stock i. Retaining the previous assumptions and allowing for dependence 

between u1t and u2t the unconditional covariance function for BINFIMA(d1,d2) can be given in the same 

way like as follows: 

 

   

{
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where   →∞ and                                        and                   
     where              Note here that in empirical studies    may be very large but always finite. In 

its empirical implication, we assume the coefficients approaches zero as lag lengthen approaches infinite. 

There is no cross-lag dependence among uit and the covariances Cov(u1t, u2t) are assumed constant over 

time. Note also that the sign of the covariance function in (4a−b) depends on the relative sizes of   and 

    . Quoreshi (2006a) gives the conditional mean and variance for a BINMA (q1, q2) model. The 

conditional mean, variance and covariance for the BINFIMA (d1,d2) are in an analogous way 
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where       is the information set available at time t-1. The conditional mean and variance vary with       

while the conditional covariance does not. Since the conditional variance varies with      , there is a 

conditional heteroskedasticity property of moving average type that Brännäs and Hall called MACH(q). 

The effect of       on the mean is greater than on the variance. Note also that like the unconditional 

variance the conditional variance could be overdispersed, underdispersed or equidispersed depending on 

whether      ∑              ∑         or      ∑          respectively. 
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2.2 Extension of the BINFIMA Model 

 

 

A number of other processes may have long memory (Ding and Granger, 1996). Like INRFIMA (0,δ,0) 

proposed by Quoreshi (2006), the BINFIMA model can be extended in the following way 

 

                                                                     
 

Where              [           ],       and           where            

  
                                and the property                    is employed. The 

coefficients in this expression are considered thinning probabilities and hence we require          
[   ]  We denote the model in (6) BINFIMA (δ1,δ2). The conditional mean, variance and covariance of the 

model are 
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Note that when           BINFIMA (δ1,δ2) collapses to BINFIMA (d1,d2). 

3. Estimation 
 

Since we do not assume a full density function the maximum likelihood estimator is not considered. 

Conditional least square (CLS), feasible generalized least square (FGLS) and generalized methods of 

moments (GMM) are first hand candidates for the estimation. In the previous studies, it turns out that 

FGLS is the best estimator among the three in terms of eliminating serial correlation ( Quoreshi, 2006). 

CLS comes in the second position. Hence, we will consider CLS and FGLS for estimation. The 

estimators, CLS and FGLS, for BINFIMA (δ1,δ2) have the following residual in common 

 

           |               (  ∑   

 

   

     )                               

 

These moment conditions correspond to the normal equations of the CLS estimator that focuses on the 

unknown parameters of the conditional mean function. Alternatively and equivalently the properties 

E(    ) = 0 and E(           ) = 0, j ≥ 1 could be used. The criterion function    ∑    
  

     is 

minimized with respect to unknown parameters, i.e.    (         and     )  Using a finite maximum lag 

m in (8) instead of infinite lags may have biasing effects. Due to omitted variables, i.e.                , 

we may have expect a positive biasing effect on the parameters          and     (Brännäs and Quoreshi, 

2010). Note that the moment conditions for an BINFIMA (d1,d2) can be obtained by setting        .  

 

The parameters estimated with CLS are considered a first step of the FGLS estimators. The conditional 

variance and the covariance prediction errors 
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where s=max(q1,q2)-1 and T is the length of time series. Finally, FGLS estimator minimizes the criterion 
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is minimized with respect to   . In (15)  ̂ |   ,  ̂ |    and  ̂   ̂ |    ̂ |     ̂ |    are taken as given. 

This gives the FGLS estimates of the parameter vector      
    

    of the bivariate conditional mean 

function. The covariance matrix estimator is 

   ( ̂    )  ( ∑
   
   

 ̂  

 

     

   
  

)

  

 

Where              
 and  ̂ is the covariance matrix for the residual series FGLS estimation. 

4. Data and Descriptives 
 

The tick-by-tick data for Ericsson B and AstraZeneca have been downloaded from the Ecovision system 

and are later filtered by the author. The stocks are frequently traded and have the highest turnovers at the 

Stockholmsbörsen. The two stock series are collected for the period November 5-December 12, 2002. Due 

to a technical problem in downloading data there are no data for November 12 in the time series and the 

first captured minutes of December 5 are 0959 and 1037, respectively. Since we are interested in capturing 

the number of ordinary transactions, we have deleted all trading before 0935 (trading opens at 0930) and 

after 1714 (order book closes at 1720). The transactions in the first few minutes are subject to a different 

trading mechanism while there is practically no trading after 1714. The data are aggregated into one 

minute intervals of time. For high frequency data, researchers usually use one, two, five or ten minute 

intervals of time and the choice is rather arbitrary. There are altogether 11960 observations for both the 

Ericsson B and AstraZeneca series. The series together with their autocorrelation and partial-

autocorrelation functions are exhibited in Figure 1. There are frequent zero frequencies in both series, 

specially in the AstraZeneca series and hence the application of count data modeling is called for. The 

counts in both series fluctuate around their means which is an indication of mean reverting processes. The 

autocorrelation functions for both series suggest fractional integration. 
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Figure 1: The time series of Ericsson B and AstraZeneca and their autocorrelation and partial-

autocorrelation functions. 

