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Abstract:  

This paper incorporates conditional heteroscedasticity properties in the long memory model and applies the 

model on squared returns of BRICS (Brazil, Russia, India, China, and South Africa), UK and USA equity 

markets to capture the volatility of stock return. The conditional first- and second-order moments are provided. 

The CLS, FGLS and QML are discussed and 2SQML estimator is proposed. The simulation study suggests 

that the proposed 2SQML estimator performs better than the other three estimators. Both in simulation and 

empirical studies, we find that the proposed model FIMACH outperforms FIGARCH in terms of eliminating 

serial correlations.  
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1. Introduction 

The volatility of stock returns reflects the response to macroeconomic news and rumors. Engle and Patton 

(2001), and Poon and Granger (2003) stress that volatility surface has empirically been proved to have 

persistence for a long time against market shocks. The long-memory phenomenon in time series is first 

considered by Hurst (1951, 1956). In these studies, he explains the long-term storage requirements of the Nile 

River. He shows that the cumulated water flows in a year depend not only on the water flows in recent years, 

but also on water flows in years much earlier prior to the present year. Mandelbrot and Van Ness (1968) explain 

and advance Hurst’s studies by employing fractional Brownian motion. In analogy with Mandelbrot and Van 

Ness (1968), Granger (1980), Granger and Joyeux (1980) and Hosking (1981) develop Autoregressive 

Fractionally Integrated Moving Average (ARFIMA) models to account for the long memory in time series data. 

However, an empirical study regarding the usefulness of ARFIMA model is conducted by Bhardwaj and 

Swanson (2006), who find strong evidence in favor of ARFIMA in absolute, squared and log-squared stock 

index returns. In this regard, Ding and Granger (1996) point out that a number of other processes can also 

have the long-memory property. Further, a fractionally integrated generalized autoregressive conditional 

heteroskedasticity (FIGARCH) is primarily developed by Baillie, Bollerslev and Mikkelsen (1996), but later 

modified by Chung (1999). Nevertheless, Quoreshi (2014) develops an Integer-valued ARFIMA (INARFIMA) 

model to account for the long-memory property in a high frequency count data framework. 

 

This paper incorporates conditional heteroscedasticity properties in the long memory model and applies the 

model on squared returns of BRICS (Brazil, Russia, India, China, and South Africa), UK and USA. The new 

model is called Fractionally Integrated Moving Average Conditional Heteroskedasticity (FIMACH). This model 

is designed, in a similar fashion to Quoreshi (2014), for non-integer data. The main difference between the 

introduced model and model in ARFIMA class is that this model class can study the heteroskedasticity property 

on the level series, while the ARFIMA-FIGARCH class studies the same on the fractionally differenced series 

through Fourier transformation. One obvious advantage of the FIMACH model over the ARFIMA-
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FIGARCH class is that the model can easily be extended to multivariate settings for the level series. The model 

may additionally be used to measure the reaction times for macro-economic news or rumors, and captures 

information spread through the system. The model is specified in terms of first and second order moments 

conditioned on historical observations. We perform a Monte-Carlo simulation, where we find that ARFIMA 

or FIGARCH is not suitable for data that are generated according to the FIMACH model. Empirically, we find 

evidence of long memory for squared stock return of UK, USA and BRICS countries. It is also found that the 

FIMACH model outperforms both FIGARCH and ARFIMA models in terms of eliminating serial correlations. 

 

The paper is organized as follows. The ARFIMA-FIGARCH model class is discussed, and the FIMACH model 

is introduced in section 2. The estimation procedure of FIMACH is discussed in section 3. Section 4 presents 

a brief Monte Carlo experiment. The description of the empirical data is presented in section 5. The empirical 

results on the stock return volatilities are presented in section 6, and the concluding comments are included in 

section 7. 

 

2. Model 

We assume that 𝑟𝑟𝑡𝑡 = 𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡𝑡−1 is a stock index return time series, where 𝑝𝑝𝑡𝑡 is price for the index at time 𝑡𝑡. 

Let 𝜎𝜎𝑡𝑡2 be the degree of index return volatility, proxied by the squared return 𝑟𝑟𝑡𝑡2, which has a slow decaying 

autocorrelation function. The moving average representation of ARFIMA (0,d,0) of the series 𝑦𝑦𝑡𝑡 is  

 

𝜎𝜎𝑡𝑡2 = 𝑢𝑢𝑡𝑡 + 𝑑𝑑1𝑢𝑢𝑡𝑡−1 + 𝑑𝑑2𝑢𝑢𝑡𝑡−2 + 𝑑𝑑3𝑢𝑢𝑡𝑡−3 …         

or 

𝜎𝜎𝑡𝑡2 = (1 + 𝐿𝐿)−𝑑𝑑𝑢𝑢𝑡𝑡.                                          (1) 

 

where 𝑦𝑦𝑡𝑡 = 𝜎𝜎𝑡𝑡2 , t = 1, . . . , T time intervals and  𝜎𝜎𝑡𝑡2 has long memory properties. Note that 𝜎𝜎𝑡𝑡2 has long memory 

in a sense that the variable has a slow decaying autocorrelation function and the parameters 𝑑𝑑𝑖𝑖 = Γ(𝑖𝑖 +

𝑑𝑑)/[Γ(𝑖𝑖 + 1)Γ(𝑑𝑑)],  𝑖𝑖 = 0, 1,2, …  where 𝑑𝑑0 = 1. The 𝑢𝑢𝑡𝑡 is i.i.d. sequence of random variables with 
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unconditional mean 𝐸𝐸(𝑢𝑢) = 𝜆𝜆 and variance 𝑉𝑉(𝛼𝛼𝛼𝛼)=𝛼𝛼2∅2 where 𝑉𝑉(𝑢𝑢) = 𝐸𝐸(𝑢𝑢)2-𝜆𝜆2=∅2. Conditionally, it 

holds that 𝐸𝐸(𝑢𝑢|𝑢𝑢) = 𝑢𝑢 and 𝑉𝑉(𝛼𝛼𝛼𝛼|𝑢𝑢)=𝛼𝛼2𝑉𝑉(𝑢𝑢|𝑢𝑢) where 𝑉𝑉(𝑢𝑢|𝑢𝑢) = 𝑢𝑢2 − 2𝜆𝜆𝜆𝜆 + 𝜆𝜆2. The conditional mean 

and variance for the moving average representation of ARFIMA (0,d,0) are  

 

