
Properties of “Good” Java
Examples

Nadeem Abbas

January 5, 2010
Master’s Thesis in Computing Science, 30 ECTS credits

Supervisor at CS-UmU: Jürgen Börstler
Examiner: Per Lindström

Ume̊a University
Department of Computing Science

SE-901 87 UMEÅ
SWEDEN

Abstract

Example programs are well known as an important tool to learn computer programming.
Realizing the significance of example programs, this study has been conducted with a goal
to measure and evaluate the quality of examples used in academia. We make a distinction
between “good” and “bad” examples, as badly designed examples may prove harmful for
novice learners. In general, students differ from expert programmers in their approach to
read and comprehend a program. How do students understand example programs is explored
in the light of classical theories and models of program comprehension. Key factors that
impact program quality and comprehension are identified. To evaluate as well as improve the
quality of examples, a set of quality attributes is proposed. Relationship between program
complexity and quality is examined. We rate readability as a prime quality attribute and
hypothesize that example programs with low readability are difficult to understand. Software
Reading Ease Score (SRES), a program readability metric proposed by Börstler et al. [5],
is implemented to provide a readability measurement tool. SRES is based on lexical tokens
and is easy to compute using static code analysis techniques. To validate SRES metric,
results are statistically analyzed in correlation to earlier existing well acknowledged software
metrics.

ii

Contents

1 Introduction 1
1.1 Problem Description . 1

1.1.1 Problem Statement . 2
1.1.2 Goals . 2

1.2 Purposes . 2
1.3 Related Work . 2

2 Program Comprehension 5
2.1 Introduction . 5
2.2 Program Comprehension Models . 5

2.2.1 Brooks’ Hypothesis based Model . 5
2.2.2 Soloway and Ehrlich’s Top-down Model 6
2.2.3 Shneiderman’s Model of Program Comprehension 6
2.2.4 Letovsky’s Knowledge based Model . 6
2.2.5 Pennington’s Model . 7
2.2.6 Littman Comprehension Strategies 7

2.3 Important Factors for Program Comprehension 8
2.3.1 External Factors . 8
2.3.2 Internal Factors . 8

2.4 Differences between Experts and Novices . 9
2.5 How Do Novices Read and Understand Example Programs? 10

3 Quality and Complexity of Example Programs 13
3.1 What is Good and What is Bad? . 13
3.2 Desirable Quality Attributes of Example Programs 14
3.3 Program Complexity . 16

3.3.1 Program Complexity Measures . 16
3.4 Software Metrics : Measures of Example Quality 17

3.4.1 Software Reading Ease Score (SRES) 18
3.4.2 Halstead’s Metrics . 18
3.4.3 McCabe’s Cyclomatic Complexity . 18

iii

iv CONTENTS

3.4.4 Lines of Code (LoC) . 18
3.4.5 Cyclomatic Complexity per LoC (CC/LoC) 19
3.4.6 Lines of Code per Method (LoC/m) 19
3.4.7 Average Method per Class (m/c) . 19
3.4.8 Weighted Method Count (WMC) . 19

4 Program Readability 21
4.1 Introduction . 21
4.2 Readability in General . 21
4.3 Flesch Reading Ease Score - FRES . 22
4.4 Program Readability . 23
4.5 Software Readability Ease Score - SRES . 23

4.5.1 SRES Counting Strategy . 24
4.6 Counting Strategy for Halstead’s Measures 28

5 Implementation - SRES Measurement Tool 31
5.1 Introduction . 31
5.2 SRES Measurement Tool . 31

5.2.1 How it Works . 34
5.2.2 ANTLR - Parser generator . 34
5.2.3 Difficulties . 35

6 Experimental Results and Validation 37
6.1 Experimental Setup . 37
6.2 Experimental Results . 37
6.3 Statistical Significance and Correlations . 40

6.3.1 SRES and LoC . 42
6.3.2 SRES and PD Correlation . 43
6.3.3 SRES and PV Correlation . 43
6.3.4 SRES and TCC Correlation . 44
6.3.5 SRES and CC/LoC Correlation . 45
6.3.6 SRES and LoC/m Correlation . 46
6.3.7 SRES and m/c Correlation . 48
6.3.8 SRES and WMC Correlation . 49
6.3.9 SRES and HQS Correlation . 50
6.3.10 SRES and Buse’s Metric for Software Readability 51

6.4 Validation of Halstead’s Metrics . 53

7 Discussion and Conclusions 55
7.1 Discussion . 55
7.2 Conclusions . 56
7.3 Future work . 57

CONTENTS v

8 Acknowledgments 59

References 61

A User’s Guide 67

vi CONTENTS

List of Figures

4.1 Example: without block symbols . 25

5.1 SRES - Components Diagram . 32
5.2 SRES - User Interface . 34
5.3 SRES - Results . 35

6.1 Example Programs used in Evaluation . 38
6.2 Measurements Results . 40
6.3 Correlation matrix for the software metrics as described in Table 6.1, based

on the Pearson product-moment correlation coefficient. 41
6.4 Arithmetic means of the measurement results shown in Figure 6.2 42
6.5 p-values for SRES and all other software measure as described in the Table 6.1 42
6.6 SRES-ASL and LoC Correlation . 42
6.7 SRES-AWL and LoC Correlation . 43
6.8 SRES-ASL and PD Correlation . 43
6.9 SRES-AWL and PD Correlation . 44
6.10 SRES-ASL and PV Correlation . 44
6.11 SRES-AWL and PV Correlation . 45
6.12 SRES-ASL and TCC Correlation . 45
6.13 SRES-AWL and TCC Correlation . 46
6.14 SRES-ASL and CC/LoC Correlation . 46
6.15 SRES-AWL and CC/LoC Correlation . 47
6.16 SRES-ASL and LoC/m Correlation . 47
6.17 SRES-AWL and LoC/m Correlation . 48
6.18 SRES-ASL and m/c Correlation . 48
6.19 SRES-AWL and m/c Correlation . 49
6.20 SRES-ASL and WMC Correlation . 49
6.21 SRES-AWL and WMC Correlation . 50
6.22 SRES-ASL and HQS Correlation . 50
6.23 SRES-AWL and HQS Correlation . 51
6.24 Results of SRES and Buse’s Readability Metrics 52

vii

viii LIST OF FIGURES

6.25 Correlation Coefficient and p-value for SRES and Buse’s Readability Metrics 52
6.26 SRES-ASL and Buse’s Readability Metrics Correlation 53
6.27 SRES-AWL and Buse’s Readability Metrics Correlation 53
6.28 Halstead Measure of Program Effort by JHawk and SRES Measurement Tool 54

A.1 SRES - User Interface . 68

List of Tables

4.1 Flesch Reading Ease Scores - Interpretations 22

6.1 Selected Measures for Correlational Study 39
6.2 Correlation Coefficient-Interpretation . 41

ix

x LIST OF TABLES

Chapter 1

Introduction

Learning something new is a human instinct and great fun, but it often involves compli-
cations and challenges. Being students of computer science we learn lot of new concepts,
tools and technologies, and often face problems as well. Whenever there is a problem and a
will to resolve it, there is a way, i.e., problem solving. Programming, in fact, is nothing but
a problem-solving approach. However learning how to program in itself is a big problem
confronted by many.

Programming is a foundational skill for all computing disciplines including computer
science (CS), software engineering (SE), and information technology (IT). According to the
Computer Science Curriculum 2008 [66], jointly composed by IEEE Computer Society and
ACM, good programming knowledge is a prerequisite to the study of most of computer sci-
ence. Computer science students, at undergraduate level, are supposed to gain competency
in at least one programming language. Programming Fundamentals (PF) and Programming
Languages (PL) are the main subjects to impart programming knowledge. There are many
programming languages and paradigms available for educators to choose for their students.
Among these java and object oriented programming have become most popular choices dur-
ing the last few years. This study is not concerned with pros and cons of object orientation
or java as a first programming language. We mainly study quality of the example pro-
grams, written in java, in terms of desired quality attributes and their impact on learning
programming fundamentals.

The term’s example and example program are interchangeable and object-oriented is the
intended programming paradigm. Example program refers only to the source code excluding
the supporting textual description, lecture notes or any visual aids, such as UML diagrams.

1.1 Problem Description

Learning by examples is a well established pedagogy [15]. While learning computer program-
ming, example programs play a vital role and can be used as an effective tool to explain
complex concepts which otherwise are difficult to comprehend. Example programs act as
templates, guidelines and inspirations for learners [7]. Examples are generally believed to
make learning easier by reinforcing fundamental concepts and eliminating confusion or mis-
conception. However, examples are not always equally good for learning [48]. Badly designed
examples mislead students to build myths and misconception. Use of good programming
examples is extremely important as the hypothesis is supported by [7, 48, 5].

1

2 Chapter 1. Introduction

1.1.1 Problem Statement

What are the quality attributes for example programs? and how can we measure the quality
of an example?

1.1.2 Goals

1. Review the literature to understand the relationship between example quality, com-
prehension and complexity; principles and guidelines for object-oriented pedagogy and
software development in general.

2. Probe on the characteristics of example programs in an educational context, and
propose a set of desired quality attributes for example programs that can be used to
distinguish between “good” and “bad” examples.

3. Develop a program quality measurement tool based on Software Reading Ease Score
[5] and Halstead’s metrics of software science [29].

4. Evaluate the usefulness of SRES measures as compare to the existing software com-
plexity measures.

1.2 Purposes

Overall purpose of this study is to facilitate educators, academics and students in deter-
mining the quality of example programs used in java programming education. It provides
them with a light weight, specifically designed software tool that they can use to evaluate
readability and quality of java example programs. Though there are already a number of
open source code analyzers in java available, see http://java-source.net/open-source/
code-analyzers. However, none of these provides measures for program readability. The
only program readability metric found is the one defined by Buse and Weimer [11], but it
differs from the SRES metric in its approach.

1.3 Related Work

Researchers in academia and industry have done plenty of work regarding software qual-
ity. A large number of software metrics and models [53, 13, 41, 11, 36, 32, 29, 50] have
been proposed, which certainly helps to improve software quality and maintenance efforts.
However, there is relatively little work done in the academic context, to determine desirable
characteristics of example programs used as learning beacons in an academic world.

Kolling [39] urges educators and researchers to carefully design examples programs and
be selective with their choice of examples. Code Reading is among the eight guidelines,
discussed by Kolling, for teaching object oriented programming with java. Malan and Hal-
land [48] claim to treat examples as products selling concepts to the novice learners. The
authors identified four typical problems with example programs, particularly with respect
to object oriented paradigm. The first issue pointed is that of too simple and abstract
examples, which follow a non-realistic general approach, with no particular objective. The
second problem identified is of example programs which are more realistic and too complex
to understand. Such examples have unnecessarily complex constructs that create troubles
for novice learners. The third issue is that of inconsistency, where example programs over-
throw earlier taught concepts, instead of reinforcing them. The last issue concerns those

http://java-source.net/open-source/code-analyzers
http://java-source.net/open-source/code-analyzers

1.3. Related Work 3

examples that are so badly constructed that they even undermine the concepts they are
trying to teach. However Malan and Halland’s work lacks empirical evaluation and does not
provide any explicit solution or measures to improve the quality of example programs.

Program readability is a critical factor in program maintenance. Buse and Weimer [11]
proposed a metric for program readability. The authors study readability with respect to
program quality and its role in maintenance. According to the authors, readability is dif-
ferent from complexity, and it depends mainly on local, line-by-line elements of a program.
Their findings are based on 12,000 human judgments regarding code readability, and report
some interesting facts. To get readability judgment by human annotators, they use small
java code snippets (with average code length of 7.7 lines), and ask the annotators to rate
the code on an ordinal scale. The authors intentionally use small code snippets in order
to distinguish which code elements are most predictive of readability. They have defined a
snippet selection policy, however the code snippets fail to provide contextual information,
or background knowledge that is very important according to models of program compre-
hensions, see Section 2.2. Their results show that code features like ‘average line length’
and ‘average number of identifiers per line’ are very important to predict readability. An
interesting result reported is that the ‘average identifier length’ has almost no affect on
readability measurement. This is contrary to the notion of “self describing code” that ad-
vocates use of long descriptive identifiers in place of short single character or abbreviation
style identifiers.

Empirical research by Elshoff and Marcotty [23] supports that readability is a vital factor
in program maintenance. The authors suggested inclusion of a special development phase in
the software development cycle to produce more readable code. To enhance code readability,
Haneef [30] argued to dedicate a special readability group in the development team.

This study is principally inspired from the work [7, 5, 6] of Börstler et al. In these arti-
cles, the authors investigate problems and desired attributes of “exemplary” examples that
can be applied to formulate a measurement framework to indicate quality of the example.
Understandability, effective communication, and adherence to external factors are the three
basic desired properties described by the authors. The article [5] provides a good picture
to distinguish good and bad examples by comparing two example programs: “Beauty” and
“Beast”. The authors consider readability as a basic prerequisite for understandability and
are of the view that readability index can be used to evaluate the quality of an example.
Börstler et al. propose a software readability metric called “Software Readability Ease
Score” (SRES) based on the idea of Flesch Reading Ease Score [25]. This study further
defines SRES readability metric and provides its implementation as well as evaluation. The
article [7] defines an evaluation instrument to distinguish between good and bad examples.
The evaluation instrument provides three check lists to the reviewers or evaluators. These
three checklists are based on technical, object-oriented, and didactical quality attributes.
The authors performed a test of their evaluation instrument on a set of five example pro-
grams, and the results show that such an evaluation instrument can be useful though not
reliable to distinguish good and bad examples.

Nordström’s licentiate thesis [55] is closely related to this work. It asserts importance of
examples in learning, discusses principles of teaching, provides a survey of related literature,
helps to identify characteristics and principles of object orientation, reviews heuristics and
rules for object oriented design, and proposes heuristics for designing small-scale object ori-
ented examples. It uses the keyword exemplary to refer good examples. According to Nord-
ström a good example should facilitate the learners to recognize patterns and distinguish
an example’s superficial surface properties from those that are structurally or conceptually
important. There are six design heuristics described by Nordström, as listed below:

4 Chapter 1. Introduction

1. Model Reasonable Abstractions: This is the most important design heuristics,
and it has two main implications for the reasonable abstraction. The first is that an
abstraction should promote object orientation, i.e., it shows the basic characteristics
of an object: identity, state and behavior. The second is that an abstraction should
strive for non-artificial classes and objects, keeping the problem appropriate in size
and complexity.

2. Model Reasonable Behavior: Reasonable behavior is one that is not overly sim-
plified and does not have distracting artificial operations. The demand of reasonable
behavior makes certain common habits inappropriate. One such common habit is the
use of print statements for tracing, this confuses the novice of how things are returned
from methods and spoils the idea of having I/O separated from the functional parts
of a system.

3. Emphasize Client View: Services and responsibilities of an object should be de-
fined independent of its internal representation and implementation of the attributes.
The interface of a class should be designed carefully, as complete as possible, and be
consistent to the problem domain.

