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ABSTRACT. There is scheduling on two levels in real-time applications 
executing in a virtualized environment: traditional real-time scheduling of the tasks 
in the real-time application, and scheduling of different Virtual Machines (VMs) 
on the hypervisor level. In this paper, we describe a technique for calculating a 
period and an execution time for a VM containing a real-time application with 
hard deadlines. This result makes it possible to apply existing real-time scheduling 
theory when scheduling VMs on the hypervisor level, thus making it possible to 
guarantee that the real-time tasks in a VM meet their deadlines. If overhead for 
switching from one VM to another is ignored, it turns out that (infinitely) short 
VM periods minimize the utilization that each VM needs to guarantee that all real-
time tasks in that VM will meet their deadlines. Having infinitely short VM 
periods is clearly not realistic, and in order to provide more useful results we have 
considered a fixed overhead at the beginning of each execution of a VM. 
Considering this overhead, a set of real-time tasks, the speed of the each processor 
core, and a certain processor utilization of the VM containing the real-time tasks, 
we present a simulation study and some performance bounds that make it possible 
to determine if it is possible to schedule the real-time tasks in the VM, and in that 
case for which periods of the VM that this is possible. 

Keywords: Cloud, Virtualization, Real-Time Scheduling, Hard Deadlines, Virtual 
Machine. 

1. INTRODUCTION 
Most real-time services were originally designed for physical (un-virtualized) computer systems. However, the trend 
towards virtualization pushes, for cost reasons, more and more systems onto virtualized machines, and at some point 
one would also like to run real-time systems with hard deadlines in a virtualized environment. Moving a real-time 
system with hard deadlines to a virtualized environment where a number of Virtual Machines (VMs) share the same 
physical computer is a challenging task. The original real-time application was designed so that all tasks were 
guaranteed to meet their deadlines provided that the physical computer was fast enough. In a system with faster 
processors, and more cores, one would like to put several VMs on the same hardware and some (or all) of these 
VMs may contain real-time tasks with hard deadlines. In such a system there will be scheduling at two levels [6]: 
traditional real-time scheduling of the tasks within a VM, and hypervisor controlled scheduling of several VMs on 
the same physical server. In [25] and [32] the authors refer to this technique as Component-based design. This 
technique is also known as Hierarchical scheduling [21] [22] [31] [32] [34]. 

Traditional scheduling of tasks on a physical uni-processor computer is well understood, and a number of useful 
results exist [9], e.g., it is well known that Earliest Deadline First (EDF) is optimal when we allow dynamic task 
priorities. Similarly, it is well-known that Rate-Monotonic Scheduling (RMS) where tasks are assigned priorities 
based on their deadlines is optimal for the case when we use static task priorities. These priority scheduling 
algorithms are based on a number of parameters for each task τi. These parameters are typically, the period Ti the 
worst-case execution time Ci, and the deadline Di, for task τi. Often, we assume that Di = Ti, and in that case we 
only need two parameters for each task, namely,  Ti and Ci. Priority assignment schemes such as EDF and RMS are 
typically used in the original real-time scheduling applications, i.e., in the applications that will be running in a VM.  

If we ignore the overhead for context switching from one VM to another and if we use (infinitely) small time slots, 
we could let a VM get a certain percentage of the physical computer, e.g., two VMs where each VM uses every 
second time slot. This kind of situation could be seen as two VMs running in parallel with 50% of full speed each. In 
that case, the real-time application would meet all deadlines if the processor on the physical computer is (at least) 
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two times as fast as the processor for which the original real-time application was designed for. However, the 
overhead for switching from one VM to another cannot be ignored and the time slot lengths for this kind of 
switching can obviously not be infinitely small. In order to minimize the overhead due to switching between VMs 
we would like to have relatively long time periods between switching from one VM to another VM. In order to 
share the physical hardware between as many VMs as possible we would also like to allocate a minimum percentage 
of the physical CPU to a VM, i.e., we would only like to allocate enough CPU resources to a VM so that we know 
that the real-time application that runs in that VM meets all its deadlines.  

In order to use EDF, RMS or similar scheduling algorithms also on the hypervisor level, i.e., when scheduling the 
different VMs to the physical hardware, we need to calculate a period TVM and a (worst-case) execution time CVM 
for each VM that share a physical computer. It can be noted that also most real-time multiprocessor scheduling 
algorithms are based on the period and the worst-case execution time [8] [20]. This is important since most modern 
hardware platforms, i.e., most platforms on which the VMs will run, are multiprocessors. 