𝐸𝐸(𝜎𝜎𝑡𝑡2 |𝑌𝑌𝑡𝑡−1) = 𝐸𝐸𝑡𝑡−1 = 𝜆𝜆 + �𝑑𝑑𝑖𝑖

∞

𝑖𝑖=1

𝑢𝑢𝑡𝑡−𝑖𝑖                                                         (2𝑎𝑎) 

𝑉𝑉(𝜎𝜎𝑡𝑡2 |𝑌𝑌𝑡𝑡−1) = 𝑉𝑉𝑡𝑡−1 = ∅2 + �𝑑𝑑𝑖𝑖2�𝑢𝑢𝑡𝑡−𝑖𝑖2 − 2𝜆𝜆𝑢𝑢𝑡𝑡−𝑖𝑖 + 𝜆𝜆2�
∞

𝑖𝑖=1

.                    (2𝑏𝑏) 

 

where,𝑌𝑌𝑡𝑡−1 is the information set available at time t-1. The conditional mean and variance vary with 𝑢𝑢𝑡𝑡−𝑖𝑖 . Since 

the conditional variance varies with 𝑢𝑢𝑡𝑡−𝑖𝑖, there is a conditional heteroskedasticity property of moving average 

type that Brännäs and Hall (2001) called MACH(q). As 𝜆𝜆 and ∅2 are not functions of time and |∑ 𝑑𝑑𝑖𝑖∞
𝑖𝑖=1 | ≤

�∑ 𝑑𝑑𝑖𝑖2∞
𝑖𝑖=1 � for 𝑑𝑑 ∈ [−1, 1], it is sufficient that ∑ 𝑑𝑑𝑖𝑖∞

𝑖𝑖=1 < ∞ for {𝜎𝜎𝑡𝑡2 } to be a stationary sequence. We call the 

model Fractionally Integrated Moving Average Conditional Heteroskedasticity FIMACH (d) where d represents 

the long memory parameter. The main difference between this model and the model in the ARFIMA class is 

that this model can study the heteroskedasticity property on the level series, while, e.g., FIGARCH of ARFIMA 

class studies the same on the fractionally differenced series through Fourier transformation. The autocorrelation 

functions of the ARFIMA model class are assumed to be a hyperbolic function, while the general mathematical 

expression of the autocorrelation function for FIMACH is considerably complicated to derive, although 

possible. Assuming 𝐸𝐸(𝑢𝑢𝑡𝑡𝑢𝑢𝑡𝑡|𝑌𝑌𝑡𝑡−1) = 𝑢𝑢𝑡𝑡2 and 𝐸𝐸(𝑢𝑢𝑡𝑡𝑢𝑢𝑡𝑡−𝑖𝑖|𝑌𝑌𝑡𝑡−1) = 0 where 𝑖𝑖 = 1, 2, … ,∞, we can provide a 

simple form of conditional auto-correlation function at lag k for FIMACH as 

 

𝜌𝜌𝑘𝑘|𝑡𝑡−1 =
∑ 𝑑𝑑𝑖𝑖𝑑𝑑𝑘𝑘+𝑖𝑖𝑢𝑢𝑡𝑡−𝑖𝑖−𝑘𝑘2∞
𝑖𝑖=0

𝑉𝑉(𝜎𝜎𝑡𝑡2 |𝑌𝑌𝑡𝑡−1)
                                                                      (2𝑐𝑐) 
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where 𝑘𝑘 = −𝑗𝑗, 𝑗𝑗 and represent lag, and 𝑑𝑑0 = 1. Note that this autocorrelation function varies with 𝑢𝑢𝑡𝑡−𝑖𝑖 which 

captures the heteroscedasticity property in autocorrelation function. The heteroscedasticity in autocorrelation 

function for absolute return of stock is illustrated by Ding et al. (1993), although the authors assume a smooth 

function for explaining the autocorrelation. The model can be extended with random parameters as 

 

𝜎𝜎𝑡𝑡2 = 𝑢𝑢𝑡𝑡 + 𝑑𝑑1𝑢𝑢𝑡𝑡−1 + 𝑑𝑑2𝑢𝑢𝑡𝑡−2 + 𝑑𝑑3𝑢𝑢𝑡𝑡−3 … + �𝜃𝜃𝑖𝑖

𝑝𝑝

𝑖𝑖=1

𝑢𝑢𝑡𝑡−𝑖𝑖                                                                              (3) 

 

where 𝑑𝑑𝑖𝑖 capture the long memory properties and have the same definitions as in equation 1. The 𝜃𝜃𝑖𝑖 , 𝑖𝑖 =

1,2, …, comprise the random parameters and are independent of each other. These parameters capture the 

short term deviation from the long memory trend. We name this model FIMACH(d, p) model. The conditional 

mean and variance of the random coefficients of FIMACH(d, p) representation can be written as 

 

𝐸𝐸(𝜎𝜎𝑡𝑡2 |𝑌𝑌𝑡𝑡−1) = 𝐸𝐸𝑡𝑡−1 = 𝜆𝜆 + �𝑑𝑑𝑖𝑖

∞

𝑖𝑖=1

𝑢𝑢𝑡𝑡−𝑖𝑖    + �𝜃𝜃𝑖𝑖

𝑝𝑝

𝑖𝑖=1

𝑢𝑢𝑡𝑡−𝑖𝑖                                                                                      (4𝑎𝑎) 

𝑉𝑉(𝜎𝜎𝑡𝑡2 |𝑌𝑌𝑡𝑡−1) = 𝑉𝑉𝑡𝑡−1 = ∅2 +�𝑑𝑑𝑖𝑖2�𝑢𝑢𝑡𝑡−𝑖𝑖2 − 2𝜆𝜆𝑢𝑢𝑡𝑡−𝑖𝑖 + 𝜆𝜆2�
∞

𝑖𝑖=1

+ �𝜃𝜃𝑖𝑖

𝑝𝑝

𝑖𝑖=1

�𝑢𝑢𝑡𝑡−𝑖𝑖2 − 2𝜆𝜆𝑢𝑢𝑡𝑡−𝑖𝑖 + 𝜆𝜆2�.                    (4𝑏𝑏) 

 

Note that the moments are conditioned only on the previous observations, 𝑌𝑌𝑡𝑡−1. The same stationary condition 

is applicable as for equation (2). The model can be used to measure mean and median reaction time to 

macroeconomic news and rumors3. The model can easily be extended to a multivariate setting. Hence, the 

covariance and Granger-Causality between two or several series can easily be studied in the same fashion as the 

VARMA model. These possibilities are limited in the FIGARCH of ARFIMA class, at least on the level series. 