4. Favor Composition over Inheritance: Inheritance1 distinguishes object orienta-
tion from other paradigms, but is difficult to comprehend by novices. It is difficult to
model a reasonable abstraction and behavior with early introduction to inheritance.
Composition can be used to exemplify reuse characteristic instead of inheritance, and
the strength of inheritance can be exemplified later.

5. Use Exemplary Objects Only: An important design heuristics is to take care
with the choice of objects involved. One of the problem with example programs is the
use of only one or two class references and object instances, obscuring the principle
of objects interactivity. Another problem is the use of more than objects of a same
class without any logical reason or requirement. Examples using nameless objects
and anonymous examples are difficult in comprehension therefore small scale example
programs designed for novices should avoid these constructs.

6. Make Inheritance Reflect Structural Relationships: The example programs
should not confuse the students in terms of structural and hierarchical relationships
between base and derived classes. “To show the strength and usefulness of inheritance
it is essential to design examples carefully” [55]. Behavior should guide the design of
hierarchies and the relationship must be clear and easy to understand.

It briefly describes the different software metrics but does not provide explicit mapping
between proposed heuristics and software metrics to have a quantitative measure of example
quality.

Chapter 2

Program Comprehension

2.1 Introduction

Program Comprehension is a cognitive process as a result of which one learns, acquires
knowledge and gains understanding. Rugaber [59] describes program comprehension as
a process through which one acquires knowledge about computer programs. Whereas
Mayrhauser and Vans [70] define program comprehension as “a process that uses exist-
ing knowledge to acquire new knowledge”. In literature, Program comprehension is referred
as Program Understanding also. Therefore, program understanding and program compre-
hension are the two interchangeable term in this study.

There is a plenty of work done related to program comprehension, as a result of which
number of program comprehension models have been proposed. These models will be briefly
described in the next section 2.2. An interesting fact to quote is that almost all the work
done for program comprehension targets modification and maintenance. Around 50% of the
maintenance effort is spent just to comprehend the program [70]. It is a genral observation
that novices spend ample time out of their studies just to comprehend example programs.
Therefore, it would be usefult to see how novice learners interpret and understand program-
ming examples. Understanding the way students understand example programs may help to
understand the problems faced by students, and address those problems by designing easy
to comprehend examples. There is very little work done on program comprehension with
respect to novice’s learning. An important point is to see how program comprehension with
respect to novice learners differs from program comprehension with respect to maintenance
and modification issues. Can we apply the same process of program comprehension on a
novice learner as well as on a professional programmer or not, what are the main differences?
How students comprehend programs, and how can we measure student’s understanding or
learning index?

2.2 Program Comprehension Models

2.2.1 Brooks’ Hypothesis based Model

Brooks’ theory of program comprehension [9] is based on the idea of problem domain recon-
struction. It describes programming as a process of constructing mappings from a problem
domain to a programming domain. These mappings from a problem domain to the pro-
gramming domain involve several intermediary knowledge domains. All these intermediary

5

6 Chapter 2. Program Comprehension

knowledge domains encoded by a program are reconstructed during program comprehension.
The reconstruction process is controlled by creation, confirmation and successive refinement
of a hypothesis. Hypothesis is built, in a top down manner, from the learner’s existing
knowledge of the problem domain and are iteratively refined to match specific lines of code
in the program. At the top there exists a primary hypothesis, created just by hearing a
program name or some description, without having a look on the actual program. It de-
scribes the overall program functionality and can not be verified against the actual code.
Therefore, primary hypothesis branches into several subsidiary hypotheses until a level is
reached where a subsidiary hypothesis can be matched and verified or validated against pro-
gram code or documentation. Programming beacons play an important role in hypothesis
validation. The programming beacons lead towards success or failure of a hypothesis and
creation or modification of a hypothesis.

2.2.2 Soloway and Ehrlich’s Top-down Model

Soloway and Ehrlich [64] describe Programming Plans and Rules of Programming Discourse
as important elements in program comprehension. Programming Plans are the code frag-
ments that specify conventional program constructs, whereas Rules of Programming Dis-
course are the standard code conventions or patterns, that results in expectations about
a program’s behavior. Top-down program comprehension approach typically applies when
the code or type of code is familiar [70]. So this model is more applicable in case of ex-
pert programmers than novices. Similar to the Brook’s hypothesis model, a comprehender
establishes a high level goal and that further branches to several sub-goals, based on the ob-
served programming plans and rules of discourse. Throughout the process, a mental model
is constructed that consists of a hierarchy of goals and plans.

2.2.3 Shneiderman’s Model of Program Comprehension

Shneiderman and Mayer [62] describe program comprehension as a critical subtask of de-
bugging, modification, and learning. This comprehension model is based on the hypothesis
that a comprehender constructs a multilevel internal semantic structure of a program with
the help of existing syntactic knowledge. Comprehension at the highest level aims at overall
functionality of the program: what does it do? Whereas the low level deals with recogniz-
ing individual code lines or statements. The comprehension process starts by recognizing
functionality of smaller code chunks and creating their semantic representation in mind.
These low level chunks are then combined to form larger chunks, along with establishing
their counterpart internal semantic representation. This process continues until the entire
program is comprehended.

2.2.4 Letovsky’s Knowledge based Model

Letovsky [44] describes a knowledge based cognitive model of program understanding. Ac-
cording to the model, programmers are knowledge based understanders who establish three
main components: a knowledge base, a mental model, and an assimilation process. Knowl-
edge base contains background knowledge and the expertise of a programmer that he applies
to understand a program. Types of knowledge identified by Letovsky include programming
language semantics, programming plans, programming expertise, recurring computational
goals and rules of discourse. Knowledge base contains a large set of solutions for the problems
that a programmer has solved in the past. All these knowledge types help a programmer
to construct a mental model of a program. Letovsky has identified three layers of mental

2.2. Program Comprehension Models 7

representation: a specification, an implementation, and an annotation layer. Specification
layer is at the highest level and is more global to represent overall goals of a program.
Implementation layer is at the lowest level and represents individual data structures and
operations in a program. Whereas the annotation layer attempts to link each of the goals
in specification layer to its corresponding program constructs in the implementation layer.
This process of constructing a program’s mental model by applying a knowledge base on a
program is termed as an assimilation process by Letovsky. The assimilation process can be
top-down or bottom-up, as it depends on the programmer’ s characteristics that how can
he attain better understanding about a program.

2.2.5 Pennington’s Model

In order to analyze the program comprehension process, Pennington [57] categorized pro-
gram information into six groups: operations, variables, control flow, data flow, state, and
function. Pennington’s model of program comprehension states that there are two rep-
resentations of a program that are constructed during the comprehension process. First
representation is named as Program Model and it corresponds to program text and control
flow. The second representation is named as Domain Model.

A Program Model is constructed before a domain model. The domain model uses the
program model to create a functional representation of a program. It is developed using
a bottom-up program comprehension approach, where programming plan knowledge and
code beacons are used to find key code controls and operations. It starts at a micro level,
constructing a representation for smaller chunks and then continues to combine the smaller
chunks and their internal representation, until a program model for the whole program is
built. Then it proceeds to build a domain model of the program. The domain model is also
constructed in a bottom up comprehension style and requires the knowledge of real world
problem domain. Instead of programming plans and text structures it uses domain plan
knowledge to construct a mental representation and describes program code in terms of real
world objects and operations.

2.2.6 Littman Comprehension Strategies

Littman [46] identifies two program comprehension strategies: Systematic Strategy and As-
needed Strategy. A comprehension strategy followed by a programmer greatly influences
the knowledge he or she acquires. Comprehension strategy, programmer’s knowledge about
the program, and modification or maintenance success are interrelated. Systematic strategy
helps a programmer to understand how a program behaves. It aims at the global behavior
of a program by tracing control flow and data flow paths through the program. Systematic
strategy requires comprehensive execution of control flow and data flow routines and sub
routines to determine the causal relationship among different components of a program.
That causal relationship greatly helps to understand the overall program behavior.

On the other hand, as-needed strategy is more localized as it aims at the local behavior
of a program. It does not involve comprehensive tracking of control flow and data flow. The
comprehender focus only on selected routines or procedures within a program. According
to Littman, programmers who adopt a systematic strategy obtain better understanding as
compare to those who adopt an as-needed strategy. The suggested reason for failure in case
of as-needed strategy is the lack of knowledge about causal interactions among components
of a program.

8 Chapter 2. Program Comprehension

2.3 Important Factors for Program Comprehension

From above described various program comprehension models, we derive that in order to
understand a program, the comprehender applies his existing knowledge along with available
beacons and learning aids. To identify the factors that play an important role in program
comprehension, we have distinguished categories of external and internal factors.

2.3.1 External Factors

External factors are all those skills, knowledge and helping aids that are not a part of actual
program code.

Existing Knowledge One of the most dominant factors in program comprehension is
a comprehender’s existing knowledge. The existing knowledge includes computing
specific knowledge, problem domain knowledge, and all the general knowledge that
supports to understand a program [44]. Computing specific knowledge mainly includes
knowledge about problem solving, data structures and algorithms, programming plans,
and language specific skills. Problem domain knowledge is also very important, as it
supports in the program comprehension process. Those who are familiar with problem
domain tend to understand the program better than those who are not familiar with
the domain. Novices are generally believed to have no or little domain knowledge.
This factor greatly affects the comprehension approach.

Personal attributes Personal attributes cover the qualities and characteristics of a person
who is going to understand a program. These personal attributes include: experience
level, intellectual capabilities, knowledge base, motivation level, and behavioral char-
acteristics [3]. Experience leads one to a high level of expertise that highly affects
efficiency of program comprehension [70]. These personal attributes vary person to
person and even among the persons with a same number of years as programming or
learning experience.

Documentation Well documented programs are likely to have better understanding.“Different
kinds of documentation are helpful at different stages of comprehension” [18]. Docu-
mentation provides details about individual modules and program constructs but at
the same time too much documentation can create problems as well [18]. In case if a
program segment is not clear to understand, one may consult the documentation to
know more about class behavior, as well as underlying data and operations details.

UML Diagrams UML diagrams, an object oriented design artifacts, are really helpful in
case of object oriented program comprehension. These artifacts provide quick insight
about program constructs and behavior, specially in case of a larger project with
many interactive modules. Flow charts are easy-to-understand diagrams that represent
a process or a program algorithm. These are effective tools to communicate and
understand how a process works. Flow charts are generally used in system analysis,
design and documentation. However, they are also helpful in program comprehension,
and can be combined with other tools to understand a program.

2.3.2 Internal Factors

Internal factors are all those internal elements, attributes, or characteristics of a program
that help to understand it.

2.4. Differences between Experts and Novices 9

Program Complexity Complexity is regarded as an intrinsic attribute of programs and,
in general, can not be avoided completely. It affects program readability and com-
prehension [18], where complex programs are difficult to read and understand. For
example, very large programs are difficult to read because of their size. There are
several different types of program complexity discussed in Section 3.3

Beacons Beacons are those program constructs or elements that provide hints about under-
lying program data structures and associated operations [3]. Effective use of beacons
in a program greatly helps to recognize as well as understand a program. Swap is
the most commonly referenced beacon in the related literature. Appropriate identifier
names that describe the purpose of their use also serve as beacons. For example, an
identifier print for a method that prints some values. Identifiers that reflect their cor-
responding objects and action in the real world, are easier to understand. Following
a standard naming convention with meaningful identifier names may ease the job of
program reading and understanding.

Comments Appropriate use of comments and meaningful identifiers are beneficial to pro-
gram comprehension. However, unnecessarily verbose comments may add to the com-
plexity of a code [18]. A program with a high ratio of comments to the actual code
may make actual program code difficult to distinguish, read and understand as well.

Indentation and Formating Style Text readability is greatly affected by its formatting
style, font options, white spaces, and indentation style. Poorly indented and formatted
texts are hard to read and understand as well. The same is true in case of a program
code.

2.4 Differences between Experts and Novices

Experts and novices differ in a number of ways in their skills, expertise, experience level and
knowledge. Therefore, they differ in their program comprehension process and strategies as
well.

– In comparison to novices, experts make a better use of Programming Plans and Rules
of Programming Discourse to comprehend a program [64]. Programming Plans are
the code fragments that specify conventional program constructs, such as stereotyped
search or sort algorithms. Whereas Rules of Programming Discourse are the well
established programming patterns and practices that provoke expectations about the
functionality of a program. Defining variable names that agree to their functionality
is an example of a programing discourse rule.

– Experts make more use of beacons to understand a program as compare to novices
[3].

– Experts’ knowledge is hierarchically organized that gives them better processing ca-
pability than novices [20].

– Experts mostly use a top-down approach while novices generally adopt a bottom-up
approach to understand a program [3, 54]. Novices read a program sequentially, line
by line in a physical order, while experienced readers generally follow control flow
while reading a program in a top-down manner [54].

10 Chapter 2. Program Comprehension

– Novices use surface features of a program, e.g., syntactic structure, to understand a
program while experts use program semantics to understand a program [3, 20].

According to Fix et al. [24], an expert’s mental representation of a program exhibits fol-
lowing five abstract characteristics that are absent in the mental representation constructed
by novices:

1. Expert’s mental model is hierarchal and multi-layered.

2. It has explicit mapping between the layers

3. It is based on the recognition of basic patterns.

4. It is well connected internally.

5. It is well grounded in the program text.

2.5 How Do Novices Read and Understand Example
Programs?

As discussed in the Section 2.4, novice learners differ from expert programmers in their skills,
knowledge, experience, behavior, as well as program reading and comprehension strategies
[54, 34]. Most of the classical models of program comprehension, described in Section 2.2,
deals with experienced programmers are not exactly applicable to novice learners. However,
Program comprehension, both in case of experts or novices, requires a basic mechanism of
constructing mental representations by processing the coded information [54, 20].

Program comprehension is generally viewed as a text comprehension, as most of the
studies on program comprehension considered a program as a special form of a text [20].
According to the Verhoeven’s model of reading comprehension [69], reading of a text starts
with the identification of individual words. This process is supported by the reader’s knowl-
edge of words, orthography, phonology, and morphology. Verhoeven quoted studies of eye
movements to claim that even skilled readers fixate on most of the words they read and
the fixation tends to be longer at the end of sentences. These longer fixations in the end
aims at sentence comprehension based on word-to-text integrations, where a reader connects
identified words to a continuously updated representation of a text. Sentence comprehen-
sion employs both sentence structure and word meanings to formulate hypotheses about
the meaning of a sentence. A reader then combines the meanings of each sentence with
the overall text interpretation established so far on the basis of prior text. Major mod-
els of text comprehension state that apart from the information present in a text, readers
use their prior knowledge as well to construct new knowledge as a mental representation
of a text. Two models of representations are constructed: a text model, and a situation
model. The text model is a linguistic representation of a text that is isomorphous to the
text structure [10]. It reflects text contents, i.e., micro-structure and macro-structure of a
text. It is constructed successively from the verbatim representation [10] by extracting basic
meanings from sentences based on the existing knowledge [69]. The situation model models
text domain, i.e., what the text is about and is isomorphous to the situation described by
the text. It is built using reader’s existing knowledge about a particular domain [10].