 

Observation Number

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

N
u
m

b
er

 o
f 

T
ra

ns
a
ct

io
ns

0

20

40

60

80

Lag

0 5 10 15 20 25 30 35 40

A
u
to

co
rr

e
la

tio
n

0.0

0.1

0.2

0.3

0.4

0.5

Lag

0 5 10 15 20 25 30 35 40

P
a
rt

ia
l-a

ut
o
co

rr
e
la

tio
n

0.0

0.1

0.2

0.3

0.4

0.5

Lag

0 5 10 15 20 25 30 35 40

A
u
to

co
rr

e
la

tio
n

0.0

0.1

0.2

0.3

Lag

0 5 10 15 20 25 30 35 40

P
a
rt

ia
l-a

ut
o
co

rr
e
la

tio
n

0.0

0.1

0.2

0.3

Observation Number

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

N
u
m

b
er

 o
f 

T
ra

ns
a
ct

io
ns

0

10

20

30

40

Ericsson B

AstraZeneca

Ericsson B

AstraZeneca



8 
 

5. Empirical Results 
 

CLS and FGLS estimators are employed and AIC criterion are used to determine the lag length. Between 

BINFIMA (d1,d2) and BINFIMA (δ1,δ2), the later turns out better in terms of eliminating serial correlation, 

although the differences are very small. The parameters estimated with CLS and FGLS are almost the 

same (Table 1). BINMA turns out best among the three in terms of eliminating serial correlation. We 

found evidence for fractional integration property for both Ericsson B and AstraZeneca series. The series 

for Ericsson B has mean reversion property but is not covariance stationary since the confidence interval 

for   includes 0.5. The series for AstraZenica has mean reversion property and is covariance stationary. 

The correlation between Ericsson B and AstraZeneca is positive which implies that both series move in 

the same direction when macroeconomic news or rumors break out. For BINFIMA (δ1,δ2) we need to 

estimate 6 parameters, while the number of estimated parameters for the BINMA (70, 50) are 122. The 

time to run a BINFIMA model took about 20 minutes while the corresponding time for a BINMA was 

about 14 hours. Hence, BINFIMA is more parsimonious in terms of parameters and estimating time than 

those of BINMA. Note also that a few parameters for Ericsson B estimated with BINMA turned out 

negative which is a violation for that the parameters are interpreted as probabilities and hence take values 

between zero and one (see Table 3). Obviously, we could find positive parameters by employing, for 

example, better start-up values or forcing parameters to be turned out positive. The mean and median 

reaction times for Ericsson B estimated with BINFIMA are 22 minutes respective 13 minutes, while the 

corresponding numbers for BINMA are 20 respective 12 minutes. But the differences in median are rather 

large (see Table 2). The parameters estimated with BINMA model is given in Table 3 in the appendix. 

 

Table 1: Results for BINFIMA (δ1,δ2) model for Ericsson B and AstraZeneca estimated with CLS and 

FGLS. 

 Ericsson B  AstraZeneca 

 CLS FGLS  CLS FGLS 

 Estimate s.e. Estimate s.e.  Estimate s.e. Estimate s.e. 

 ̂  0.486  0.024      0.486 0.023       0.357  0.049      0.358 0.048      

 ̂  1.239      0.112 1.238 0.110  0.498  0.106 0.485 0.107 

          

 ̂     0.548 0.103 0.548 0.103  0.837 0.149 0.841 0.129 

 ̂  2.401 0.120 2.379 0.119  0,597 0.072 0.593 0.077 

 ̂    42.73  42.74   1.98  1.98  

 ̂    2.734  2.731       

 ̂ |     1.301  1.319       

       193.5  192.8   209.6  208.7  

       272.8  272.0   330.7  329.2  

  

Table 2: FGLS estimation results for BINFIMA and BINMA models for Ericsson B and AstraZenica. 