 

                                                           
3This is the reaction to macroeconomic news/rumours in the (ujt) sequence, we use the mean lag ∑ 𝑖𝑖𝑞𝑞𝑗𝑗

𝑖𝑖=0 𝛼𝛼𝑗𝑗𝑗𝑗/𝑤𝑤,  where𝑤𝑤 = � 𝛼𝛼𝑗𝑗𝑗𝑗
𝑞𝑞𝑗𝑗
𝑖𝑖=0  and 𝛼𝛼𝑗𝑗0 = 1 (see 

Quoreshi, 2012). 
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3. Estimation 

If we do not assume a full density function, we may estimate the Quasi Maximum Likelihood (QML) Estimator 

as discussed by Weiss (1986) and Bollerslev and Wooldridge (1992) instead of Maximum Likelihood (ML) 

Estimator. Conditional Least Square (CLS), Feasible Generalized Least Square (FGLS), Generalized Methods 

of Moments (GMM) and possibly others, e.g. Two Stage Least Square (2SLS), are candidates for estimation. In 

the previous studies, it turns out that FGLS is the best estimator among the three in terms of eliminating serial 

correlation (Quoreshi, 2014). The CLS comes in the second position, which is almost as good as FGLS. Here, 

we only consider CLS, FGLS and ML class for estimation.  

The Conditional least square (CLS) estimator for FIMACH(d, p) representation model have the following 

residual 

 

𝑒𝑒𝑡𝑡 = 𝑦𝑦𝑡𝑡 − 𝐸𝐸𝑡𝑡−1 = 𝜎𝜎𝑡𝑡2 − 𝜆𝜆 −�𝑑𝑑𝑖𝑖

∞

𝑖𝑖=1

𝑢𝑢𝑡𝑡−𝑖𝑖   −�𝜃𝜃𝑖𝑖

𝑝𝑝

𝑖𝑖=1

𝑢𝑢𝑡𝑡−𝑖𝑖                                                                  (5) 

 

and the criterion function 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶 = ∑ 𝑒𝑒𝑡𝑡2𝑇𝑇
𝑖𝑖=𝑚𝑚+1 is minimized with respect to unknown parameters, i.e. 𝜓𝜓 =

(𝜆𝜆,𝜃𝜃′and 𝑑𝑑′) where 𝜃𝜃′ and 𝑑𝑑′ are vector of parameters with elements 𝜃𝜃𝑖𝑖 respective 𝑑𝑑𝑖𝑖 . Using a finite maximum 

lag m in (5) instead of infinite lags may cause biasing effects. Due to omitted variables, i.e. 𝑢𝑢𝑡𝑡−𝑚𝑚−1, … ,𝑢𝑢𝑡𝑡−∞, 

we may expect a positive bias on the parameters 𝜆𝜆,𝜃𝜃𝑖𝑖and𝑑𝑑𝑖𝑖 (Brännäs and Quoreshi, 2010). These moment 

conditions correspond to the normal equations of the CLS estimator that focuses on the unknown parameters 

of the conditional mean function. Alternatively and equivalently, the properties E(𝑒𝑒𝑡𝑡) = 0 and E(𝑒𝑒𝑡𝑡𝑒𝑒𝑡𝑡−𝑗𝑗 ) = 0, 

j ≥ 1 could be used. Note that the moment conditions for FIMACH(d, 0) can be obtained by setting 𝜃𝜃𝑖𝑖 = 0. 

The FGLS estimator minimizes 

 

𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = � 𝑒𝑒𝑡𝑡

𝑇𝑇

𝑡𝑡=𝑚𝑚+1

𝑉𝑉�−1                                                                                                                          (6) 
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with 𝑉𝑉�−1 as given. The variance of error from CLS estimates may be used for approximation of  𝑉𝑉�−1 in 

equation (6). Alternatively, 𝑉𝑉�−1 can be estimated as specified in (4b) by employing estimates from CLS. The 

covariance matrix estimators for CLS and FGLS are 

𝐶𝐶𝐶𝐶𝐶𝐶�𝜓𝜓�𝐶𝐶𝐶𝐶𝐶𝐶� = � �
𝜕𝜕𝜕𝜕𝑡𝑡
𝜕𝜕𝜕𝜕

𝑇𝑇

𝑡𝑡=𝑚𝑚+1

𝜕𝜕𝜕𝜕𝑡𝑡
𝜕𝜕𝜕𝜕′�

−1

 

 

𝐶𝐶𝐶𝐶𝐶𝐶�𝜓𝜓�𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹� = � � 𝑉𝑉�−1
𝜕𝜕𝜕𝜕𝑡𝑡
𝜕𝜕𝜕𝜕

𝑇𝑇

𝑡𝑡=𝑚𝑚+1

𝜕𝜕𝜕𝜕𝑡𝑡
𝜕𝜕𝜕𝜕′�

−1

. 

 

The ML or QML estimator for FIMACH(d, p) representation model have the same residual as in equation (5), 

and maximize the following criterion function 

 

𝑓𝑓(𝜎𝜎12 ,𝜎𝜎22 … ,𝜎𝜎𝑇𝑇2 |𝑌𝑌𝑡𝑡−1,𝜆𝜆, 𝜃𝜃𝑖𝑖and 𝑑𝑑𝑖𝑖) = �𝑓𝑓(𝜎𝜎𝑡𝑡2 |𝑌𝑌𝑡𝑡−1,𝜓𝜓𝑖𝑖)
𝑇𝑇

𝑡𝑡=1

 = �
1

2𝜋𝜋𝑉𝑉𝑡𝑡−1
�
𝑇𝑇/2

𝑒𝑒𝑒𝑒𝑒𝑒 �−
∑ 𝑒𝑒𝑡𝑡2𝑇𝑇
𝑖𝑖=𝑚𝑚+1
2𝑉𝑉𝑡𝑡−1

� (6) 

 

Where 𝜓𝜓𝑖𝑖 = (𝜆𝜆,𝜃𝜃𝑖𝑖 and 𝑑𝑑𝑖𝑖) and 𝑉𝑉𝑡𝑡−1 is as in equation(4𝑏𝑏). Taking logarithm of equation (6), we may simply 

use the criterion function and minimize the function as  

 

𝐿𝐿𝐿𝐿𝐿𝐿�𝜎𝜎12 ,𝜎𝜎22 … ,𝜎𝜎𝑇𝑇2 |𝑌𝑌𝑡𝑡−1,𝜆𝜆, 𝜃𝜃𝑖𝑖,𝑑𝑑𝑖𝑖and𝑉𝑉�𝑡𝑡−1� = −
𝑇𝑇
2

ln�𝑉𝑉�𝑡𝑡−1� − ln(2𝜋𝜋) − �
∑ 𝑒𝑒𝑡𝑡2𝑇𝑇
𝑡𝑡=𝑚𝑚+1

2𝑉𝑉�𝑡𝑡−1
�   (7) 