Students are introduced with example programs as a concrete model to enhance their
learning. What students have earlier learned during lectures or tutorials adds to their
existing knowledge. Comprehension is actually a cognitive process to connect or match

2.5. How Do Novices Read and Understand Example Programs? 11

existing knowledge upon new information [69, 54, 49]. Existing knowledge, organized in long
term memory, servers as a key resource during program comprehension [63, 44, 9]. It includes
both computing specific knowledge as well as general knowledge about problem domain and
related concepts. Initially, students’ existing knowledge about object oriented programming
is almost zero or very low, that tends to increase gradually as students learn more and more
object oriented concepts and do more practice with examples. To provide novice learners
with sufficient knowledge, fundamental programming concepts are taught at first during
lectures and tutorial sessions. The purpose of supplying the associated programming theory
or lecture notes at first is to add into their existing knowledge. Otherwise it would be very
difficult for them to understand program constructs and concepts without having required
knowledge.

Along with their specific knowledge of object oriented programming, novices also apply
their general knowledge about mathematics and computing while understanding an example
program [70]. Knowledge about problem domain plays a significant role in comprehension.
Students are more likely to have better understanding about more popular and common
real world problems. Above described program comprehension models talk about the use of
programming plans, beacons and other rules of programming discourse, however, students
at junior level have no idea about these learning aids [3, 64]. They develop their sense of
programming plans, use of programming discourse rules, and beacons to some extent as
they learn and practice more.

Novices generally read a program sequentially, line-by-line in a physical order starting
from the top or first line, similar to reading a book [54]. Using a sequential reading strategy,
novices follow a bottom-up approach, i.e., low level details first, and general structure in the
end, since they lack in skills and knowledge required for the top-down approach. They hardly
follow control-flow or data-flow while reading a program. In the beginning, they generally
treat example programs similar to an ordinary text [54] as they do not know any specific
strategy for program reading. They follow their practice of simple text comprehension
because they are quite good and use to that practice. They read lines word-by-word in
smaller syntactic chunks to establish their understanding of a program. A “program model
is created by chunking micro-structures into macro-structures and by cross-referencing” [70].
Program’s mental model is the first inner representation that a novice learner builds as a
result of the comprehension process. Novices typically use program syntax to comprehend;
they hardly follow program semantics, programming plans, or algorithmic knowledge to
understand a program. If a student has already seen a similar code excerpt or algorithm
then he or she will already have a partial mental model of the program. This partial mental
model is likely to facilitate the understanding process, but it may mislead the novices in
case of a complex or a bad example.

Brook’s comprehension theory of hypothesis creation, validation and successive refine-
ment can be partially applied to novices. As they create a hypothesis about program
behavior by reading textual details, domain description and program identifiers. As a gen-
eral learning process, students learn example programs in parts, setting up a hypothesis
and then gradually refining it as the cognitive process proceeds. However, Brook’s compre-
hension theory can not be fully applied to novices, as they usually lack in their knowledge
of programming plans, beacons and problem domain. Beacons and Rules of discourse e.g.,
coding standards, naming conventions have a minimal (non obvious) impact on novices.
These beacons and rules of discourse definitely help novice learners as well, but they do not
explicitly look for such cues to comprehend the examples.

12 Chapter 2. Program Comprehension

Chapter 3

Quality and Complexity of
Example Programs

3.1 What is Good and What is Bad?

It is bit tricky to define or find an exact definition of a “good” or “bad” example. Börstler
et al. has defined a good example as: “An example that relates to the needs of novices in
programming and object-orientation” [6].

We derive a following definition of “bad” example from an article [5] by Börstler et al.:

Bad Example: An example program that imposes risk of misinterpretations, erroneous
conclusions, and leads towards misconceptions causing ultimate problems in learning.

The above definition can be extended to define a good example as: “An example program that
does not have any risk of misinterpretations, misconceptions and erroneous conclusions”.

“Good” and “bad”, the two mutually exclusive adjectives used to describe example
programs, in fact, are the measures of program quality on an ordinal scale. ISO8402 defines
quality as: the totality of features and characteristics of a product or service that bear on its
ability to satisfy stated or implied needs. Not to be mistaken for degree of excellence or fitness
for use, which meet only part of the definition. In the context of this study, the product or
service is an example program. Classification of good and bad examples can be simplified
by identifying quality factors or attributes. These quality attributes combined with above
definitions, result in a more comprehensive definition of “good” example, as below:

Good Example: An example that truly satisfies desired quality attributes and learning
needs of novices without any risk of misinterpretations, misconceptions, and erroneous
conclusions.

So there are three major challenges for a good example.

1. The first one is to satisfy the desired quality attributes, and these quality attributes
are discussed with more details in Section 3.2.

2. The second challenge is to meet learning needs, goals, and objectives. These learning
objectives are generally defined by academics in agreement to the course curriculum
[66] defined by the joint task force of the ACM and the IEEE Computer Society.

13

14 Chapter 3. Quality and Complexity of Example Programs

3. The third challenge for examples is to avoid any misconceptions, false conclusion or
misinterpretations. This means an example should have effective demonstration of a
key concept clearly reinforcing earlier taught principles without resulting any confusion
or ambiguities.

3.2 Desirable Quality Attributes of Example Programs

The quality attributes of an example is a set of desired properties, that a “good” example
program is required to satisfy. The IEEE-1061 standard defines software quality as the
degree to which a software possesses a desired combination of attributes. These attributes
can be mapped to define quantitative measures of quality and can be used to evaluate
quality of examples as well. Börstler et al. [6] classify example quality attributes into
three categories of technical, object-oriented and didactical quality. Technical quality deals
with technical aspects and considers three quality factors: problem versus implementation,
content, and style. Object-oriented concepts and principles are taken into account under the
category of object-oriented quality. While didactical quality considers instructional design,
comprehensibility, and alignment with learning objectives [7].

A list of example quality attributes is given below. Since example program is a special
case of software, so most of these attributes are inspired from general software quality
attributes.

1. Readability: Readability comes first. In academic perspective, it is the most impor-
tant and basic quality attribute for example programs to follow. Readability means
that a program is well written and is easy to read. If an example program is not
even readable, how it can be understandable? Novices tend to understand programs
by reading them in smaller parts, similar to reading an ordinary text. Therefore ba-
sic syntactical units of an example program must be easy to spot and recognize, so
that students can easily establish a meaningful relationship between program compo-
nents [5]. Inappropriate code indentation, bad choice of identifier names, meaningless
comments and non standard code conventions are the major problems that make ex-
ample programs difficult to read. Readability of an example can be improved by using
meaningful identifier names, good use of comments, proper code indentation, following
standard code conventions and removing unused or noisy code elements. Students’ fa-
miliarity of the concept, background knowledge, personal interest and motivation are
the few external factors that may affect readability of an example program.

One may consider readability as a sub unit of understandability or communication,
because of its close relationship to these attributes. However, realizing the impor-
tance of readability, we count it as an essential prerequisite and an explicitly separate
quality attribute. To have a quantitative measure of examples’ readability, Börstler
et al. [5] propose a readability metric, Software Readability Ease Score (SRES) based
on the Flesh Reading Ease Score (FRES). SRES counts lexical units such as sylla-
bles(lexemes), words (tokens/syntactic categories) and sentences (statements or units
of abstraction). Chapter 4 will provide more insight about program readability and
SRES.

2. Understandability: A good example must be understandable by students and obvi-
ously by computers [5]. Understandability is a cognitive process during which students
employ their knowledge, skills and available resources to recognize and understand
the elements of an example program. It comes after the basic quality attribute of

3.2. Desirable Quality Attributes of Example Programs 15

readability. Readability is both a physical and a mental activity [58], whereas under-
standability is purely a cognitive process. Example programs having poor readability,
meaningless identifiers names e.g., A, B, x, y, unnecessarily complex code structure
and non standard code conventions make understanding really a difficult task for
novice learners. Program comprehension is the other name for program understand-
ing in literature, that has been discussed in Chapter 2. In future we aim to study
cognitive processes involved in example program comprehension from students’ point
of view so that we may formulate an effective measure of program quality. There
are several internal and external factors that affect understandability of examples, see
Section 2.3

3. Simplicity: A good example should be as simple as possible, suitably abstract, nei-
ther too complex nor too much simple. It should not expose more or less elements,
e.g., lines of code, concepts and identifiers, than what is actually required [7]. However
readability, understandability, and other quality attributes should not be compromised
for the sake of simplicity. Simplicity should not be misused to write too much abstract
examples without any real life application. “Too abstract” or a simple example is one
of the four problems reported by Malan and Halland [48]. In order to attain simplicity,
sometimes example programs are written without any particular application or rele-
vance to any real life objects’ interaction. Such examples may help students to learn
syntax of the programming language but they do not really help them to learn the
principle of object oriented or any other programming paradigm of choice. Therefore
simplicity here does not mean that educators should use too much abstract example,
rather simplicity here means that examples should not be unnecessarily complex above
the cognitive capabilities of target students.

4. Communication: A good example must have effective explanation of the key con-
cept, reinforcing earlier taught principles without resulting any confusion, ambiguities
or misinterpretations [5]. One of the essential properties of a good example is that it
does not let students to end in erroneous conclusions. Rather a good example should
facilitate students to clearly comprehend complex concepts and principles. It might
be difficult for novices to learn different uses of inheritance or polymorphism by read-
ing lecture notes or text book. But a purposefully designed example can effectively
communicate and help students in learning such key concepts and their principles.

5. Consistency: A good example should apply the principles of a particular program-
ming paradigm in a consistent manner. In case of object oriented paradigm, every
example should take care of the object oriented design heuristics and guidelines. For
example, an example program to demonstrate how methods operate on data fields,
should implement the operations according to the principles of encapsulation. Malan
and Halland [48] quoted an example program where member data is being passed to
member methods of a same class as a formal parameter, against the principles of ob-
ject oriented programming. Therefore both educators and students should be careful
with their choice of example programs to make sure that example programs are consis-
tent with respect to all learning objectives and principles of a particular programming
paradigm.

16 Chapter 3. Quality and Complexity of Example Programs

6. Reflectivity: A good example should reflect the problem domain in question [7]. In
case of object oriented programming, a program modules and its member data fields
as well as methods should reflect real world object’s states and behavior. Identifier
names should possibly match to the objects from real world problem domain. It helps
to improves quality of an example program by making it easier to read and understand.
Students can easily spot and recognize syntactic units to establish a relationship be-
tween them and this makes understanding of the concepts easier.

7. Beauty: Webster’s online dictionary defines beauty as a quality that gives pleasure to
the senses. It is simply natural to feel and realize the beauty, but hard to describe it in
words. Object’s structure, appearance, design and inherent characteristic plays vital
role to make it beautiful. Beauty of an example program is that along with satisfying
all other quality attributes, it should be attractive and interest provoking. Students
should tend to play and learn from example programs without feeling any stress.

Although the above enumerated properties are comprehensive and covers a wide spec-
trum, this is not likely to be a last and a final word.

3.3 Program Complexity

Program complexity is regarded as an intrinsic attribute of a program and, in general, can
not be avoided completely. It affects readability as well as quality of a program making
it difficult to read and understand [18]. Complexity is analogous to “beauty”, as they say
“beauty lies in the eyes of a beholder”. The same is true for complexity, because the level
of complexity perceived is dependent on the person perceiving a program [14]. An example
program that looks simple to some of the students may create problems in understanding
for the rest. Basili [4] defines complexity as a measure of the resources expended by a system
while interacting with a piece of software to perform a given task. According to Kearney
et al. [36], If the interacting system is a computer then complexity is characterized in
terms of execution time (time complexity) and storage required to perform the computation
(space complexity), but if the interacting system is a programmer then complexity can be
characterized in terms of difficulty of performing tasks such as coding, debugging, testing,
or modifying the software.

3.3.1 Program Complexity Measures

The commonly reported types of program complexity are: time complexity, space com-
plexity, computational complexity, structural complexity, and cognitive complexity. Time
complexity is defined as a measure of the time a program takes to execute as a function of
the input size. In context of program understanding, it can be quantified as a time required
to understand a program. Space complexity is defined as a measure of the storage space in
memory consumed by a program at run time. Whereas computational complexity is defined
as a measure of the number of steps or arithmetic operations performed by a program [1].
Structural complexity is based on the program’s intrinsic attributes: syntactic structure,
program size, control flow and decision structures.

Halstead’s software science [29] and McCabe’s cyclomatic complexity [50] are the mostly
used and good choices to measure program complexity based on a program’s syntactics and
decision structure. Halstead’s measures are the functions of the number of operators and

3.4. Software Metrics : Measures of Example Quality 17

operands in a program. McCabe’ cyclomatic number is the maximum number of linearly
independent execution paths through the program [36]. While measuring complexity, one
should also consider the impact of object orientation, in case of object oriented paradigm.
Inheritance, polymorphism, data encapsulation, and abstraction have a dominant affect on
program structure, that impacts structural complexity of the program as well. One may use
Depth of Inheritance Tree (DIT), Coupling between Objects (CBO), and Lack of Cohesion
in Methods (LCOM) measures defined by Chidamber [16] to evaluate structural complexity.

Cognitive complexity deals with cognitive problems in learning. Amount of Informa-
tion, familiarity and recognizability of the concepts, functional and variable dependencies,
cuing level, ambiguity factor, and expressional complexity are the dominant factors adding
towards cognitive complexity of an example. Cant et al. [14] treat cognitive complexity
as those software characteristics that interact with programmer characteristics to affect the
level of resources used. The authors have described mathematical formulas to measure cog-
nitive complexity of a program. In theory these measures of cognitive complexity are very
comprehensive and logical, however bit hard to understand and implement. We are unable
to find any system implementing these measures of cognitive complexity. We are interested
to implement and evaluate these measures of cognitive complexity of Cant et al, in future.

Complexity of example program is affected by the principles of a particular program-
ming language or paradigm as well. In case of object oriented paradigm, programs are
modularized on the basis of objects, where modularization results in less chunking but more
tracing efforts. The data encapsulation property of object oriented paradigm helps to re-
duce cognitive complexity by reducing both forward: to follow ripple effects; and backward
tracing efforts:, to resolve variable dependencies [13]. Inheritance and polymorphism, be-
ing key concepts of object orientation, have almost balanced effect on example complexity.
They increase cognitive complexity by making functional dependencies difficult to resolve,
but at the same time they reduce structural complexity by improving semantic consistency
and decreasing the number of lines of code. Inheritance results in functional dependencies,
where a method implementing some behavior might be contained in the parent class, and
so on. Method calls also become difficult to trace as a result of polymorphism.

3.4 Software Metrics : Measures of Example Quality

A software metric is a function or a measurement tool used to measure certain properties of a
software. In an article [35], Kaner et al. define software quality metric as “a function whose
inputs are software data and whose output is a single numerical value that can be interpreted
as the degree to which software possesses a given attribute that affects its quality”.