 

 BINFIMA  BINMA 

 Ericsson B AstraZeneca  Ericsson B AstraZeneca 

               21.67 13.29  19.89 11.90 

           16.29 15.31     9,26   5.98 

            192.8 208.7  172.8 198.7 

 ̂ |          0.309   0,339  
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6. Concluding Remarks 
 

This paper focuses on modeling the long memory property in a bivariate count data framework. The 

proposed BINFIMA model emerges from INARFIMA model introduced by Quoreshi (2006b). CLS and 

FGLS estimators are discussed. The model can also be seen as a special case of BINMA model. The 

BINFIMA model is more parsimonious than BINMA both in terms of parameters and estimating time. In 

its empirical application, we found evidence for fractional integration property for both Ericsson B and 

AstraZeneca series. The series for Ericsson B has mean reversion property but is not covariance stationary 

since the confidence interval for   includes 0.5. The series for AstraZenica has mean reversion property 

and is covariance stationary. The correlation between Ericsson B and AstraZeneca is positive which 

implies that both series move in the same direction when macroeconomic news or rumors break out. 
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Appendix 
 

Table 3: FGLS estimation results for BINMA (70, 50) model Ericsson B and AstraZeneca. 

Ericsson B  AstraZeneca 
Lag  ̂  s.e*10 Lag  ̂  s.e*10 Lag  ̂  s.e*10 Lag  ̂  s.e*10 

1 0.285 0.067 36 0.025 0.07 1 0.016 0.020 36 0.008 0.012 

2 0.200 0.073 37 0.031 0.07 2 0.020 0.018 37 0.007 0.013 

3 0.192 0.076 38 0.030 0.07 3 0.012 0.016 38 0.004 0.011 

4 0.156 0.081 39 0.022 0.08 4 0.010 0.020 39 0.004 0.013 

5 0.162 0.083 40 0.008 0.07 5 0.013 0.016 40 0.004 0.013 

6 0.161 0.089 41 0.016 0.08 6 0.014 0.013 41 0.007 0.010 

7 0.132 0.099 42 0.007 0.07 7 0.013 0.014 42 0.003 0.013 

8 0.133 0.104 43 0.009 0.07 8 0.013 0.013 43 0.008 0.011 

9 0.134 0.105 44 0.018 0.07 9 0.012 0.012 44 0.007 0.012 

10 0.118 0.108 45 0.017 0.07 10 0.006 0.014 45 0.005 0.015 

11 0.123 0.104 46 0.010 0.07 11 0.009 0.011 46 0.002 0.013 

12 0.122 0.106 47 0.018 0.07 12 0.008 0.013 47 0.007 0.014 

13 0.114 0.107 48 0.005 0.06 13 0.011 0.011 48 0.008 0.017 

14 0.100 0.097 49 0.022 0.07 14 0.010 0.012 49 0.006 0.015 

15 0.104 0.099 50 -0.003 0.07 15 0.010 0.012 50 0.003  

16 0.117 0.097 51 -0.011 0.07 16 0.010 0.011    

17 0.101 0.098 52 -0.019 0.07 17 0.011 0.012    

18 0.111 0.099 53 -0.024 0.07 18 0.014 0.017    

19 0.105 0.095 54 -0.012 0.07 19 0.011 0.015    

20 0.081 0.102 55 -0.019 0.07 20 0.007 0.020    

21 0.083 0.086 56 -0.032 0.07 21 0.013 0.019    

22 0.072 0.085 57 -0.050 0.07 22 0.011 0.026    

23 0.071 0.086 58 -0.030 0.07 23 0.012 0.014    

24 0.066 0.080 59 -0.023 0.07 24 0.013 0.018    

25 0.084 0.077 60 -0.025 0.06 25 0.012 0.014    

26 0.070 0.075 61 -0.028 0.07 26 0.011 0.012    

27 0.076 0.075 62 -0.020 0.07 27 0.007 0.013    

28 0.072 0.067 63 -0.026 0.07 28 0.007 0.013    

29 0.082 0.068 64 -0.023 0.06 29 0.011 0.014    

30 0.072 0.072 65 -0.018 0.06 30 0.009 0.019    

31 0.067 0.068 66 -0.035 0.06 31 0.011 0.009    

32 0.070 0.074 67 -0.030 0.06 32 0.008 0.013    

33 0.070 0.073 68 -0.009 0.06 33 0.008 0.011    

34 0.053 0.069 69 -0.019 0.06 34 0.009 0.012    

35 0.046 0.072 70 -0.019 0.04 35 0.009 0.014    

 ̂  2.45       ̂     0.63     

 ̂   42.80      ̂   2.35     
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