 

where 𝑉𝑉�𝑡𝑡−1is an estimate for 𝑉𝑉𝑡𝑡−1  that is to be estimated. Since T, 2 and 𝜋𝜋  are constants, we can equivalently 

minimize the following criterion function   

 

𝐿𝐿𝐿𝐿𝐿𝐿�𝜎𝜎12 ,𝜎𝜎22 … ,𝜎𝜎𝑇𝑇2 |𝑌𝑌𝑡𝑡−1,𝜆𝜆,𝜃𝜃𝑖𝑖,𝑑𝑑𝑖𝑖and𝑉𝑉�𝑡𝑡−1� = − ln(𝑉𝑉�𝑡𝑡−1)− �
∑ 𝑒𝑒𝑡𝑡2𝑇𝑇
𝑡𝑡=𝑚𝑚+1

𝑉𝑉�𝑡𝑡−1
� .                             (8) 
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Note that the 𝑉𝑉�𝑡𝑡−1 is to be estimated at the same time as the other parameters. If the estimation is sensitive to 

the start value of 𝑉𝑉�𝑡𝑡−1, we can obviously estimate CLS at the first stage and calculate the 𝑉𝑉�𝑡𝑡−1 which can be 

used as the start value for QML. We call this estimation procedure Two Stage Quasi Maximum Likelihood 

(2SQML) Estimation. The covariance matrix estimators for QML and 2SQML are 

 

𝐶𝐶𝐶𝐶𝐶𝐶�𝜓𝜓�𝑄𝑄𝑄𝑄𝑄𝑄� = � � 𝑉𝑉�−1
𝜕𝜕𝜕𝜕𝑡𝑡
𝜕𝜕𝜕𝜕

𝑇𝑇

𝑡𝑡=𝑚𝑚+1

𝜕𝜕𝜕𝜕𝑡𝑡
𝜕𝜕𝜕𝜕′�

−1

 

𝐶𝐶𝐶𝐶𝐶𝐶�𝜓𝜓�2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆� = � � 𝑉𝑉�−1
𝜕𝜕𝜕𝜕𝑡𝑡
𝜕𝜕𝜕𝜕

𝑇𝑇

𝑡𝑡=𝑚𝑚+1

𝜕𝜕𝜕𝜕𝑡𝑡
𝜕𝜕𝜕𝜕′�

−1

. 

 

4.  Monte Carlo experiment 

Smith et al. (1996) and Quoreshi (2014) have studied the bias and misspecification in ARFIMA respective 

INARFIMA models. Drost et al. (2009) investigated finite sample behavior of semiparametric integer-valued 

AR(p) models, while Brännäs and Quoreshi (2010) studied finite lag misspecification when the data is generated 

according to an infinite-lag INMA model. In this brief Monte Carlo experiment we study the bias, MSE, Ljung–

Box statistics, AIC and SBIC properties of the ML estimators for finite-lag specifications, when data is 

generated according to FIMACH (d,0). The data generating process is as in (1), with 𝑑𝑑 = 0.1, 0.25 and 0.4 and 

lag length 𝑚𝑚 = 70. The 𝑢𝑢𝑡𝑡 sequence is generated from i.i.d. normal distribution, with mean 25 and standard 

deviation 10. Six time series with length 𝑇𝑇 = 4500 and 𝑇𝑇 = 900 are generated. The first 500 observations are 

discarded to avoid the start-up effect. The results for the Monte Carlo experiment are given in Table 1. We also 

generate four other series in a similar fashion, with mean 25 and standard deviation 4 and 100 to study the 

performance of CLS, FGLS, 2SQML and QML estimators. We also evaluate the FIMACH(d, 0), ARFIMA (0, 

d, 0), FIGARCH (1,1) and GARCH (1,1) models in terms of eliminating serial correlations when the data are 

generated in accordance with FIMACH(d, 0). These results are presented in Table 2.  
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We set 𝜆̂𝜆 equal to mean values for the generated series instead of 𝜆𝜆 = 25. By doing so, we eliminate biased 

effect of 𝜆𝜆 in the generated series. Hence, we can study the bias of the estimated parameter 𝑑𝑑 due to 

misspecification of lag length 𝑚𝑚 more appropriately. The Monte Carlo study shows that as 𝑚𝑚 increases towards 

𝑚𝑚 =  70, the bias in 𝑑𝑑 decreases (see Table 1). For 𝑚𝑚 less than 70 we find positive bias in 𝑑𝑑, while the bias is 

negative for 𝑚𝑚 = 90. Biases are smaller for 𝑇𝑇 = 4500 when m is less than 70 than those for 𝑇𝑇 = 9000. MSE 

decreases as sample size increases or 𝑚𝑚 increases. Like Brännäs and Quoreshi (2010) and Quoreshi (2014), we 

conclude that we may expect a positive biasing effect on the parameters due to omitting variables, i.e. 

𝑢𝑢𝑡𝑡−𝑚𝑚−1, … ,𝑢𝑢𝑡𝑡−∞. The statistics for AIC and SBIC decrease as lag length increases, and are noted lowest at 

𝑚𝑚 = 90. Hence, the standard AIC and SBIC need to be corrected in order to choose optimal lag lengths. As 

expected, the  𝐿𝐿𝐿𝐿 statistics are, with some exceptions, lowest at 𝑚𝑚 = 70. The exceptions may arise due to the 

conditional heteroskedasticity nature of the data set. Hence, it is appropriate to evaluate at more than one time 

point or to use an average value of 𝐿𝐿𝐿𝐿 statistics for a number of time points. 

 

Insert Table 1 about here 

 

When the data is generated according to FIMACH (𝑑𝑑, 0), it is not appropriate to use ARFIMA, FIGARCH or 

GARCH model (see Table 2). The ARFIMA model reduces the serial correlation successfully, but it does not 

perform as well as FIMACH. This shows that there is need of using FIMACH instead of ARFIMA when we 

need to take account of the heteroskedasticity property in the long memory. FIGARCH and GARCH take 

account of heteroskedasticity in the short memory. Hence, these models did not perform well. FGLS and CLS 

perform consistently well, and somewhat better than QML. It turns out that QML is sensitive to start values. 

Estimating CLS at the first stage and using the CLS estimates as start value for QML estimator, we estimate 

2SQML which performs best out of these estimators.  