A large number of software metrics and models [53, 13, 41, 11, 36, 32, 29, 50] have been
proposed, and more or expected in future. In the former two Sections 3.2 and 3.3.1, we
have discussed software quality attributes and complexity issues related to this study. In
this section we provide a brief overview about a set software metrics commonly used to
measure different attributes of software quality and complexity. This study is a part of on
going research in “Computer Science Education” research group at Ume̊a University about
the quality of object oriented example programs used in academia. These metrics have
been investigated in an earlier work [5] to evaluate understandability of example programs.
Therefore we use the same set of metrics to compare the results and strengthen the findings.

18 Chapter 3. Quality and Complexity of Example Programs

3.4.1 Software Reading Ease Score (SRES)

SRES metric [5] measures readability property of an example. It is a software oriented
extension of a well known “Flesch Readability Formula” used to measure readability index
of ordinary text. The next chapter describes both the SRES and Flesch reading formula in
details.

3.4.2 Halstead’s Metrics

Halstead’s metrics [28] are one of the primitives, most successful, and widely used metrics
of program complexity. Halstead metrics are based on simple static code analysis technique
and works by interpreting a source code as a sequence of tokens and then classifying each
token either as an operator or an operand. The four basic measures of Halstead’s metrics
are:

1. n1 = Number of Distinct Operators

2. n2 = Number of Distinct operands

3. N1 = Total Number of Operators

4. N2 = Total Number of Operands

Program Difficulty (PD), Program Volume (PV), and Program Effort (PE) metrics are
based on the above basic measures of operators and operands. Since “Program Effort” is
just a product of PD and PV , and can be computed from these two measures, therefore we
only consider Program Difficulty and Program Volume metrics to capture the complexity
index of a program.

An important issue with Halstead metrics is that there is no standard definition of op-
erators and operands, i.e., what to count as an operator and what to count as an operand
remains an open question. A well defined counting strategy is required to satisfy this
question. Therefore we have explicitly described a counting strategy, Section 4.6, for the
Halstead’s measures. Since off-the-shelf available metrics tools have their own interpreta-
tions for operators and operands, so we implement our measurement strategy for Halstead’s
metrics to be more precise in results.

3.4.3 McCabe’s Cyclomatic Complexity

We apply McCabe’s cyclomatic complexity metric [50] to measure the structural complexity
on a program. It is one of the widely used and well acknowledged complexity metrics.
Cyclomatic Complexity index v(G) is a measure of the complexity of a method’s decision
structure. It is the number of linearly independent paths and therefore, the minimum
number of paths that should be tested. A threshold value for v(G) is 10 however its value
greater than 7 may indicate an overly complex method.

3.4.4 Lines of Code (LoC)

LoC is a simple static way of measuring program size that can be interpreted to estimate
the efforts or resources required to read, understand, edit as well as maintain a program.
Apparently LoC looks a simple way to go. However the problem is what to count as a
line: Should we include or exclude the empty lines and the lines containing comments?
Should we count physical lines of text or should we figure out for the logical lines of code?

3.4. Software Metrics : Measures of Example Quality 19

Answers to such questions lead to different variants of LoC. For our studies we use an LoC
variant that counts effective physical source code lines only, excluding the comments and
empty lines. Such variant of LoC is referred as ‘SLoC’ (Source Lines of Code) or ‘eLoC’
(Effective Lines of Code) metric in literature as well. We use this variant of LoC because our
implementation of SRES does not considers empty lines and comments. Therefore to study
the true correlation between SRES and LoC we have opted for LoC count without empty
line and comments. However we acknowledge the impact of empty lines, whitespace, and
comments on the readability, and in future, we aim to investigate on these static properties
as well.

3.4.5 Cyclomatic Complexity per LoC (CC/LoC)

CC/LoC is a static measure of average cyclomatic complexity number per LoC. Here ‘CC’
is the sum of the cyclomatic complexities for all methods declared in an example program.
Threshold for this metric is 0.16 [43].

3.4.6 Lines of Code per Method (LoC/m)

LoC/m metric, as the name implies, measures average code size per method in terms of
LoC. Threshold for this metric is 7 [43].

3.4.7 Average Method per Class (m/c)

m/c metric, as the name implies, measures average number of methods per class in a pro-
gram. Threshold for this metric is 4 [43].

3.4.8 Weighted Method Count (WMC)

WMC is a product of above three metrics (i.e., WMC = CC/LoC * LoC/m * m/c).
Threshold for this metric is 5 [43].

20 Chapter 3. Quality and Complexity of Example Programs

Chapter 4

Program Readability

4.1 Introduction

So far we have achieved the first two goals, as enumerated in Section 1.1.2, of this study .
Chapter 2 and 3 have discussed issues related to comprehension, quality, and complexity of
programs. Chapter 2 describes various models of program comprehension and attempts to
build a theory of how do novices understand example programs. In chapter 3, a comprehen-
sive set of desirable quality attributes is proposed. All the attributes described in Section
3.2 are important to study and investigate their impact on the quality of example programs.
However for the sake of simplicity and due to time limitations, we decided to begin with the
prime attribute of readability. So from this point on ward we will focus only on readability
attribute, and will try to accomplish the last two goals of this study by implementing a
readability based tool to evaluate example quality.

4.2 Readability in General

Readability is simply the ease of reading and understanding a text. It is what makes a
text easier to read and understand consequently [21]. Hargis et al. [31] define readability,
the “ease of reading words and sentences”, as an attribute of clarity. While George Klare
[38] defines readability as “the ease of understanding or comprehension due to the style of
writing”.

Above definitions give us a clear picture that readability is closely related to comprehen-
sion or understanding of the text. It is the contents (words and sentences) as well as writing
style or format that improve or worsen a text readability. Research on ordinary text read-
ability started in 1920’s. Classical readability studies began with an aim to develop practical
methods to match reading materials with the abilities of its readers [21]. A number of read-
ability measure and formulas were defined, but only few succeeded to confirm validation
standards. Few of the most popular readability formulas include: Flesch’s Reading Ease
Score [25], Dale-Chall’s Readability Formula [17], SPACHE Readability Formula [65], Fry
Graph Readability Formula [26], SMOG Grading [51], Cloze Procedure[67], Lively-Pressey’s
Formula[47] and Gunning’s Fog Index (or FOG) [27].

21

22 Chapter 4. Program Readability

4.3 Flesch Reading Ease Score - FRES

The Flesch formula is one of the most successful readability formulas designed to measure
readability for adult materials [2]. It was proposed by Rudolph Flesch [25], a writing con-
sultant and well known supporter of the Plain English Movement. Simplicity and accuracy
are the two main characteristics of the Flesch reading ease score. Unlike other formulas,
it is easy to calculate and is regarded as more accurate readability index. Total number
of words, syllables and sentences are the basic counts of the formula. Then it uses average
sentence length and average number of syllables per word to compute a final readability
score for a given text. The original Flesch Reading Ease Formula is as below:

R.E. = 206.835− (0.846 ∗ wl)− (1.015 ∗ sl) (4.1)

Here:
R.E. = Reading Ease
wl = Word Length (The number of syllables in a 100 word sample).
sl = Average Sentence Length (the number of words divided by the number of sentences,
in a 100 word sample).

Below is the modified form of the formula in case of text having more than 100 words:

R.E. = 206.835− (84.6 ∗ASW)− (1.015 ∗ASL) (4.2)

Here:
ASW = Average Number of Syllables per Word (total number of syllables divided by the
total number of words).
ASL = Average Sentence Length (the number of words divided by the number of sentences).

Constants in the formula are selected by Flesch after years of observation and trial [2].

The R.E. value ranges from 0 to 100 and higher value implies easier the text is to read.
Abram and Dowling [2] use following interpretations for FRES, originally specified by Klare
and Campbell [12].

R.E. Range Description Suitable Reader’s Grade
0-29 Very Difficult College graduate
30-49 Difficult Completed high School
50-59 Fairly Difficult Some High School
60-69 Standard 8th Grade
70-79 Fairly Easy 7th Grade
80-89 Easy 7th Grade
90-100 Very Easy Below 6th Grade

Table 4.1: Flesch Reading Ease Scores - Interpretations

Using FRES, mean readability of a book can be accurately determined by analyzing seven
random samples drawn from the book [2]. Due to its simplicity and better performance,
FRES has been adopted as a standard test of readability by a number of government agen-
cies, including The U.S. Department of Defense [11]. Most of the popular word processing
programs, e.g.,MS Word, Google Docs, WordPerfect, and WordPro, have integrated FRES
measure as a readability index.

4.4. Program Readability 23

4.4 Program Readability

Program readability is actually a judgment about the understanding of a program [11]. It
is one of the prime program quality attributes described in the previous chapter. In an
academic environment where students use example programs as a learning tool, readability
of the examples must be good and helpful in understanding. The research on readability of
ordinary text shows that a text with low readability is difficult to understand as well. The
same principle can be applied on computer programs as, a program that is hard to read, is
likely to be hard to understand.

A computer program or software, in terms of a set of instructions, is a special type of text
with its own semantics and syntactic rules. The program semantics and syntactic rules are
defined by a particular programming language. A hypothesis behind program readability
is that if we treat a program code as a plain text then we can apply the text readability
measures on computer programs as well. This means the idea of ordinary text readability
can be extended to program readability, and we can use the well established and validated
readability formulas to measure program readability as well. The results obtained from
program readability measures then can be used to predict difficulty or complexity index of
a program, i.e., how much effort or time will be required to read or understand a program.
It will be useful in academic perspective as well. It may help the teachers and students to
evaluate example programs quoted in text books or lecture notes to match their level of
readability.

Most of the classical readability formulas, including FRES, are based on the count of
lexical tokens or entities, e.g., total number of words, unique words, sentences, syllables,
paragraphs. In order to apply readability formulas to computer programs, one have to
find the equivalents of these lexical entities for a program text. Programming languages at
present are not exactly same as natural languages are, however the basic lexical units are
similar. They have their own set of characters equivalent to alphabets, keywords and user
defined identifiers equivalent to words, statements equivalent to sentences, block structures
equivalent to paragraphs or sections, and modules equivalent to chapters. Static code anal-
ysis techniques and tools can be used to count these static code elements. As a part of this
study, we have developed a stand alone application to measure software readability on the
basis of software readability metrics described in the next section.

Program complexity and readability are closely interrelated, however they are not exactly
same. Complexity is an intrinsic or essential code property based on the problem domain
and it can not be avoided completely in all scenarios. Whereas readability is an accidental
property that can be avoided independent of the problem domain or problem complexity [11].
Readability is a static measure based on independent individual elements, such as identifiers,
statements, comments, indentation, and program style. Whereas complexity depends on
both static components as well dynamic interactions among program components.

4.5 Software Readability Ease Score - SRES

As the name implies, Software Readability Ease Score (SRES) is a measure of program
readability proposed by Börstler et al. [5]. The basic idea behind SRES is Flesch’s reading
ease score [25], and we can say SRES is a software oriented extension of FRES. SRES
works by interpreting program’s identifiers, keywords and other lexical tokens as words,
its statements as sentences, and word’s length as syllables. A program readability formula
can be defined on the basis of number of lexemes, statements, and modules declared in a
program. At present we use Average Sentence Length (ASL) and Average Word Length

24 Chapter 4. Program Readability

(AWL) as program readability index. Lower values for ASL and AWL imply the program
is easier to read, because of shorter sentences and words length; and higher values indicate
the program is difficult to read and understand. For more details about what we count as
words, sentences and syllables, please consult SRES counting strategy, Section 4.5.1.

4.5.1 SRES Counting Strategy

1. Each space separated word, including java keywords and user defined identifiers, is
counted as one word. In natural languages a word in its simple form is is interpreted
as a contiguous sequence of alphabetic characters. In a recent study [19], Delorey et
al. discuss several definitions of a word in programming languages ad different levels of
abstraction. The simple form of word counting described by Delorey et al. is the one
defined at the lexicographic level of abstraction, according to which “word” is a string
of contiguous non-white-space characters. We could not find any specific definition of
word to be counted by Flesch’s readability formula, and presume it to be simply a
continuous sequence of non-white-space characters.

2. In stead of syllables per word, we count word-length, i.e., the number of characters
in a word. To simplify the task of counting syllables per word, we use word-length
instead of syllables. The analogy is based on a general rationale of words with more
syllables have more number of characters. For example, a java keyword ‘new’ is a
monosyllabic and has less number of characters than a disyllabic keyword ‘super’.

3. To measure the number of sentences, we use semicolon ‘;’ and block symbol ‘{ }’ to
mark a sentence. The idea is based on the theory, Section 2.5, of how do novice learn-
ers read and understand a program. Expressions (core components of statements),
statements, and blocks (set of statements) are the fundamental units to constitute a
program code. As a syntactic rule, every java statement ends in a statement termi-
nator operator, a semicolon ‘;’. Novice learners have a natural tendency of reading a
program code in a same way as they read ordinary text. Therefore they treat ‘;’ as ‘.’
in the perspective of ordinary text and read program statements word by word.

a. Novices treat a statement terminator operator, a semicolon ‘;’, equivalent to full
stop in ordinary text to mark the end of a sentence. Therefore we opt to use
semicolons to find and count sentences in a java program, with few exceptions
described below.

b. In case of a block structure, e.g., control statements, class, interface, methods,
and static code blocks, curly braces ‘{ }’ are counted as a compound sentence
that may contain several other sub sentences. In natural languages there is also
a notion of complex or compound sentences that are longer than the average
sentence length and may have several sub-units separated by punctuation marks.
For example:

while (boolVal) {
doSomething();

}

There are two sentences in the above code snippet. The first one marked by ‘;’
and the other by ‘{ }’.

4.5. Software Readability Ease Score - SRES 25

c. Java allows to code control statements, if, else, for, while, and do-while, with or
without block ‘{ }’ symbols. It is a common practice to omit block symbols if a
control statement affects only a single statement. Similarly in case of selection
or iterative control statements if there is only one underlying statement, and no
block ‘{ }’ used then the control statement and the underlying statement both
are combined to form a single sentence. Figure 4.1 shows a java example where
loops are being used without block symbol ‘{ }’.

Figure 4.1: Example: without block symbols

4. In case of a for loop, “initialization, test, and update” parts altogether constitute a
single for statement, therefore we count them as a part of single sentence. We do not
count semicolons at the end of initialization and test condition as separate operators,
since they are the parts of a relative long or complex statement. The reason to do not
count them as separate sentences is that originally they are a part of for statement
and can be empty, as in below code snippet. And the impact of difficulty added by
these elements is counted by resulting a longer sentence. Since they all together are
counted as a single long sentence that results in higher ASL score. Further if they
exist in a complex combination using logical AND, OR operators, their complexity is

26 Chapter 4. Program Readability

taken into account by increased word count, word length, and sentence length. All
these basic measures ultimately results in higher SRES scores.