VMs with one virtual processor will, for several reasons, be a very important case. Many existing real-time 
applications with hard deadlines have been developed for uniprocessor hardware. Moreover, even when using state-
of-the-art multiprocessor real-time scheduling algorithms, one may miss deadlines for task sets with processor 
utilization less than 40% [8]. For the uni-processor case it is well known that when using RMS we will always meet 
all deadlines as long as the processor utilization is less than ln(2) = 69.3% [9]. This indicates that, compared to 
having a small number of VMs with many virtual cores each, it is better to use a larger number of VMs with one 
virtual core each on a multicore processor (we will discuss this in Section 2). We will present our results in the 
context of VMs with one virtual core. However, the results could easily be extended to VMs with multiple virtual 
cores as long as each real time task is allocated to a core (we will discuss this in Section 9). Systems that use global 
multiprocessor scheduling of real-time tasks, i.e., systems that that allow tasks to migrate freely between processors, 
are not considered here. 

In this paper we will, based on an existing real-time application and the processor speed of the physical hardware, 
calculate a period TVM and an execution time CVM such that the existing real-time application will meet all deadlines 
when it is executed in a VM, provided that the VM executes (at least) CVM time unites every period of length TVM. 
We will show, and it is also well known from previous studies, that if overhead for switching from one VM to 
another is ignored, it turns out that (infinitely) short VM periods minimizes the utilization that each VM needs to 
guarantee that all real-time tasks in that VM will meet their deadlines. Having infinitely short VM periods is clearly 
not realistic, and in order to provide more useful results we consider a fixed overhead at the beginning of each 
execution of a VM. Considering this overhead, a set of real-time tasks, the speed of the each processor core, and a 
certain processor utilization of the VM containing the real-time tasks, we present a simulation study and some 
performance bounds that make it possible to determine if it is possible to schedule the real-time tasks in the VM, and 
in that case for which periods of the VM that this is possible. We will base our calculations on the case when we use 
static priorities, and thus RMS, in the original real-time applications. However, we expect that our approach can 
easily be generalized to cases when other scheduling policies, such as EDF, are used in the original real-time 
applications (we will discuss this in Section 2).  

2. RELATED WORK 
Today, most physical servers will contain multiple processor cores. Modern virtualization systems, such as KVM, 
VMware and Xen, make it possible to define VMs with a number of (virtual) cores, thus allowing parallel execution 
within a VM. This means that one can use the physical hardware in different ways: one can have a large number of 
VMs with one (virtual) core each on a physical (multi-core) server, or a smaller number of VMs with multiple 
(virtual) cores each (or a combination of these two alternatives). It is also possible to make different design 
decisions in the time domain, e.g., allowing a VM with one virtual core to execute for relatively long time periods, 
or restricting a VM with multiple cores to relatively short execution periods. Real-time scheduling theory (for non-
virtualized systems) shows that the minimum processor utilization for which a real-time system can miss a deadline, 
using fixed priority scheduling, decreases as the number of processors increases, e.g., 69.3% for one processor 
systems [7] (using RMS) and 53.2% for two processor systems [8] and then down to as little as 37.5% for systems 
with (infinitely) many processors [8].            

Consequently, compared to multiprocessor systems, the processor utilization is in general higher for systems with 
one processor. This is one reason why we have assumed that the VM containing the original real-time application 



only has one (virtual) processor. Also, most existing real-time applications are developed for systems with one 
processor.  

In this paper we have assumed that the real-time application in the VM uses RMS. If we assume some other 
scheduling policy, e.g., EDF we can use the same technique. The only difference is that the formula Ri  =  Ci +
 ∑ �Ri Tj⁄ �Cji−1

j=1  (see Section 3), needs to be replaced with the corresponding analysis for EDF.  

Very little has been done in the area of scheduling real-time tasks with hard deadlines in virtualized systems. Some 
results on real-time tasks with soft deadlines exist [1] [16]. 

There are a number of results concerning so called proportional-share schedulers [2][3][4][18]. These results look at 
a real-time application that runs inside an operating system process. The proportional-share schedulers aim at 
dividing the processor resource in predefined proportions to different processes. 

In [10] the authors look at a model for deciding which real-time tasks to discard when the cloud system’s resources 
cannot satisfy the needs of all tasks. This model does, however, not address the problems associated with hard 
deadlines. 