 

Insert Table 2 about here 
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We have also conducted similar Monte-Carlo studies with innovation U^2. The results are quite similar. Average 

discrepancy (d̂-d) with number of simulation equals 100 for FIMACH time series, with innovation U^2 

respective U; when the data are generated with lag length 70 and d=0.1 respective d=0.25 are presented in 

Figure 1 below. 

 

Figure 1: Average discrepancy ( 𝒅𝒅� − 𝒅𝒅 ) with number of simulation equals 100 for FIMACH time-
series with innovation U^2 respective U when the data are generated with lag length 70 and 𝒅𝒅 =
𝟎𝟎.𝟏𝟏 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 𝒅𝒅 = 𝟎𝟎.𝟐𝟐𝟐𝟐. 

 

 

 

 

 

 

 

 

 

 

 

 
5. Empirical Data  

The daily squared stock MSCI index return series over the period of 17 years from 1995 to 2011 for the UK, 

USA and BRICS are applied in this paper (see Figure 2 below). Each series comprises 4435 observations. The 

descriptive statistics of the data set are given in Table 3. The mean squared stock index return for Brazil is about 

1800, which is the largest among the BRICS counties. The corresponding number for China is about 1, which 

is the smallest among the BRICS countries. The corresponding mean for USA and UK are 172 and 195 
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respectively. The skewness, kurtosis and Jarque-Bera statistics indicate that the data are not from normal 

distribution. The autocorrelation functions are presented in Figure 3 below. The autocorrelation functions for 

all of the series decay very slowly, which indicates a long memory behavior in the squared return series. 

 

Insert Table 3 about here 

 
Figure 2: The daily squared stock index return series over the period of 17 years from 1995 to 2011 for 
the BRICS countries, USA and UK. 
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Figure 3: Autocorrelation Function for BRICS countries, USA and UK. 

  

 
 

 
 

0
2000
4000
6000
8000

10000
12000
14000

02
-0

1-
95

20
-0

2-
96

09
-0

4-
97

28
-0

5-
98

16
-0

7-
99

04
-0

9-
00

23
-1

0-
01

11
-1

2-
02

29
-0

1-
04

18
-0

3-
05

08
-0

5-
06

26
-0

6-
07

13
-0

8-
08

01
-1

0-
09

19
-1

1-
10

2g: Squared Returns for UK

0
0,1
0,2
0,3
0,4

1 15 29 43 57 71 85 99 11
3

12
7

14
1

Au
to

co
rr

el
at

io
n

Number of lags

ACFof squared return for Brazil

0
0,1
0,2
0,3
0,4

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

Au
to

co
rr

el
at

io
n

Number of lags

ACF of squared return for Brazil

0

0,1

0,2

0,3

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

Au
to

co
rr

el
at

io
n

Number of lags

ACF of squared return for India

0

0,2

0,4

0,6

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

Au
to

co
rr

el
at

io
n

Number of lags

ACF of squared return for China

0

0,1

0,2

0,3

0,4

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

Au
to

co
rr

el
at

io
n

Number of lags

ACF squared return for South Africa

,000
,100
,200
,300
,400

12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4Au

to
co

rr
el

at
io

n

Number of lags

ACF of squared return for USA



13 
 

 

 

 
6. Empirical Results 

The empirical results of the squared stock index returns for USA, UK and BRICS countries are presented in 

Table 4a-g. CLS, FGLS and QML estimators have been employed to evaluate the performance of the 

estimators. FIMACH (d,0), FIGARCH (0,d,0), FIGARCH (1,d,1) and GARCH (1,1) are estimated to find out 

the most suitable model for the volatility return. It turns out that CLS, FGLS and QML estimators have 

performed equally well for the time series of USA, Brazil, Russia and China in terms of reducing serial 

correlation. However, the QML estimator outperforms CLS and FGLS for the time series of India and South 

Africa, while CLS and FGLS perform better than QML estimator for the time series of UK. Hence, we conclude 

that QML is somewhat better estimator among these. It is to be noted that the performance the QML estimator 

is highly sensitive to the start values, and may turn out worse than that of FGLS or CLS if the start values are 

not selected carefully. We suggest that the value for the autocorrelation at lag one may be chosen as the start 

values for the fractional integration parameter. The variance of residuals from the CLS estimator may be used 

as the start value for 𝑉𝑉�𝑡𝑡−1 of the QML estimator which we call 2SQML. We also recommend to use both QML 

and CLS estimators in order to determine the best estimates in terms of reducing serial correlation.  

 

We find that the GARCH is not an appropriate model for the time series, as the estimated parameters deviate 

substantially from the expected values. The FIMACH (0,d) turns out to be the best in terms of eliminating serial 

correlations. This model performs much better than that of FIGARCH (0,d,0) and FIGARCH (1,d,1) for all 
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the five time series. For Brazil, the Ljung-Box (LB) statistics for residuals for FIMACH is about 1430, while 

the corresponding number for FIGARCH is about 16,882 (see Table 4a). The corresponding statistics for USA 

are 698 for FIMACH and 7147 for FIGARCH (see Table 4f). The Ljung-Box statistics for standardized 

residuals for FIGARCH are smaller than that of residuals, but these are much larger than the corresponding 

statistics for FIMACH. Note that the Ljung-Box statistics for standardized residuals, and residuals are the same 

for all FIMACH estimations. This may imply that the FIMACH model captures heteroskedasticity properly. 

Employing the proposed FIMACH (𝑑𝑑, 0) model, we find that the squared stock return index for each of the 

USA, UK and BRICS countries have long memory properties. The persistence in terms of days varies among 

the countries. The effects of macroeconomics news and rumors on stock market volatility for India persist up 

to 35 days, while the corresponding number of days for South Africa is 70. The stock market in China reacts 

initially more than any other BRICS countries, since the fractional integration parameter (d) for China is 0.283, 

which is the largest among the BRICS countries. The stock market in Russia reacts initially least (𝑑𝑑 =  0.167) 

among those countries. The volatility intensity increases for all the seven stock markets when the macro-

economic news or rumors break out, and the impact remains between 35 and 70 days, and fades away very 

slowly with time. 