//Example: For loop variations
class ForLoop{
public static void main(String []args) {
int a=0;
for(; a<5;){
System.out.println("For Loop without internals "+ a++);
}

for (int i = 0, x=1; i < 5; i++, x = x * i){
System.out.println("x= "+ x);
}
}//main
}//class

5. We do not count statement terminator ‘;’ as well as comma ‘,’ separators as a word or a
part of word-length, we consider semicolon ‘;’ just as a sentence marker. Because these
are generally treated as punctuation marks to separate words, clauses, or sentences.
They are not qualified to add cognitive load or difficulties in reading, therefore counting
these operators as independent words (with shorter length of ‘1’) will result in low
SRES score. Another view about these operators is that these actually make reading
of a text easier by clearly marking boundaries and among words, phrases and sentences.
So it might be interesting to study the helping impact on readability added by these
or any other parts of a program.

6. An empty statement (just a semicolon ‘;’ and nothing else) is counted just as a one
word of length 1, and a single sentence. Since ‘;’ itself appears as an independent
statement and not as a part of any other statement, therefore we treat as a simple
word and sentence. For example:

class Empty{
; // empty statement - counted as one word of length 1 and a sentence.
}

7. We assume that nested block structures like { { } } and nested parenthesized expres-
sions such as: a*(b+(c-d)), are more complex in comprehension than { } { } or simple
expressions without any parenthesis or block symbols, such as: a*b+c-d. This implies
nested blocks should get more scores indicating more “difficulty”. Therefore in case
of nested blocks and parenthesis, complexity impact is taken into account based on
the level of nesting involved. The nesting level starts from 0 and goes upto n; and the
SRES measures of wordsCount and WordLength are updated according to following
equations:
wordsCount += (nestingLevel * 2)
wordsLength += (nestingLevel * 5)

The constants 2 and 5 are kind of weight values, that can be adjusted later to reflect
appropriate level of complexity.

4.5. Software Readability Ease Score - SRES 27

8. Code statements that involve access to class members (fields or methods) are relatively
complex than the simple arithmetic expressions involving plus or minus arithmetics.
As these statements interrupt control sequence and involve chunking and tracing ef-
forts, therefore we need to define special SRES counting rules for such statements.

In case of Object access operator (dot), counting rule works as follow:

objRef.field = value;
objRef.method();

– The identifier ‘objRef’ , before dot operator is counted as one word, with its
specific length.

– Dot operator is counted as 2 words with total length 2.

– The identifier for member field or method, after dot operator is counted as 2
words, and its corresponding length is multiplied by 2. (parenthesis in case of
method call are not counted).

– The assignment operator ‘=’ and assigned value are counted as normal, one word
with their corresponding length.

For more details about this rules, please see the example below:

class ScopeTest {
int test = 10;

void printTest() {
int test = 20;
System.out.println("Test:" + test); // Total words: 12

/*
The 2 dot operators are counted twice in words count and their length is also counted
twice, same is for followed identifiers "out" and "println", each is counted twice for
both word count and word length. However the reference identifier "System" and arguments
within parenthesis, including the "+" concatenation operator are counted as normal
counting rule of one word with its corresponding length.
*/
}

public static void main(String[] arguments) {
ScopeTest st = new ScopeTest();
st.test=30; //Total words: 7

/*
The dot operator is counted twice in words count and its length is also counted twice.
While the object reference identifier "st", assignment operator "=" and the value assigned
are counted as normal rule of one word for each word/operator with its specific length.
*/

st.printTest();
}// main

}// class

28 Chapter 4. Program Readability

Note: Above rule is not applied to dot operator in case of dot qualified Identifier name
in import statement or package declarations. In Import and package declarations we
count dot as one word of length 1.

9. We count a string literal as one word, and its complexity is measured by the string
length, that means longer string literals will have correspondingly longer word-length
resulting in higher SRES score. For example, in case of System.out.println("DotThis.f()");,
the string literal counted as one word is “DotThis.f()”. Since string literals in case of
print statements are just printed as they appear in a code segment, therefore we count
them as a single word without applying the special rule to count ‘dot’, as in the above
described counting rule.

10. We count array operator ‘[]’ as a word of length 2 in case of array declarations.
Whereas in case of array access expressions, we count array index and array operator
as a combined word with the resulting length combined the array operator and index.

4.6 Counting Strategy for Halstead’s Measures

1. All program entities including header (package declaration, import statements), dec-
larations (class, method, field declarations) are included. Only comments are ignored.

2. All the keywords are counted as operators.

3. All kinds of operators including following symbols are counted as operators:
‘;’ (semicolon)
‘.*’ (import all, e.g., import java.io.*)
‘.’(package separator)
‘@interface’ (in case of annotation declaration)
‘@’ (annotation)
‘?’ (wildcard in generics arguments)

4. Following delimiter operators are counted: [],(), { },< >.

5. Parenthesis ‘()’ are counted as operators in case of grouping expressions, e.g (2+4)*8,
and type casting, and not in in case of method declarations and calls, around the
argument list.

6. Keyword “default” used in annotations’ method declaration statement is distinguished
from the “default” keyword used under switch statement.

7. Colon ‘:’ used after case and default statement in switch, colon used after label decla-
ration, and a colon used in assert statement, all are distinguished operators, and are
counted as unique operators.

8. Primitive type identifiers (boolean, char, byte, short, int, long, float, double) and
User defined types’ identifiers are counted as operators, when they are used to specify
data type of some value, e.g., in case of variable declarations, definitions, method
arguments, return value etc. But in their own declaration (class, interface, enum,
decalarations) identifiers for user defined types are counted as operands [52].

9. Unary ‘+’ and ‘-’ are counted distinctly from the binary addition ‘+’ and subtraction
‘-’ operators [52].

4.6. Counting Strategy for Halstead’s Measures 29

10. We make a distinction between postfix and prefix increment ‘++’ operators, i.e., both
are counted as distinct operators. Same is true for postfix and prefix decrement ‘–’
operators.

11. We agree with Miller [52] to count local variables with same names in different methods
(scopes) to be counted as unique operands. It is contrary to the counting strategy [60]
defined by Salt. The reason to count them as unique operands is that we have to treat
them separately in order to understand the program correctly based on scope.

12. We count method identifier as an operand in its declaration statement and as an
operator in a call statement. In case of method overloading, each overloaded method
call is counted as a distinct operator [52].

30 Chapter 4. Program Readability

Chapter 5

Implementation - SRES
Measurement Tool

5.1 Introduction

In this study we develop an alpha version of the SRES measurement tool, developed using
a parser generator tool, ANTLR, and Java platform. The current version implements Hal-
stead’s measures of software science [29] and measures of software readability ease scores
[5]. Counting strategies implemented are described in the previous chapter. Main objec-
tive of this study is to determine and evaluate the quality of commonly used java example
programs. SRES measures provides statistics about readability of the program whereas
Halstead’s measures focus on code complexity, and by combining both the results one can
make a conclusion about quality of the given example. Readability is only a one of the
several quality attributes described earlier in section 3.2. The problem in measuring other
quality attributes is the difficulty in finding their corresponding quantitative or statistical
measures.

At present we focus only on the source code of example programs, and do not consider
textual description, lecture notes, program comments or any other form of documentation.
Textual description or any help about example program is quite important as it impacts
program quality and comprehension by facilitating students to clearly understand any com-
plex part, acting as a shield against misinterpretation. However due to lack of time and
resources we contended initially to focus only on the source code. SRES measure of readabil-
ity is based on the number of lexical tokens and it does not consider the use of comments,
code style and indentation, coding standards and naming conventions reflecting a problem
domain plus any other factor affecting program readability. We assume that the programs
are well indented, well formated, and have an appropriate level of comments inside.

5.2 SRES Measurement Tool

SRES measurement tool developed is a standalone java source code analyzer. It reads
java programs and displays results for the implemented metrics of SRES and Halstead. At
present it supports Java 1.5. It follows static code analysis approach performed with the
help of Java Lexer, Parser, and Tree Parser components, automatically generated using
ANTLR, parser generator tool. For more details about ANTLR, please see the section

31

32 Chapter 5. Implementation - SRES Measurement Tool

5.2.2. To generate a lexer, parser, tree parser, and other auxiliary files ANTLR need a
corresponding grammar file. For this purpose we reuse the java grammar files Java.g and
JavaTreeParser.g, originally written by Dieter Habelitz. There grammar files are available
for use at ANTLR home page http://www.antlr.org/. “Java.g” is a lexer and parser
combined grammar file and ANTLR generates both JavaLexer and JavaParser against the
specified lexer and parser rules.

Figure 5.1 shows there are four key components involve in the development of SRES.

Figure 5.1: SRES - Components Diagram

SRES Metrics: This component is responsible to implement software readability ease
score, halstead measure; and any other software metrics added in future. It also
provides user interface to the SRES tool. As shown in the figure 5.1, it requires source
java file as input and provides Halstead and SRES metrics results as output. The
package “edu.cs.umu.sres” in the source code contains all the implementation classes
for this component, where Main.java provides user interface, while SRES.java and
Halstead.java implements corresponding software metrics.

Java Lexer: Lexer also known as a scanner or lexical analyzer is a program component
that recognizes input stream of characters and breaks it into a set of vocabulary
symbols or tokens. A token object returned by the lexer may represent more than
one characters of same type, for example INT token represent integers. Each tokens
consist of at least two pieces of information: the token type (lexical structure) and
the text matched by the lexer [56]. These tokens are then pulled and used by the

http://www.antlr.org/

5.2. SRES Measurement Tool 33

parser component. Its implementation in source code is provided by JavaLexer.java
class that is automatically generated by ANTLR against the lexical rules defined in
the Java.g grammar file. Lexer rules match characters on the input stream and return
a token object automatically. Below is an excerpt from lexer grammar, that defines
lexer rules for hexadecimal, decimal and octal literals.

HEX_LITERAL : ‘0’ (‘x’|‘X’) HEX_DIGIT+ INTEGER_TYPE_SUFFIX? ;
DECIMAL_LITERAL : (‘0’ | ‘1’..‘9’ ‘0’..‘9’*) INTEGER_TYPE_SUFFIX? ;
OCTAL_LITERAL : ‘0’ (‘0’..‘7’)+ INTEGER_TYPE_SUFFIX? ;

fragment
HEX_DIGIT : (‘0’..‘9’|‘a’..‘f’|‘A’..‘F’) ;

fragment
INTEGER_TYPE_SUFFIX : (‘l’|‘L’) ;

Java Parser: Parser is simply a language recognizer that. It applies grammatical structure
defined as parser rules to a stream of tokens (vocabulary symbols) received from the
lexer component. Both Lexer and Parser perform similar task, the difference is that the
parser recognizes grammatical structure in a stream of tokens while the lexer recognizes
structure in a stream of characters [56]. Along with language recognition, parser has
the ability to act as a translator or interpreter, and can generate appropriate output
or an intermediate data structure, usually a parse tree or abstract syntax tree (AST).
An abstract syntax tree (AST) is a simplified tree representation of a source code,
where each node denotes a particular syntactic construct matched in the source code.
Parsing a code by constructing abstract syntax tree simplifies as well as accelerates
the task, because required components are added to the AST, and the interpreter or
parser has not to parse the extra lines of code.

Java parser component is implemented by JavaParser.java class automatically gen-
erated by ANTLR using the grammar file Java.g. It generates an abstract syntax
tree against the matched rules and tree construction rules embedded in the parser
grammar. Below is an excerpt from parser grammar, that defines parser rule for block
statement, for complete description, please have a look at Java.g grammar file.

block
: LCURLY blockStatement* RCURLY

-> ^(BLOCK_SCOPE[$LCURLY, ‘‘BLOCK_SCOPE’’] LCURLY blockStatement* RCURLY)
;

Java Tree Parser: ANTLR has the ability to generate a tree parser automatically from
a tree grammar. Tree grammar actually describe the structure of the tree (AST built
by the JavaParser component). In order to evaluate program statements and com-
pute the corresponding metrics values, actions are embedded as in-line code segments
surrounded by curly braces {...}, as shown in the tree grammar excerpt below. This
component is implemented by JavaTreeParser.java class automatically generated by
ANTLR using a tree grammar file JavaTreeParser.g. It traverses a two-dimensional
abstract syntax tree and computes the metrics values for each node matched in the
AST. Below is an excerpt from tree parser grammar JavaTreeParser.g grammar file.

34 Chapter 5. Implementation - SRES Measurement Tool

block
: ^(BLOCK_SCOPE LCURLY {blockList.add("{");} blockStatement* RCURLY
{blockList.add("}");})
{updateOPCounter("{}"); sentencesCount++;}
;

5.2.1 How it Works

Figure 5.2 shows the graphical user interface, the user interacts. The input area on the top
allows user to select either a single java source file or an application folder containing more
than one java source files. We assume that the source java files are error free: they have
no compile time or run time errors. Results area below displays the end results, when a
user clicks on either “SRES” or “Halstead” button. Figure 5.3 shows the result calculated.
“Save” button in the down right corner lets the user to save the results calculated through
a save dialog box, so that result log can be maintained.

Figure 5.2: SRES - User Interface

5.2.2 ANTLR - Parser generator

ANTLR stands for “ANother Tool for Language Recognition” is used to construct other
language processing tools such as translators, compilers or compiler compiler. It takes a
grammar file as input and produces desired source code for language recognizers, analyzers
and translators. ANTLR grammar file specifies target language to be matched with a set of
rules and actions to follow. The rules are defined to match specific language phrases, whereas

5.2. SRES Measurement Tool 35

Figure 5.3: SRES - Results

actions are embedded to perform specific tasks based on the matched rule and context. For
more information about ANTLR, please visit the home page http://www.antlr.org/.

5.2.3 Difficulties

As long as the theory is concerned both Halstead and SRES measures look pretty simple and
easy to enumerate. But there arise some unanswered questions or difficulties once you decide
to implement these measures. A key issue with Hasltead’ measures is that there is no clear
or standard definition provided for what to count as unique operator, unique operand, total
operator, and total operand [60]. “The definitions of unique operators, unique operands,
total operators, and total operands are not specifically delineated” [22]. Apart from the
basic issue of defining operators and operands, we faced following specific questions during
implementation.

– What to do with the pair of tokens that appear in combination, such as if-else, do-
while, try-catch-finally?

– Should we include or exclude the commented code?

– Should we count the apostrophe symbols used to delimit character literals as an
operand or an operator?

A counting strategy described in section 4.6 helps to fix above issues.

http://www.antlr.org/

36 Chapter 5. Implementation - SRES Measurement Tool

Similar problems are faced in case of Software Reading Ease Score. It looks really simple,
appealing and easy to implement SRES measures, as we have to count only the basic entities:
words, sentences and word’s length. But there is no precise definition available for what to
consider as a word and how to limit the sentences of a java program. We faced following
specific questions while implementing SRES measures:

– What to count as syllables in case of a words (keywords or user defined) in a program?

– Should we calculate readability of the comments or just ignore them?

– Should we count an empty statement (just a semicolon ‘;’ nothing else) as a word of
length 1, and a sentence as well? See Rule 6 in section 4.5.1.