In [11] the authors ran an experiment using a real-time e-learning distributed application for the purpose of 
validating the IRMOS approach. The IRMOS uses a variation of the Constant Bandwidth Server (CBS) algorithm 
based on EDF. Furthermore in [17] the authors developed their particular strategy in the context of IRMOS project. 
They tried to consider isolation and CPU scheduling effects on I/O performance. However, in IRMOS they do not 
consider hard real-time tasks scheduled using the RMS. 

Reservation-based schedulers are used as hypervisor level schedulers. In [12] and [19] the authors used CPU 
reservation algorithm called, Constant Bandwidth Server (CBS) in order to prove that the real time performance of 
the VMs running on the hypervisor is affected by both the scheduling algorithm (CBS) and VM technology (in this 
case KVM). However, the authors do not present a method for how to schedule different VMs running on the 
hypervisor.  

In [13] the authors presented two algorithms for real-time scheduling. One is the hypervisor scheduling algorithm 
and the other is the processor selection algorithm. However they only consider scheduling VMs on the hypervisor 
level, they do not investigate scheduling of the hard real-time tasks that run inside the VMs. 

Eucalyptus is open-source software for building private and hybrid clouds. There are several algorithms already 
available in Eucalyptus for scheduling VMs with some advantages and disadvantages. In [14] the authors proposed a 
new algorithm for scheduling VMs based on their priority value, which varies dynamically based on their load 
factors. However they consider dynamic priority based scheduling not static priority.  

In [15], a priority based algorithm for scheduling VMs is proposed. The scheduler is first distinguishing the best 
matches between VMs and empty places and then deploying the VMs onto the corresponding hosts. The authors did 
a comparison between their priority algorithm and First Come First Serve (FCFS) algorithm, they concluded that the 
resource performance of their algorithm is not higher than the FCFS algorithm all the time but it has higher average 
resource performance. Nevertheless, they do not consider periodic tasks and static priority assignment.  

The VSched system, which runs on top of Linux, provides soft real-time scheduling of VMs on physical servers [5]. 
However, the problems with hard deadlines are not addressed in that system.  

In [21], the authors proposed a hierarchical bounded-delay resource model that constructs multiple levels resource 
partitioning. Their approach is designed for the open system environment. Their bounded-delay resource partition 
model can be used for specifying the real-time guarantees supplied from a parent model to a child model where they 
have different schedulers, while in [22] and [32], the authors proposed a resource model that can provide a 
compositional manner such that if the parent scheduling model is schedulable, if and only, its child scheduling 
models are schedulable. However, none of the proposed resource models consider scheduling in virtualized 
environment. 

In [23] and [31], the authors presented a methodology for computing exact schedulability parameters for two-level 
framework while in [24] they did an analysis on systems where the fixed priority pre-emptive scheduling policy is 
used on both level. Further in [26], the authors presented a method for analysis of platform overheads in real-time 
systems. Similar work by [33] represents that their proposed approach can reduce pre-emption and overhead by 
modifying the period and execution time of the tasks.  



In [25], the authors developed compositional real-time scheduling framework based on the periodic interface, they 
have also evaluated the overheads that this periodic interface incur in terms of utilization increase. Later in [41], the 
authors proposed an approach to eliminate abstraction overhead in composition. In their latest study the authors have 
improved their previous works and proposed a new technique for the cache-related overhead analysis [40]. 

In [27], the authors implemented and evaluated a scheduling framework that built on Xen virtualization platform. 
Another similar work has been done by [29]; they represent an implementation of compositional scheduling 
framework for virtualization using the L4/Fiasco micro kernel which has different system architecture compared to 
Xen. The authors calculated clock cycle overhead for the L4/Fiasco micro kernel. In [28], the authors proposed and 
compare the results of overhead of an external scheduler framework called ExSched that is designed for real time 
systems. In [30], the authors presented and compared several measurements of overheads that their implemented 
hierarchical scheduling framework imposes through its implementation over VxWorks.  

Compositional analysis framework based on the explicit deadline periodic resource model has been proposed by 
[38]. They have used EDF and Deadline Monotonic (DM) scheduling algorithm and their model supports sporadic 
tasks.  In [39], the authors present the RM schedulability bound in a periodic real time system which is an 
improvement to the earlier bound that has been proposed by [7]. However none of these works consider the 
overhead in their models. 