Insert Tables 4a-g about here 

7. Conclusion 

This paper introduces a new class of long memory model for volatility of stock returns. The model introduced 

is capable of taking account of heteroskedasticity in long memory. The conditional first- and second-order 

moments are provided. The CLS, FGLS and QML are discussed and 2SQML estimator is proposed. In Monte 

Carlo experiments we find that it is not appropriate to use ARFIMA, FIGARCH or GARCH model if the data 

is generated according to FIMACH (𝑑𝑑, 0). The ARFIMA model reduces the serial correlation successfully, but 

it does not perform as well as FIMACH. From the empirical results, we establish that the squared returns of 

stock index for the BRICS countries, UK and USA have long memory properties. However, the effects of 

macroeconomics news and rumors on stock return volatility vary among the countries. We also find that the 

volatility intensity increases for all the seven stock markets when the macro-economic news or rumors break 
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out, and that the impact remains between 35 and 70 days and fades away very slowly with time. CLS and FGLS 

estimators perform equally well in terms of residual properties, while the QML estimator performs in somewhat 

better among the three estimators. The results of the simulation study indicate that 2SQML performs best 

among the five estimators and hence 2SQML is suggested to be used when QML does not perform well. Both 

in simulation and empirical studies, we find that the proposed model FIMACH outperforms FIGARCH in 

terms of eliminating serial correlations.  
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Table 1: Bias, MSE, Ljung–Box statistics, AIC and SBIC properties of the ML estimators for finite-lag 
specifications, when data is generated according to FIMACH (0,d,0) Model with 𝒅𝒅 =  𝟎𝟎.𝟏𝟏,𝟎𝟎.𝟐𝟐𝟐𝟐 and 𝟎𝟎.𝟒𝟒 and 
𝒎𝒎 =  𝟕𝟕𝟕𝟕 and 𝝈𝝈𝟐𝟐=100. 

Lag Parameters 

T=4500 T=9000 

0.10 0.25 0.40 0.10 0.25 0.40 

M10 

δ 
(s.e.) 

0.168*** 
(0.00) 

0.432*** 
(0.00) 

0.698*** 
(0.00) 

0.167*** 
(0.00) 

0.431*** 
(0.00) 

0.696*** 
(0.00) 

MSE 99.115 104.898 130.848 97.579 103.611 129.173 

LB100 130.669 297.170 1047.228 166.566 525.401 2045.455 

LB200 236.154 417.668 1214.240 285.267 651.793 2200.088 

AIC 20659.704 20907.183 21811.986 41201.319 41723.602 43516.296 

SBIC 20730.210 20977.689 21882.492 41279.461 41801.744 43594.438 

M30 

δ 
(s.e.) 

0.122*** 
(0.00) 

0.308*** 
(0.00) 

0.496*** 
(0.00) 

0.122*** 
(0.00) 

0.307*** 
(0.00) 

0.495*** 
(0.00) 

MSE 98.180 99.305 103.427 96.901 97.936 101.736 

LB100 101.855 116.564 167.503 108.976 151.998 284.131 

LB200 202.485 219.121 268.172 225.197 268.950 405.750 

AIC 20566.007 20616.690 20797.669 41048.905 41143.489 41482.381 

SBIC 20596.463 20815.250 20996.228 41127.023 41221.607 41560.499 

M50 

δ 
(s.e.) 

0.108*** 
(0.00) 

0.271*** 
(0.00) 

0.434*** 
(0.00) 

0.108*** 
(0.00) 

0.270*** 
(0.00) 

0.433*** 
(0.00) 

MSE 98.177 100.234 104.320 97.025 97.903 100.766 
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LB100 101.107 111.853 150.678 105.672 116.088 180.584 

LB200 200.968 217.921 264.321 224.083 234.140 299.255 

AIC 20514.152 20606.353 20784.158 41049.001 41129.531 41387.421 

SBIC 20840.585 20932.787 21110.592 41411.071 41491.601 41749.491 

M70 

δ 
(s.e.) 

0.101*** 
(0.00) 

0.251*** 
(0.00) 

0.402*** 
(0.00) 

0.100*** 
(0.00) 

0.250*** 
(0.00) 

0.401*** 
(0.001) 

MSE 98.027 99.939 105.527 96.821 97.604 100.086 

LB100 103.897 115.392 160.502 103.300 108.986 134.357 

LB200 200.740 212.267 264.265 222.201 226.818 249.751 

AIC 20455.626 20541.172 20782.114 40989.067 41060.157 41281.722 

SBIC 20909.753 20995.299 21236.241 41492.967 41564.057 41785.621 

M90 

δ 
(s.e.) 

0.096*** 
(0.00) 

0.238*** 
(0.00) 

0.380*** 
(0.00) 

0.095*** 
(0.00) 

0.237*** 
(0.00) 

0.379*** 
(0.00) 

MSE 98.110 100.157 106.060 96.917 97.794 100.522 

LB100 110.666 162.701 332.128 108.179 143.667 292.239 

LB200 210.420 267.350 445.421 228.784 266.039 422.550 

AIC 20407.668 20498.686 20750.943 40936.006 41016.225 41261.143 

SBIC 20989.306 21080.324 21332.581 41581.644 41661.864 41906.782 
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Table 2: Comparing between FIMACH, FIGARCH and GARCH and between QMLE, 2SQMLE, FGLS and 
CLS estimators, when data is generated according to FIMACH (𝟎𝟎,𝒅𝒅,𝟎𝟎) models with 𝒅𝒅 =  𝟎𝟎.𝟐𝟐𝟐𝟐 and 𝒎𝒎 =  𝟕𝟕𝟕𝟕. 

    T=4500   T=9000 

Lag 
Ljung-
Box FIMACH ARFIMA FIGARCH GARCH  FIMACH ARFIMA FIGARCH GARCH 

σ=4 LB100 90.521 138.064 2704.712 2730.476  90.521 138.064 1455.198 1578.196 
 LB200 198.883 247.337 2781.968 2805.809  198.883 247.337 1564.312 1687.964 

σ=10 LB100 90.521 138.064 2704.712 2730.476  90.521 138.064 1455.198 1578.196 
 LB200 198.883 247.337 2781.968 2805.809  198.883 247.337 1564.312 1687.964 

σ=100 LB100 90.521 138.064 1455.198 1578.196  90.521 138.064 1455.198 1578.196 
  LB200 198.883 247.337 1564.312 1687.964   198.883 247.337 1564.312 1687.964 

           
  QMLE 2SQMLE FGLS CLS  QMLE 2SQMLE FGLS CLS 
           

σ=4 LB100 679.924 90.521 100.409 100.409  291.590 90.521 291.586 291.592 
 LB200 843.340 198.883 200.232 200.232  406.221 198.883 406.217 406.224 

σ=10 LB100 109.710 90.521 100.229 100.229  108.557 90.521 108.557 108.557 
 LB200 206.859 198.883 199.617 199.617  226.373 198.883 226.373 226.373 

σ=100 LB100 99.964 90.521 100.139 100.139  102.549 90.521 102.549 102.549 
  LB200 198.430 198.883 199.260 199.260   221.728 198.883 221.728 221.728 

           
  σ=4 σ=10 σ=100    σ=4 σ=10 σ=100   

Generated 
series 

LB100 1885.1 1885.1 1885.1   1885.1 1885.1 1885.1  
LB200 1991.9 1991.9 1991.9     1991.9 1991.9 1991.9   

 

 

 

 

 



3 
 

Table 3: Descriptive Statistics 

 

 

 

 

 

 

 

 

 

 

 

 

This table reports descriptive statistics of squared returns for BRICS (Brazil, Russia, India, China, and South Africa) countries, UK and US for 
the period 1995-2011. 