– Should we count initialization, test condition, and update segments of a for loop as
3-separate sentences or a part of a single sentence altogether?

– What to do with parenthesis (), as in case of “if, for, while, and method calls”?
Should we count it as a separate word or a part of the word preceding it?

– What about an array operator [], should we count it as a separate word or a part of
the word(identifier) preceding or following it?

– What about <> operator used in generics, should we count it as a separate word or a
part of the word(identifier) preceding or following it?

A counting strategy described in section 4.5.1 helps to fix above issues to much extent.

Chapter 6

Experimental Results and
Validation

6.1 Experimental Setup

We use a subset of java example programs selected by Börstler et al. [7] to apply and evaluate
our metric of software readability, namely the SRES. The subset comprises 18 examples, as
listed in in the figure 6.1, where the first sixteen examples, E1 to E16, are categorized as
“mandatory”. These examples programs are selected from 10 different commonly used java
programming textbooks. SRES metric of program readability considers only source code of
the example programs. Textual description given in textbooks or any other documentation
is not considered.

We apply Pearson’s product-moment correlation coefficient, denoted by r, to study the
relationship between SRES and a set of selected conventional software metrics as described
in Section 3.4. These metrics are summarized in the Table 6.1 as well. Threshold for these
metrics are selected according to the likelihood of the capabilities and limitations of novice
learners. SRES measure of readability is still on evolution and the threshold is based on
average sentence length and word length suitable enough for the beginners.

6.2 Experimental Results

Figure 6.2 shows results for all the software metrics against each example program. Except
HQS [8] in the last column, these results are captured using 3 different measurement tools:
Krakatau Professional (see http://www.powersoftware.com/kp/), JHawk (see http://
www.virtualmachinery.com/jhawkprod.htm), and the SRES measurement tool developed
as a part of this study. The reason for using 3 different measurement tools is that we are
unable to find any single open source tool to measure all the selected metrics collectively.

Most astonishing result is that none of the selected example programs satisfies selected
threshold for all the measures simultaneously. However the examples E2, E3, and E7 satisfy
all metrics except the average Cyclomatic Complexity per Lines of Code metric. These three
examples are also rated among the high ranked examples by the human reviewers [8]. This
implies that the metric results are in support of the quality impression by human subjects.
Out of these three examples E2 is rated as the best in terms of all software metrics applied.
On the other end E26, E12, and E10 are the example programs in decreasing order, that

37

http://www.powersoftware.com/kp/
http://www.virtualmachinery.com/jhawkprod.htm
http://www.virtualmachinery.com/jhawkprod.htm

38 Chapter 6. Experimental Results and Validation

Figure 6.1: Example Programs used in Evaluation

6.2. Experimental Results 39

Metric Description Threshold Tool Used
LoC Source Lines of code: number of source

code lines, excluding whitespaces and
comments.

30 (User De-
fined)

Krakatau Pro-
fessional

PD Halstead’s Program Difficulty, A mea-
sure of how difficult a method code is
to understand.

30 SRES Measure-
ment Tool

PV Halstead’s Program Volume: Halstead
Volume for a method. Calculated as:
V = Nlog2n.

300 SRES Measure-
ment Tool

SRES -ASL Average Sentence Length. 5 SRES Measure-
ment Tool

SRES -AWL Average Word Length. 6 SRES Measure-
ment Tool

TCC Total Cyclomatic Complexity: Cyclo-
matic Complexity (v(G)) is a measure
of the complexity of a method’s de-
cision structure. It is the number of
linearly independent paths and there-
fore, the minimum number of paths
that should be tested. A v(G) value
greater than 7 may indicate an overly
complex method.

10 JHawk

CC/LoC Average CC per LoC, where CC is the
sum of the cyclomatic complexities of
all methods.

0.16 Self Computed

LoC/m Average LoC per method, where m is
the number of methods.

7 Self Computed

m/c Average number of methods per class,
where m and c are the number of meth-
ods and classes, respectively.

4. Self Computed

WMC Weighted Method Count, the product
of the three previous measures.

5 Self Computed

HQS Human Quality Score: In an ongoing
study [8], Börstler et al. compute HQS
based on the reviews by 24 individu-
als which review each example using an
Evaluation Instrument described in the
article [8].

Maximum =
30

Table 6.1: Selected Measures for Correlational Study

have most violation of the selected metrics. Results of SRES measure are also interesting to
observe. Four examples, E1, E10, E11, and E14, have SRES-ASL greater than 5 (threshold),
but all of these examples have no problem with the SRES-AWL threshold. SRES-AWL
measure is above the threshold of 6 for four other example programs, E3, E4, E5, and E7.
There are 8 out of 18 (44%) example programs that fail to satisfy either SRES-ASL or
SRES-AWL measures. According to our results, SRES threshold violation set for AWL and

40 Chapter 6. Experimental Results and Validation

Figure 6.2: Measurements Results

ASL measures are mutually exclusive.
Another interesting result to observe is the difference in SRES-ASL scores in case of

examples E7 and E14. E7 looks simple to read and SRES-ASL scores accordingly a low
index of 4. But in case of example E14 that apparently looks simple to read, the SRES-ASL
score (SRES-ASL =7.0) is comparatively higher than some other examples (e.g., E5, E13,
and E15) which apparently look difficult to read. The obvious reason for the relatively low
SRES-ASL score (in case of E5, E13, and E15) is do not considering the comments by the
SRES metric. On the other hand, SRES-ASL results high score, in case of E14, due to
the presence of several relatively longer print sentences (statements). This implies that we
should consider the use of less weights in case of simple print like sentences (statements).

6.3 Statistical Significance and Correlations

We apply statistical data analysis techniques to further evaluate our experimental results.
Pearson correlation coefficient is one of the best known and most commonly used statistics to
measure correlation between two data sets. It shows the degree and direction of relationship
between two variables. In our experiment these two variables are: SRES and the other one
is a software metric from a set of selected conventional software metrics. To analyze the
relationship between SRES and other software metrics, we use a correlation matrix as shown
in the Figure 6.3. Since we have a set of 18 examples, so the input data set used for the two
variables of correlation, consists of 18 values, i.e., N = 18,.

Regarding the interpretation of correlation coefficient, there are no universally accepted
rules. Its value ranges from -1 to 1. Positive sign indicates direct relationship (the value of

6.3. Statistical Significance and Correlations 41

Figure 6.3: Correlation matrix for the software metrics as described in Table 6.1, based on
the Pearson product-moment correlation coefficient.

Y increases as X increases) whereas negative sign indicates inverse relationship (the value
of Y decreases as X increases). A maximum value of 1 means there exist a perfect linear
relationship between variables X and Y, whereas a value of 0 is interpreted as there exist no
linear relationship between the two variables. Our interpretation of correlation coefficient,
r, is shown in Table 6.2.

Correlation Value Interpretation
0 to ± 0.29 Very Weak
0.3 to ± 0.49 Weak
0.5 to ± 0.69 Strong
0.7 to ± 1.0 Very Strong

Table 6.2: Correlation Coefficient-Interpretation

An important consideration regarding correlation interpretation is to answer the ques-
tion: “Is the correlation coefficient significant or not”? In statistics, statistically significant
means a result is unlikely to have resulted by chance. So a significant correlation implies
that the correlation is not obtained by chance only. To analyze the significance of the results
obtained, we investigate on p-value calculated using a paired two-tailed distribution t-test.
We apply a paired version of the t-test because the two software metrics are applied on a
same set of data (example programs).

To test significance of a correlation, we apply a threshold (i.e., α level) of r = ±0.468 at
p = 0.05. This means , for a correlational statistics, if the p-value is less than the α level,
0.05 in this case, and corresponding value of ‘r’ is greater than 0.468 or less than -0.468 then
the correlational statistics are statistically significant (i.e., the probability is small that the
results happened by chance).

42 Chapter 6. Experimental Results and Validation

Figure 6.4: Arithmetic means of the measurement results shown in Figure 6.2

Figure 6.5: p-values for SRES and all other software measure as described in the Table 6.1

6.3.1 SRES and LoC

Statistics given by the Figures 6.3 and 6.5 show that there exist a non-significant weak
positive, r < α, correlation between SRES-ASL and LoC. The weak correlation between
the two measures is quite intuitive as the number of lines in a code has nothing to do with
the length of a program statements (sentences). The weak positive correlation between
SRES-ASL and LoC is further supported by the graph shown in Figure 6.6. There are only
6 (one third of the total) examples (E1, E2, E5, E10, E11, and E16) for which SRES-ASL
and LoC show linear relationship. However non-significance of the correlation implies that
the result is likely to be observed by chance, and therefore may differ in case of a different
sample data.

The statistics for SRES-AWL and LoC also predict non-significant very weak and nega-
tive correlation of degree 0.2. Very weak correlation between the two measures is again quite
expected as the number of lines in code is not supposed to have any affect on the program’s
word-length. The graph in Figure 6.7 supports the very week negative correlation between
the two measures. However the non-significance of the result implies high probability for
the relationship to be happened by chance.

Figure 6.6: SRES-ASL and LoC Correlation

6.3. Statistical Significance and Correlations 43

Figure 6.7: SRES-AWL and LoC Correlation

Figure 6.8: SRES-ASL and PD Correlation

6.3.2 SRES and PD Correlation

SRES-ASL and Halstead’s measure of difficulty (PD) have a a significantly strong, r > 0.468
(critical value) at p < 0.05, and positive correlation of degree 0.5. A strong correlation with
a low degree of 0.5 between the two metrics seems quite logical because Halstead’s difficulty
measure is based on the number of operators and operands which may affect the average
length of program sentences. measure. Significantly weak positive correlation between
SRES-ASL and PD is further supported by the graph shown in Figure 6.8.

The p-value and r-value statistics for SRES-AWL and Program Difficult measure predict
non-significant and weak negative correlation with r = -0.3 and p-value less than the α level.
The weak inverse relationship between the two variables can be observed by a look at the
graph shown in the Figure 6.9. However non-significance of the correlation implies that
the result is likely to be observed by chance, and therefore may differ in case of a different
sample data.

6.3.3 SRES and PV Correlation

Correlation coefficient ‘r’ observed for SRES-ASL and Halstead’s Program Volume is +0.5
at p < α. This implies a strong direct correlation between the two metrics. The p-value

44 Chapter 6. Experimental Results and Validation

Figure 6.9: SRES-AWL and PD Correlation

Figure 6.10: SRES-ASL and PV Correlation

for SRES-ASL and PV is below the α level, while ‘r’ is greater than the critical level,
therefore the strong correlation is significant enough as well, with a low probability that it
has resulted by chance. Since PV metrics is based on the number of operators and operands
in a program, therefore the strong correlation with the program’s average sentence length
metric seems to be logical in theory as well. The graph, shown in Figure 6.10 is also in
agreement to the this prediction.

The correlation coefficient for SRES-AWL and Program Volume measure is -0.2 with
p-value less than the α level. The statistics given in Figures 6.3 and 6.5 implies that
the SRES-AWL and Program Volume measures have a non-significant and week negative
correlation. The non-significance of the result implies high probability of these results to be
happened by chance, and the statistics might be different in case of a different data set. The
weak relationship between the two variables can also be observed by a look at the graph
shown in Figure 6.11.

6.3.4 SRES and TCC Correlation

Correlation coefficient ‘r’ for Average Sentence Length and Total Cyclomatic Complexity
measures is 0.1 with corresponding p-value of 0.04. These statistics given in Figures 6.3 and

6.3. Statistical Significance and Correlations 45

Figure 6.11: SRES-AWL and PV Correlation

Figure 6.12: SRES-ASL and TCC Correlation

6.5 implies a non-significant and very weak positive correlation. TCC metric is based on
the number of linearly independent paths through the source code, and these control paths
have nothing to do with the the length of program sentences (statements). Therefore the
prediction of very weak correlation between the two metrics is intuitive to much extent.

Statistics for TCC and Average Word Length measure of SRES predict a non-significant
weak negative correlation of degree 0.1, as shown in Figure 6.3. The correlation is non-
significant because the p-value is greater than the α level as well as the value of ‘r’ is also
below the critical value of 0.468 . Non-significance of the correlation implies that the result
is likely to be observed by chance, that means it is not a reliable prediction. The weak
relationship between the two variables can also be observed by a look at the graph shown
in the Figure 6.11.

6.3.5 SRES and CC/LoC Correlation

Correlation coefficient for SRES-ASL and “Average Cyclomatic Complexity per LoC” is
-0.8 with the p-value less than the α level. These statistics given in Figures 6.3 and 6.5
predict a significantly very strong correlation between the tow metrics in opposite direction,

46 Chapter 6. Experimental Results and Validation

Figure 6.13: SRES-AWL and TCC Correlation

Figure 6.14: SRES-ASL and CC/LoC Correlation

i.e., increase in the value of one measure decreases the value of the other. This very strong
inverse linear relationship between the two variables can be observed by having a look at
the graph shown in the Figure 6.14. Significance of the statistics implies the results are
likely to be reliable with small probability of the relationship to be observed by chance.

Whereas the correlation coefficient for the SRES-AWL and “Average Cyclomatic Com-
plexity per LoC” measure is 0.5 with a corresponding p-value less than the α level. These
statistics given in Figures 6.3 and 6.5 imply a significantly strong positive correlation, as
supported by the graph of the Figure 6.15.

6.3.6 SRES and LoC/m Correlation

SRES-ASL and LoC/m metrics have a a significantly very strong, r > 0.468(criticalvalue)
at p < 0.05, positive correlation of degree 0.8. Though the very strong correlation is not
very intuitive in theory, however statistically it has been resulted significant to show its
reliability. This perfect very strong linear relationship between the two measures is clearly
visible in the graph, shown in Figure 6.16.

The correlation coefficient observed for SRES-AWL and “LoC per Method” (LoC/m) is

6.3. Statistical Significance and Correlations 47

Figure 6.15: SRES-AWL and CC/LoC Correlation

Figure 6.16: SRES-ASL and LoC/m Correlation

48 Chapter 6. Experimental Results and Validation

Figure 6.17: SRES-AWL and LoC/m Correlation

Figure 6.18: SRES-ASL and m/c Correlation

-0.5 as shown in the correlation matrix of Figure 6.3. However The p-value for two metrics
is greater than the α level, resulting in non-significance of the correlation. These statistics
imply that there exist a non-significantly strong negative correlation between the measures,
as shown in the graph of Figure 6.17.

6.3.7 SRES and m/c Correlation

The correlation coefficient for SRES-ASL and ‘m/c’ metrics found is -0.5, with a corre-
sponding p-value of 0.3. These statistics leads to the interpretation of non-significantly
strong inverse correlation, since p > α. The graph plotted for SRES-ASL and m/c metrics,
Figure 6.18, also supports a fairly strong correlation between m/c and SRES measure of
Average Sentence Length (SRES-ASL), in opposite direction. However statistically the cor-
relation is not significant and may lead to different interpretation of correlation when tested
with different data set.