 Country  Mean  Median  Std. Dev.  Minimum  Maximum  Skewness  Kurtosis  Jarque-Bera 
 
Observations 

Brazil 1799.718 158.722 6476.492 0.000 130113.100 9.301 125.839 2851677.000*** 4435 

Russia 216.787 23.981 949.744 0.000 35765.620 19.805 594.868 65009317.000*** 4435 

India 26.928 2.151 119.300 0.000 4115.351 18.851 542.786 54093083.000*** 4435 

China 1.032 0.123 4.089 0.000 121.396 14.887 341.988 21393884.000*** 4435 

South Africa 33.414 4.351 95.426 0.000 1725.239 7.215 78.675 1096490.000*** 4435 

UK 195.152 46.909 548.819 0.000 11764.870 10.107 152.599 4210143.000*** 4435 

US 171.966 34.018 472.666 0.000 10158.220 9.380 141.160 3591553.000*** 4435 
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Table 4a: Empirical results for squared stock return index for Brazil. 

Coefficients FIMACH (d,0) FIGARCH (0,d,0) FIGARCH (1,d,1) GARCH (1,1) 

QMLE 
Estimates (s.e.) 

FGLS 
Estimates (s.e.) 

CLS 
Estimates (s.e.) 

QML 
Estimates (s.e.) 

QML 
Estimates (s.e.) 

QML 
Estimates (s.e.) 

Constant (Mean) 737.541*** 
(72.54) 

737.541***  
(73.65) 

737.541***  
(72.83) 

129.996*** 
(8.71) 

126.228***       
(6.28) 

101.091***   
(8.41) 

Constant (Variance)     -46632.882***    
(1915.54) 

634.873 
(487.658) 

d 0.208*** 
(0.029) 

0.208***    
(0.029) 

0.208***    
(0.028) 

0.661*** 
(0.004) 

0.751***       
(0.003) 

 

α      1.081***    
(0.03) 

β     0.513***       
(0.00) 

0.879***    
(0.02) 

VAR 34453328*** 
(5577746) 

34468875.171 34468875.171 46284279 
 

41936202 41927397 

Q(100) 1430.501*** 1430.501*** 1430.501*** 16882.451*** 16882.451*** 16881.811*** 
Q(200) 2345.913*** 2345.913*** 2345.913*** 25714.538*** 25714.538*** 25713.570*** 
LBSD (100) 1430.501*** 1430.501*** 1430.501*** 5142.817*** 4164.267*** 1712.273*** 
LBSD (200) 2345.913*** 2345.913*** 2345.913*** 8786.100*** 6739.816*** 2668.345*** 
Lag length 45 45 45    
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Table 4b: Empirical results for squared stock return index for Russia. 
Coefficients FIMACH(d,0) FIGARCH (0,d,0) FIGARCH(1,d,1) GARCH (1,1) 

QMLE 
Estimates (s.e.) 

FGLS 
Estimates (s.e.) 

CLS 
Estimates (s.e.) 

QML 
Estimates (s.e.) 

QML 
Estimates (s.e.) 

QML 
Estimates (s.e.) 

Constant (Mean) 107.259***     
(12.47) 

107.259***   
(14.48) 

107.258***   
(14.22) 

24.075*** 
(1.86) 

10.409***    
(0.276) 

2.901 
(1.84) 

Constant (Variance)     -1860.043***    
(61.58) 

 5.340 
(7.66) 

d 0.167*** 
(0.04) 

0.167***    
(0.04) 

0.167***  
(0.04) 

0.615*** 
(0.00) 

0.728***      
(0.00) 

 

α      1.302*** 
(0.10) 

β     0.537***      
(0.00) 

0.808***  
(0.03) 

VAR 823353*** 
(309982.45) 

823727 823727  901821 901627 

LB (100) 997.362*** 997.362*** 997.362*** 4487.831*** 4487.831*** 4488.051*** 
LB (200) 1374.943*** 1374.943*** 1374.943*** 5959.304*** 5959.304*** 5959.476*** 
LBSD (100) 997.362*** 997.362*** 997.362*** 3363.808*** 1348.205*** 112.467*** 
LBSD (200) 1374.943*** 1374.943*** 1374.943*** 5564.297*** 2043.733*** 232.909*** 
Lag length 41 41 41    
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Table 4c: Empirical results for squared stock return index for India 
 FIMACH FIGARCH (0,d,0) FIGARCH (1,d,1) GARCH (1,1) 
 QML 

Estimates (s.e.) 
FGLS 

Estimates (s.e.) 
CLS 

Estimates (s.e.) 
QML 

Estimates (s.e.) 
QML 

Estimates (s.e.) 
QML 

Estimates (s.e.) 
Constant (Mean) 12.709***    

(2.57) 
17.614***    
(1.59) 

17.614***    
(1.59)   

1.499*** 
(0.11) 

1.579***  
(0.11) 

1.469*** 
(0.22) 

Constant (Variance)     0.311* 
(0.18) 

0.035  
(0.23) 

d 0.185***     
(0.05) 

-0.169***  
(0.04) 

-0.169***   
(0.04) 

0.549*** 
(0.11) 

0.999***  
(0.00) 

 

α   0.319  
(0.18) 

  1.204***  
(0.10) 

β     0.934***  
(0.02) 

0.854***  
(0.04) 

VAR 12829.171***  
(4439.03) 

13166.002 13166.002 14229.523 14229.523 14226.460 

LB (100) 717.844*** 1572.995*** 1572.995*** 6214.240*** 6214.240*** 6214.247*** 
LB (200) 1150.830*** 2582.103*** 2582.103*** 9987.077*** 9987.077*** 9987.540 
LBSD (100) 717.844***   1319.669*** 1052.742*** 1057.400*** 
LBSD (200) 1150.830***   2479.399*** 1840.481*** 1791.520*** 
Lag length 35 35 35    
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Table 4d: Empirical results for squared stock return index for China. 
Coefficients FIMACH FIGARCH (0,d,0) FIGARCH (1,d,1) GARCH (1,1) 

QML 
Estimates (s.e.) 

FGLS 
Estimates (s.e.) 

CLS 
Estimates (s.e.) 

QML 
Estimates (s.e.) 

QML 
Estimates (s.e.) 

QML 
Estimates (s.e.) 

Constant (Mean) 0.283***   
(0.11) 

0.283*** 
(0.10) 

0.283***  
(0.10) 

0.220*** 
(0.02) 

0.077***   
(0.01) 

0.055***   
(0.01) 

Constant 
(Variance) 

    -0.021***   
(0.00) 

-0.000  
(0.00) 

d 0.312*** 
(0.11) 

0.312*** 
(0.11) 

0.312***  
(0.11) 

0.490*** 
(0.00) 

0.714***  
(0.00) 

 

α      1.078***  
(0.04) 

β     0.684 
(0.00) 

(0.916)   
(0.02) 

VAR 12.567*** 
(3.08) 

12.569 12.569 16.716 16.716 16.713 

LB (100) 437.879*** 437.879*** 437.879*** 8062.879*** 8062.879*** 8063.962*** 
LB (200) 638.522*** 638.522*** 638.522*** 9148.716*** 9148.716*** 9150.167*** 
LBSD (100) 437.879*** 437.879*** 437.879*** 4259.401*** 1871.683*** 820.221*** 
LBSD (200) 638.522*** 638.522*** 638.522*** 7478.183*** 3316.763*** 1354.586*** 
Lag length 42 42 42    
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Table 4e: Empirical results for squared stock return index for South Africa. 
 FIMACH FIGARCH (0,d,0) FIGARCH (1,d,1) GARCH (1,1) 

 QML 
Estimates (s.e.) 

FGLS 
Estimates (s.e.) 

CLS 
Estimates (s.e.) 

QML 
Estimates (s.e.) 

QML 
Estimates (s.e.) 

QML 
Estimates (s.e.) 

Constant (Mean) 12.782***     
(1.37) 

20.314***    
(1.28) 

20.314***   
(1.27) 

4.181*** 
(0.298) 

3.274***    
(0.15) 

3.600***  
(0.28) 

Constant (Variance)     -22.094***    
(1.12) 

0.587 
(0.43) 

d 0.194***    
(0.02) 

-0.166***    
(0.02) 

-0.166***    
(0.02) 

0.533 
(0.00) 

0.689***    
(0.00) 

 

α      1.115***  
(0.05) 

β     0.572***    
(0.00) 

0.867***  
(0.03) 

VAR 7036.353***  
(996.96) 

7381.231 7381.231 9104.279 9104.279 9102.426 

LB (100) 772.396*** 2684.763*** 2684.764*** 11702.479*** 11702.479*** 11693.869*** 
LB (200) 1266.134*** 4513.014*** 4513.015*** 18138.175*** 18138.175*** 18126.195*** 
LBSD (100) 772.396*** 2684.763*** 2684.764*** 3285.210*** 1606.489 *** 1393.617*** 
LBSD (200) 1266.134*** 4513.014*** 4513.015*** 5571.753*** 2285.839*** 1831.270*** 
Lag length 70 70 70    
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Table 4f: Empirical results for squared stock return index for USA. 
 FIMACH FIGARCH (0,d,0)    FIGARCH (1,d,1) GARCH (1,1) 
 QML 

Estimates (s.e.) 
FGLS 

Estimates (s.e.) 
CLS 

Estimates (s.e.) 
QML 

Estimates (s.e.) 
QML 

Estimates (s.e.) 
QML 

Estimates (s.e.) 
Constant (Mean) 70.071***     

(8.539) 
70.071***    
(8.412) 

70.071***   
(8.403) 

50.926*** 
(2.918) 

18.044***    
(1.616) 

13.701***  
(3.349) 

Constant (Variance)      -1106.968***    
(47.472) 

-0.662  
(2.993) 

d 0.187***    
(0.034) 

0.187***    
(0.035) 

0.187***    
(0.035) 

0.472 
(0.016) 

0.669***    
(0.004) 

 

α      1.045***  
(0.018) 

β     0.622***    
(0.005) 

0.915***  
(0.015) 

VAR 192930.645***  
(32020.920) 

192974.940 192974.940 223369.828 223369.828 223325.106 

LB (100) 697.590*** 697.590*** 697.590*** 7147.323*** 7147.323*** 7145.920*** 
LB (200) 868.459*** 868.459*** 868.459*** 8028.339*** 8028.339*** 8026.328*** 
LBSD (100) 693.986*** 697.590*** 693.986*** 4432.055*** 2445.256*** 1061.702*** 
LBSD (200) 864.174*** 868.459*** 864.174*** 6799.300*** 3694.440*** 1744.355*** 
Lag length 70 70 70     
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Table 4g: Empirical results for squared stock return index for UK. 
 FIMACH FIGARCH (0,d,0)    FIGARCH (1,d,1) GARCH (1,1) 
 QML 

Estimates (s.e.) 
FGLS 

Estimates (s.e.) 
CLS 

Estimates (s.e.) 
QML 

Estimates (s.e.) 
QML 

Estimates (s.e.) 
QML 

Estimates (s.e.) 
Constant (Mean) 123.736***     

(7.816) 
78.056***   
(10.074) 

78.056***   
(10.176) 

62.144*** 
(4.688) 

36.174***    
(1.988) 

35.517***  
(0.360) 

Constant (Variance)      -655.158***    
(77.010) 

45.497***  
(0.004) 

d -0.162***    
(0.027) 

0.192***    
(0.035) 

0.192***    
(0.035) 

0.444 
(0.018) 

0.682***    
(0.007) 

 

α      1.039***  
(0.014) 

β     0.660***    
(0.007) 

0.918***  
(0.013) 

VAR 270893.898***  
(52010.797) 

258868.144 258868.144 301142.683 301142.683 301080.523 

LB (100) 2086.949*** 1012.821*** 1012.821*** 7671.396*** 7671.396*** 7670.816*** 
LB (200) 2984.945*** 1499.144*** 1499.144*** 10420.796*** 10420.796*** 10420.151*** 
LBSD (100) 2086.902*** 1012.821*** 1012.317*** 3809.926*** 2201.357*** 1600.740*** 
LBSD (200) 2980.607*** 1499.144*** 1498.329*** 6070.656*** 3661.447*** 2832.232*** 
Lag length 70 70 70    
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