Whereas the correlation coefficient ‘r’ for SRES-AWL and “Methods per Class” (m/c)
measure is 0.2, with a corresponding p-value of 0.02. These statistics predict a non-
significantly very weak correlation between the two measures, since the value of ‘r’ is less
than the critical value of 0.468. The graph in Figure 6.19 also supports a very weak direct

6.3. Statistical Significance and Correlations 49

Figure 6.19: SRES-AWL and m/c Correlation

Figure 6.20: SRES-ASL and WMC Correlation

correlation between the two measures. The non-significance of the measures imply high
probability of statistics to be resulted by chance.

6.3.8 SRES and WMC Correlation

Correlation coefficient for SRES-ASL and WMC measure is -0.4, with a p-value of 0.98,
much higher than the α level. These statistics lead to interpretation of non-significant and
weak negative correlation between the two metrics. The graph of ASL and WMC measure
for selected example programs is shown in the Figure 6.20.

The correlation coefficient ‘r’ for SRES-AWL and WMC metrics is 0.0 (much lower than
the critical value of 0.468), with a corresponding p-value greater than the α level of 0.05.
This predicts that the correlation between the two metrics is non-significant and very weak
as well. Correlation coefficient of 0 does not mean that the two variables are unrelated or
independent of each other, rather it implies that there exist no linear relationship at all
between them. Further the non-significance of the correlation implies that the results might
have occurred by chance, and the two metrics may have different correlation coefficient
for some other data set. This very weak or almost no linear relationship between the two

50 Chapter 6. Experimental Results and Validation

Figure 6.21: SRES-AWL and WMC Correlation

Figure 6.22: SRES-ASL and HQS Correlation

variables can be noted by a look at the graph shown in the Figure 6.21

6.3.9 SRES and HQS Correlation

As shown in Figure 6.3, the correlation coefficient for SRES-ASL and HQS measures is -0.5,
with a corresponding p-value less than the α level of 0.05. Both ‘r’ and ‘p’ values satisfy the
threshold for the significance of the correlation. However the negative sign with ‘r’ indicates
inverse correlation. Inverse direction of the correlation implies that the SRES-ASL measure
of example’s readability is not in agreement to the quality score perceived by a group of
human reviewers. This opposite direction of linear relationship between two measures is
quite obvious in the graph shown in Figure 6.22

Whereas the correlation coefficient for SRES-AWL and HQS measure is 0.2, with a
corresponding p-value less than the α level. These statistics predict a non-significant very
weak correlation between the two measures. The weak correlation between the two metrics is
supported by the Figure 6.23. The weak correlation between two measure is not as expected
to be, and it shows that the SRES based readability index is not in a linear relationship to
the quality score assigned to example programs by the human reviewers in case of HQS.

6.3. Statistical Significance and Correlations 51

Figure 6.23: SRES-AWL and HQS Correlation

6.3.10 SRES and Buse’s Metric for Software Readability

We have described Buse and Weimer’s Metric for Software Readability [11] in Section 1.3.
It would be interesting to see how these two metrics of software readability correlates. To
measure readability of a code, both metrics count syntactic elements of the code which
are easy to measure using static code analysis techniques. Buse’s metric is based on a
fairly large code readability survey (12000 human judgments) to determine which factors
are the prime determinant of readability. Whereas SRES metric is based on the principles
of “Flesch’s Readability Formula” described in the Section 4.3. The code features that
these two metrics use to score readability index are partially overlapping. SRES has two
parts, “SRES-Average Sentence Length” and “SRES-Average Word Length”. In Buse’s
metric, SRES-ASL appears with the name of “Average Line Length” and is second most
contributing code features to predict the readability index. “SRES-Average Word Length”
measure somewhat corresponds to the “Average Identifier Length” feature, which is observed
by Buse et al. to have almost no contribution in the measure of readability. However Buse
and Weimer’s findings are based on human annotation subjected to personal preferences, and
should not be followed as a comprehensive model of readability. But it would be interesting
to further investigate the true role of identifier-length in the measures of readability.

In order to statistically analyze the correlation between SRES ans Buse’s metrics, we
follow the same approach as in case of other software metrics described in the earlier
sections. To get a score for Buse’s metric we use an on-line tool available at http:
//www.arrestedcomputing.com/readability/readapplet.html. In support of Buse’s ap-
proach of using code snippets instead of large code segments or multiple java classes, this
tool expects java methods as input. Therefore to meet the tool requirements, we shortlisted
our input examples data set of Figure 6.1, to a new subset that does not include examples
with more than 1 java classes. The new subset contains 9 examples: E1-E3, E5-E7, and
E13-E15. Figure 6.24 shows metrics scores and Figure 6.25 shows correlation coefficient and
p-values for SRES and Buse’s metrics using new examples data set. Since our new data set
now have size N=9, therefore we change the threshold for p-value to 0.01. Accordingly the
threshold for ‘r’ is now 0.798, to test if the correlation statistics are significant or not at p ¡
0.01.

Statistics given by Figure 6.25 show that there exist non-significant (value of ‘r’ is much
less than the critical value) very weak direct correlation between SRES-ASL and Buse’s
metrics. The weak linear relationship between the two metrics is supported by a graph,

http://www.arrestedcomputing.com/readability/readapplet.html
http://www.arrestedcomputing.com/readability/readapplet.html

52 Chapter 6. Experimental Results and Validation

Figure 6.24: Results of SRES and Buse’s Readability Metrics

Figure 6.25: Correlation Coefficient and p-value for SRES and Buse’s Readability Metrics

6.4. Validation of Halstead’s Metrics 53

Figure 6.26: SRES-ASL and Buse’s Readability Metrics Correlation

Figure 6.27: SRES-AWL and Buse’s Readability Metrics Correlation

shown in the Figure 6.26. The statistics observed for SRES-AWL and Buse’s metrics predict
non-significantly very weak (r = −0.12) negative correlation, as supported by a graph of
the Figure 6.27. Though we have not empirically investigated the reasons for such weak
correlations but we speculate that it is likely due to the different treatments for “comments”
and “average identifier length” code features, by the two metrics. Further since both the
correlations statistics are non significant so there is a high probability that it might have
resulted by chance.

6.4 Validation of Halstead’s Metrics

We have defined our own counting strategy for Halstead’s metrics and developed a mea-
surement tool based on this counting strategy. Therefore its important to validate our
results of Halstead’s metrics in comparison to the Halstead’s results captured using some
other tool. For this purpose use the same example data set, as we used in the Section 6.3.10,
along with the same thresholds for the critical values of ‘r’. We use the measurement JHawk
(http://www.virtualmachinery.com/jhawkprod.htm) to measure Halstead’s Program Ef-
fort (PE) metric. Figure 6.28 shows the results for PE metric captured by our custom built
SRES measurement tool and JHawk.

http://www.virtualmachinery.com/jhawkprod.htm

54 Chapter 6. Experimental Results and Validation

Figure 6.28: Halstead Measure of Program Effort by JHawk and SRES Measurement Tool

Using the data set given in the Figure 6.28 for the two measurement tools, Pearson’s cor-
relation coefficient ‘r’ value computed is 0.98, and the p-value is less than the α level of 0.01.
This predict a significantly very strong positive correlation between the two measurement
tools. Such very strong and significant correlation of our Halstead’s metrics implementation
to another commercially used measurement tool supports the validity of our results in case
of Halstead’s metric.

Chapter 7

Discussion and Conclusions

7.1 Discussion

Learning “How to Program” is a two-fold process where a student learns language syntax
as well as underlying programming methodology such as object-oriented, procedural and
non-procedural. The most difficult part in learning object oriented programming is learning
object-oriented design skills that require students to truly understand problems and design
a good solution. This can be simplified by teaching programming with the use of carefully
designed example programs. Apart from “bad” examples, there are several other reasons of
student problems in learning object oriented programming [39, 45, 40, 33, 61, 42, 37, 68].
These problems include conceptual myths and misconception about object orientation and
ineffective pedagogy. However, this study focus only on the role of example programs and
their understanding by novices.

Learning “how to program” is a cognitive process, commonly referred as program com-
prehension. Being a cognitive process, program comprehension varies person to person,
based on the limits of individual’s experience, interest and cognitive capabilities. Under
such circumstances, it is very difficult to find a standard measure of comprehension or ease
of understanding. However, we may have well calculated and justified measures based on a
wide scale empirical studies and well known cognitive theories of comprehension.

Understanding the problems and complexities confronted during program development
has remained a topic of great interest for researchers during the last few decades. Earlier
attempts, such as those made by McCabe [50] and Halstead [29], primarily focused on the
static physical structure of the program rather than cognitive issues. Complexity is an
intrinsic feature associated with the problem domain and can not be avoided completely.
Whereas readability is a more controlled attribute that can be improved independent of the
problem complexity or problem domain [11].

In this study, we focus only on the source code for example programs, any other auxiliary
text, description or tools are not explored. All the example programs analyzed and evaluated
have been selected from popular java text books, see Figure 6.1, and the text books also
include explanatory notes or description about the example programs used as learning tools.
Such description or explanatory text helps reader and learners to understand the quoted
examples, with special emphasis on code excerpts rated as complex or difficult to understand.
We qualify such notes or textual description as a supplementary part of an example program.
Readability and quality of these supplementary text or programming theory provided in
text books or as lecture notes, greatly impacts students’ understanding. Therefore, we

55

56 Chapter 7. Discussion and Conclusions

acknowledge that one should measure and evaluate the readability and quality of lecture
notes or textual description about associated examples’ source code.

We acknowledge that comments in a program have a fair impact on readability and qual-
ity. Although We regarded comments as an important factor of program comprehension,
Section 2.3.2, however, the Software Reading Ease Score, a measure of readability, imple-
mented and evaluated in this study does not count on the impact of comments. Comments
provide additional support to understand complex program elements, but at the same time,
too many comments in the code may obscure actual lines of code, making the program
bulky or clumsy to read. In itself it is an interesting research to define a suitable criterium
to measure the effect of comments on program quality. In future we aim to experiment
about how good or bad the comments might be, can we have some threshold for right use
of comments per line of code or any other unit of code.

SRES metrics of program readability does not care about program indentation and for-
mat style. A badly formated and poorly indented program creates problems in chunking
and tracing, making the code difficult to read and understand. SRES is inspired from FRES
[25], a readability metric for ordinary text. However, the indentation factor is more con-
tributive in a program text than in an ordinary text. Indentation remains mostly standard
in general text with just few variations in paragraph style. However, in case of a computer
program, level of indentation varies greatly depending on author or organizational prefer-
ences. Though the example programs, quoted in text books or used academia, are well
structured, having proper indentation and formating, still it remains an important factor to
determine the readability of example programs.

We evaluated 18 example programs selected from 10 different well known object oriented
java programming textbooks. An important finding is that none of those example programs
satisfies all the 10 selected software metrics, Table 6.1. There are 8 out of 18 (44%) example
programs that fail to satisfy either ASL or AWL measure of Software Readability Ease Score.
This implies that not all the example programs quoted in commonly used java text books
are perfect in their readability.

Apart from readability, there are several other quality attributes, described in section
3.2. However we need to identify some measurable criteria to have a quantitative measure
for each of those quality attributes. For example, simplicity, communication, consistency,
and reflectivity are few of the proposed example quality attributes, for which we do not have
any empirically validated or well known metrics. It requires more extensive and in detail
empirical study to establish sound measures for these quality attributes, that we aim as a
future work.

SRES is yet on initial stages. There is no sound, empirically proved and tested threshold
to categorize example programs as good or bad in readability. In order to have a standard
threshold, we need a large scale study involving a more extensive number of example pro-
grams reviewed by a good number of researchers with readability perspective. Further SRES
works on the pattern of Flesch’ readability formula designed for ordinary text, while format
and organization of program code varies from ordinary text. The SRES readability formula
does not consider the impact of factors like indentation, code style, naming convention and
comments support.

7.2 Conclusions

Example programs act as a valuable learning tool and play a significant role in program-
ming education. Examples are quoted in text books, lecture notes and tutorial sessions
to provide students with a practical demonstration. Unfortunately, all example programs

7.3. Future work 57

are not equally good or useful in learning. Poorly designed example program may badly
impact student’s understanding. We need to carefully evaluate and review the quality of the
example programs based on the principles and standards of learning. To distinguish good
and bad examples, a set of desired quality attributes is proposed as a key objective of this
study. Among the proposed attributes, readability is rated as a prime attribute assuming
the hypothesis: you can’t understand if you can’t read. Software Reading Ease Score, a
readability metrics implemented as a part of this study is inspired from Flesch’s readability
formula. SRES is based on average sentence length and number of character per word. It
can be extended by adding some weights based on the support from comments, beacons,
indentation, coding standards, and other pro readability factors. Empirical results show
that in comparison to other software metrics, SRES scores differently on a set of example
programs evaluated. SRES is yet in evolution phase and at present does not consider com-
ments, white-spaces, and indentation style. By considering these static code features, there
are bright chances to improve the SRES based predictions about program readability.

7.3 Future work

We aim to further investigate usability and applications of SRES, the program readability
metric implemented in this study. We plan a large scale study involving educators, students,
and researcher in the domain, to evaluate the results captured by current SRES metrics and
actual readability perceived by human subjects. Since readability depends on a variety of
factors both internal and external to the program, therefore, we plan to find out appropri-
ate weights for all those factors that impact program readability. At the same time, our
preferences are to maintain the ease and simplicity of the readability formula.

At present, the SRES measurement tool developed as a part of this study implements
SRES and Halstead’s metrics. We plan to extend it by adding more software metrics and
options to customize the measures. In addition to readability, we also plan to research on
measurable criteria of other program quality attributes discussed in Section 3.2.

58 Chapter 7. Discussion and Conclusions

Chapter 8

Acknowledgments

At first, I would like to record my gratitude to Jürgen Börstler for his supervision, counsel-
ing, and guidance throughout this study. I am much indebted to him for showing confidence,
encouraging and helping me achieve the goals and objectives of this study. He always sup-
ported me to understand the things by sharing his worthy knowledge and experience. Many
thanks go to Per Lindström, who is always kind and up with valuable advice throughout
my studies here.

On the personal level, I am thankful to my loving parents for all their sincere prayers,
valuable support and all the good things they blessed me. Particularly I would like to
dedicate this work to my beloved mother. I lost her while this study was in progress, but
she will always remain alive in my heart.

59

60 Chapter 8. Acknowledgments

References

[1] The free on-line dictionary of computing. Sep 2009.

[2] M.J. Abram and W.D. Dowling. How Readable are Parenting Books? Family Coordi-
nator, pages 365–368, 1979.

[3] C. Aschwanden and M. Crosby. Code Scanning Patterns in Program Comprehension. In
Symposium on Skilled Human-Intelligent Agent Performance. Mesurement, Application
and Symbiosis. Hawaii International Conference on Systems Science, 2006.

[4] VR Basili. Qualitative Software Complexity Models: A Summary. Tutorial on Mod-
els and Methods for Software Management and Engineering. IEEE Computer Society
Press, Los Alamitos, Calif, 1980.

[5] J. Börstler, M.E. Caspersen, and M. Nordström. Beauty and the Beast–Toward a
Measurement Framework for Example Program Quality. (UMINF-07.23), 2007.

[6] J. Börstler, M. Nordström, L.K. Westin, J.E. Moström, H.B. Christensen, and
J. Bennedsen. An Evaluation Instrument for Object-Oriented Example Programs for
Novices. (UMINF-08.09), 2008.

[7] Jürgen Börstler, Henrik B. Christensen, Jens Bennedsen, Marie Nordström, Lena
Kallin Westin, Jan Erik Moström, and Michael E. Caspersen. Evaluating oo exam-
ple programs for cs1. In Proceedings of the 13th Annual Conference on Innovation and
Technology in Computer Science Education, pages 47–52. ACM, 2008.

[8] Jürgen Börstler, Mark S Hall, Marie Nordström, James H Paterson, Kate Sanders,
Carsten Schulte, and Lynda Thomas. An evaluation of object oriented example pro-
grams in introductory programming textbooks. inroads, 41, 2009.

[9] R. Brooks. Towards a Theory of the Comprehension of Computer Programs. Interna-
tional Journal of Man-Machine Studies, 18(6):543–554, 1983.

[10] J.M. Burkhardt, F. Détienne, and S. Wiedenbeck. Mental Representations Constructed
by Experts and Novices in Object-Oriented Program Comprehension. Arxiv Preprint
CS/0612018, 2006.

[11] Raymond P.L. Buse and Westley R. Weimer. A Metric for Software Readability. In
ISSTA ’08: Proceedings of the 2008 International Symposium on Software Testing and
Analysis, pages 121–130, New York, NY, USA, 2008. ACM.

[12] L.R. Campbell and G.R. Klare. Measuring the Readability of High School Newspapers.
1967.

61

62 REFERENCES

[13] SN Cant, B. Henderson-Sellers, and D.R. Jeffery. Application of Cognitive Complexity
Metrics to Object-Oriented Programs. Journal of Object Oriented Programming, 7:52–
52, 1994.

[14] SN Cant, DR Jeffery, and B. Henderson-Sellers. A Conceptual Model of Cognitive Com-
plexity of Elements of the Programming Process. Information and Software Technology,
37(7):351–362, 1995.

[15] M.T.H. Chi and M. Bassok. Learning from examples via self-explanations. Knowing,
learning, and instruction: Essays in honor of Robert Glaser, pages 251–282, 1989.

[16] SR Chidamber, CF Kemerer, and C. MIT. A Metrics Suite for Object Oriented Design.
IEEE Transactions on Software Engineering, 20(6):476–493, 1994.

[17] E. Dale and J.S. Chall. A Formula for Predicting Readability. Educational Research
Bulletin, pages 11–28, 1948.

[18] L.E. Deimel, J.F. Naveda, and Carnegie-Mellon Univ Pittsburgh Pa Software Engineer-
ing Inst. Reading Computer Programs: Instructor’s Guide to Exercises., 1990.

[19] D.P. Delorey, C.D. Knutson, and M. Davies. Mining Programming Language Vocab-
ularies from Source Code. In 21st Annual Psychology of Programming Interest Group
Conference, 2009. PPIG 2009, 2009.

[20] F. Détienne and F. Bott. Software Design–Cognitive Aspects. Springer Verlag, 2001.

[21] W.H. DuBay. The Principles of Readability. Impact Information, pages 1–76, 2004.

[22] J.L. Elshoff. An Investigation into the Effects of the Counting Method Used on Software
Science Measurements. ACM Sigplan Notices, 13(2):30–45, 1978.

[23] J.L. Elshoff and M. Marcotty. Improving Computer Program Readability to Aid Mod-
ification. Communications of the ACM, 25(8):512–521, 1982.

[24] V. Fix, S. Wiedenbeck, and J. Scholtz. Mental Representations of Programs by Novices
and Experts. In Proceedings of the INTERACT’93 and CHI’93 Conference on Human
Factors in Computing Systems, pages 74–79. ACM New York, NY, USA, 1993.

[25] R. Flesch. A New Readability Yardstick. The Journal of Applied Psychology, 32(3):221,
1948.

[26] E. Fry. A readability formula that saves time. Journal of reading, pages 513–578, 1968.

[27] R. Gunning. The Technique of Clear Writing. McGraw-Hill, 1968.

[28] MH Halstead. Toward a Theoretical Basis for Estimating Programming Effort. In
Proceedings of the 1975 Annual Conference, pages 222–224. ACM New York, NY, USA,
1975.

[29] M.H. Halstead. Elements of Software Science (Operating and Programming Systems
Series). Elsevier Science Inc. New York, NY, USA, 1977.

[30] N.J. Haneef. Software Documentation and Readability: A Proposed Process Improve-
ment. ACM SIGSOFT Software Engineering Notes, 23(3):75–77, 1998.

REFERENCES 63

[31] G. Hargis, M. Carey, A.K. Hernandez, P. Hughes, D. Longo, S. Rouiller, and E. Wilde.
Developing Quality Technical Information: A Handbook for Writers and Editors. Pren-
tice Hall PTR Upper Saddle River, NJ, USA, 2004.

[32] S. Henry and D. Kafura. Software Structure Metrics Based on Information Flow.
Transactions on Software Engineering, pages 510–518, 1981.

[33] Simon Holland, Robert Griffiths, and Mark Woodman. Avoiding object misconceptions.
In SIGCSE ’97: Proceedings of the Twenty-Eighth SIGCSE Technical Symposium on
Computer Science Education, pages 131–134, New York, NY, USA, 1997. ACM.

[34] R. Jeffries. A Comparison of the Debugging Behaviour of Expert and Novice Program-
mers. In Proceedings of AERA Annual Meeting, 1982.

[35] C. Kaner and W.P. Bond. Software Engineering Metrics: What Do They Measure and
How Do We Know? methodology, 8:6.

[36] Joseph P. Kearney, Robert L. Sedlmeyer, William B. Thompson, Michael A. Gray, and
Michael A. Adler. Software Complexity Measurement. Commun. ACM, 29(11):1044–
1050, 1986.

[37] Päivi Kinnunen and Lauri Malmi. Why students drop out cs1 course? In ICER ’06:
Proceedings of the Second International Workshop on Computing Education Research,
pages 97–108, New York, NY, USA, 2006. ACM.

[38] G.R. Klare. The measurement of readability: useful information for communicators.
ACM Journal of Computer Documentation (JCD), 24(3):107–121, 2000.

[39] M. Koelling and J. Rosenberg. Guidelines for Teaching Object Orientation with Java.
ACM SIGCSE Bulletin, 33(3):33–36, 2001.

[40] M. Kölling. The Problem of Teaching Object-Oriented Programming. Journal of Object
Oriented Programming, 11(8), 1999.

[41] D.S. Kushwaha and AK Misra. Improved Cognitive Information Complexity Measure:
A Metric that Establishes Program Comprehension Effort. ACM SIGSOFT Software
Engineering Notes, 31(5):1–7, 2006.

[42] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. A study of the difficulties
of novice programmers. In ITiCSE ’05: Proceedings of the 10th Annual SIGCSE Con-
ference on Innovation and Technology in Computer Science Education, pages 14–18,
New York, NY, USA, 2005. ACM.

[43] M. Lanza, R. Marinescu, and S. Ducasse. Object-Oriented Metrics in Practice. Springer-
Verlag New York, Inc. Secaucus, NJ, USA, 2005.

[44] S. Letovsky. Cognitive Processes in Program Comprehension. In Empirical Studies of
Programmers, pages 58–79. Intellect Books, 1986.

[45] John Lewis. Myths about object-orientation and its pedagogy. In SIGCSE ’00: Proceed-
ings of the Thirty-First SIGCSE Technical Symposium on Computer Science Education,
pages 245–249, New York, NY, USA, 2000. ACM.

64 REFERENCES

[46] D.C. Littman, J. Pinto, S. Letovsky, and E. Soloway. Mental Models and Software
Maintenance. In Empirical Studies of Programmers: First Workshop, pages 80–98.
Ablex Publishing Corp. Norwood, NJ, USA, 1986.

[47] B.A. Lively and S.L. Pressey. A Method for Measuring the’Vocabulary Burden’of
Textbooks. Educational Administration and Supervision, 9(389-398):73, 1923.

[48] Katherine Malan and Ken Halland. Examples that Can Do Harm in Learning Program-
ming. In OOPSLA ’04: Companion to the 19th Annual ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages, and Applications, pages 83–87,
New York, NY, USA, 2004. ACM.

[49] R.E. Mayer. The Psychology of How Novices Learn Computer Programming. ACM
Computing Surveys (CSUR), 13(1):121–141, 1981.

[50] T.J. McCabe. A Complexity Measure. IEEE Transactions on Software Engineering,
2(4):308–320, 1976.

[51] G.H. McLaughlin. SMOG Grading: A New Readability Formula. Journal of Reading,
12(8):639–646, 1969.

[52] DM Miller, RS Maness, JW Howatt, and WH Shaw. A Software Science Counting
Strategy for the Full Ada Language. ACM SIGPLAN Notices, 22(5):32–41, 1987.

[53] S. Misra. An Object Oriented Complexity Metric Based on Cognitive Weights. In 6th
IEEE International Conference on Cognitive Informatics, pages 134–139, 2007.

[54] R. Mosemann and S. Wiedenbeck. Navigation and Comprehension of Programs by
Novice Programmers. In 9th International Workshop on Program Comprehension,
2001. IWPC 2001. Proceedings., pages 79–88, 2001.

[55] M. Nordström. He[d]uristics - Heuristics for Designing Object Oriented Examples for
Novices, March 2009.

[56] T. Parr. The Definitive ANTLR Reference. The Pragmatic Programmers (May 2007).

[57] N. Pennington. Comprehension Strategies in Programming. In Empirical Studies of
Programmers: Second Workshop, pages 100–113, 1987.

[58] D.R. Raymond. Reading Source Code. In Proceedings of the 1991 Conference of the
Centre for Advanced Studies on Collaborative Research, pages 3–16. IBM Press, 1991.

[59] S. Rugaber. Program Comprehension. Encyclopedia of Computer Science and Tech-
nology, 35(20):341–368, 1995.

[60] N.F. Salt. Defining Software Science Counting Strategies. ACM Sigplan Notices,
17(3):58–67, 1982.

[61] Kate Sanders and Lynda Thomas. Checklists for grading object-oriented cs1 programs:
Concepts and misconceptions. SIGCSE Bull., 39(3):166–170, 2007.

[62] B. Shneiderman and R. Mayer. Syntactic/Semantic Interactions in Programmer Be-
havior: A Model and Experimental Results. International Journal of Parallel Program-
ming, 8(3):219–238, 1979.

REFERENCES 65

[63] E. Soloway, B. Adelson, and K. Ehrlich. Knowledge and Processes in the Comprehension
of Computer Programs. The nature of expertise, pages 129–152, 1988.

[64] E. Soloway and K. Ehrlich. Empirical Studies of Programming Knowledge. IEEE
Transactions on Software Engineering, 10(5):595–609, 1984.

[65] G. Spache. A New Readability Formula for Primary-Grade Reading Materials. The
Elementary School Journal, pages 410–413, 1953.

[66] CS2008 Interim Review TaskForce. Computer Science Curriculum 2008: An Interim
Revision of CS 2001, December 2008.

[67] W.L. Taylor. Cloze Procedure: A New Tool for Measuring Readability. Journalism
quarterly, 30(4):415–433, 1953.

[68] Phil Ventura and Bina Ramamurthy. Wanted: Cs1 students. no experience required.
In SIGCSE ’04: Proceedings of the 35th SIGCSE Technical Symposium on Computer
Science Education, pages 240–244, New York, NY, USA, 2004. ACM.

[69] L. Verhoeven and C. Perfetti. Advances in Text Comprehension: Model, Process and
Development. Applied Cognitive Psychology, 22(3), 2008.

[70] A. Von Mayrhauser and A.M. Vans. Program Understanding : A Survey. Colorado
State Univ., 1994.

66 REFERENCES

Appendix A

User’s Guide

SRES measurement tool is a stand alone GUI based java application. Current version of
the tool is delivered as a jar file “Pogje.jar” that can be executed using java -jar command.
Figure A.1 shows the graphical user interface of the application.

After executing the application, please follow the below steps to proceed:

1. Click on “Browse” button to select either a single java source file or a directory col-
lection of java source files.

2. Click on “SRES” buttion if you want to compute SRES measures for the selected
source files.

3. Click on “Halstead” buttion if you want to compute Halstead’s measures.

4. Measurement results will be displayed in the “Results” text area, and “Save” button
will be enabled.

5. Click on “Save” button and specify a target file name and destination, if you want to
record the computed results in a file. If you do not save, results will be overwritten or
just discarded if you quit the application.

6. Application can be closed using either windows standard close button in the top right
corner or using the key combination “Alt+F4”.

67

68 Chapter A. User’s Guide

Figure A.1: SRES - User Interface

	Introduction
	Problem Description
	Problem Statement
	Goals

	Purposes
	Related Work

	Program Comprehension
	Introduction
	Program Comprehension Models
	Brooks' Hypothesis based Model
	Soloway and Ehrlich's Top-down Model
	Shneiderman's Model of Program Comprehension
	Letovsky's Knowledge based Model
	Pennington's Model
	Littman Comprehension Strategies

	Important Factors for Program Comprehension
	External Factors
	Internal Factors

	Differences between Experts and Novices
	How Do Novices Read and Understand Example Programs?

	Quality and Complexity of Example Programs
	What is Good and What is Bad?
	Desirable Quality Attributes of Example Programs
	Program Complexity
	Program Complexity Measures

	Software Metrics : Measures of Example Quality
	Software Reading Ease Score (SRES)
	Halstead's Metrics
	McCabe's Cyclomatic Complexity
	Lines of Code (LoC)
	Cyclomatic Complexity per LoC (CC/LoC)
	Lines of Code per Method (LoC/m)
	Average Method per Class (m/c)
	Weighted Method Count (WMC)

	Program Readability
	Introduction
	Readability in General
	Flesch Reading Ease Score - FRES
	Program Readability
	Software Readability Ease Score - SRES
	SRES Counting Strategy

	Counting Strategy for Halstead's Measures

	Implementation - SRES Measurement Tool
	Introduction
	SRES Measurement Tool
	How it Works
	ANTLR - Parser generator
	Difficulties

	Experimental Results and Validation
	Experimental Setup
	Experimental Results
	Statistical Significance and Correlations
	SRES and LoC
	SRES and PD Correlation
	SRES and PV Correlation
	SRES and TCC Correlation
	SRES and CC/LoC Correlation
	SRES and LoC/m Correlation
	SRES and m/c Correlation
	SRES and WMC Correlation
	SRES and HQS Correlation
	SRES and Buse's Metric for Software Readability

	Validation of Halstead's Metrics

	Discussion and Conclusions
	Discussion
	Conclusions
	Future work

	Acknowledgments
	References
	User's Guide