3. PROBLEM DEFINITION 
We consider a real-time application consisting of n tasks. Task τi  (1 ≤ i ≤ n )  has a worst-case execution 
time Ci  (1 ≤ i ≤ n ), and a period Ti  (1 ≤ i ≤ n ). This means that task τi generates a job at each integer multiple 
of Ti and each such job has an execution requirement of Ci time units that must be completed by the next integer 
multiple of Ti. We assume that each task is independent and does not interact (e.g., synchronize or share data) with 
other tasks. We also assume that the first invocation of a task is unrelated to the first invocation of any other task, 
i.e., we make no assumptions regarding the phasing of tasks with equal or harmonic periods. We assume that the 
deadline Di is equal to the period, i.e., Di  =  Ti (1 ≤ i ≤ n). The tasks are executed using static task priorities, and 
we use RMS scheduling, which means that the priority is inversely proportional to the period of the task (i.e., tasks 
with short periods get high priority). This static priority assignment scheme is optimal for the uni-processor case [9].  

The real-time application is executed by a VM with one virtual processor. The real-time tasks may miss their 
deadlines if the VM containing the tasks is not scheduled for execution by the hypervisor during a certain period of 
time. For instance, if some period that the VM is not running exceeds some Ti, it is clear that the corresponding task 
τi will miss a deadline. Also, if the VM gets a too low portion of a physical processor, the tasks may also miss their 
deadlines since there will not be enough processor time to complete the execution time before the next deadline.  

In a traditional real-time application a task τi will voluntarily release the processor when it has finished its execution 
in a period, and Ci denotes the maximum time it may execute before it releases the processor. In the case with real-
time scheduling of VMs on the hypervisor level it is more natural to assume that the hypervisor preempts VMj and 
puts VMj in the blocked state when it has executed for CVMj  time units in a period. The hypervisor then moves VMj 
to the ready state at the start of the next period. As mentioned before, the length of the period for VMj is TVMj . 

On the hypervisor level one may use any scheduling policy as long as one can guarantee that each VM is 
executed CVM, during each period TVM. On multicore processors one could for instance bind each VM to a core and 
let the VMs that share the same core share it using RMS, or one could let the VMs share a global ready queue, i.e., a 
VM could be executed on different cores during different time periods.  

4. DEFINING TVM AND CVM  
Without loss of generality, we order the tasks τi  (1 ≤ i ≤ n ) such that Ti  ≤  Ti+1 . This means that τ1  has the 
highest priority and τn has the lowest priority using RMS. Let Ri denote the worst-case response time for taskτi. 
From previous results we know that 

Ri  =  Ci +  ∑ �Ri Tj⁄ �Cji−1
j=1         (1) 

on a physical uni-processor server (or when the VM has uninterrupted access to a physical processor). In order to 
obtain Ri from Equation (1) one needs to use iterative numeric methods [9]. In order to meet all deadlines we must 
make sure that Ri  ≤  Ti (1 ≤ i ≤ n).  



Consider a time period of length  t, which may extend over several periods TVM . The scenario with minimum 
execution of the VM during period t, starts with a period of 2(TVM −  CVM) with no execution (see Fig. 1) [37][25], 
i.e., the period starts exactly when the VM has executed CVM time units as early as possible in one of its periods. 
Following this line of discussion, it is also clear that for the worst-case scenario ��t − 2(TVM −  CVM)� TVM⁄ � is the 
number of whole periods of length TVM (each containing a total execution of CVM) that is covered by t.  

Let t′ denote the minimum amount of time that the VM is running during a time period of length t. From Fig 1 we 
get the minimum t’ as: 

t′ =  ��t−2(TVM− CVM)�
TVM

� CVM + min ��t − 2(TVM −  CVM) − ��t−2(TVM− CVM)�
TVM

�TVM� , CVM�         (2)                

In Equation (2), the first term (��t − 2(TVM −  CVM)� TVM⁄ �CVM) corresponds to the full periods, and the last term to 
the remaining part. The term t − 2(TVM −  CVM) − ��t − 2(TVM −  CVM)� TVM⁄ �TVM  is the time that the VM has 
access to a physical processor during the part of t that exceeds the full periods. The minimum comes from the fact 
that time that the VM has access to a physical processor during the time interval that exceed the full periods cannot 
be more than CVM. This means that t′ is a function of three parameters, i.e., t′  = f (t, TVM, CVM). For fixed TVM and 
CVM , t′  = f (t, TVM, CVM)  is a continuous increasing function in t , consisting of straight line segments from 
�(2(TVM −  CVM) + nTVM ), nCVM�  to �(2(TVM −  CVM) + (n + 1)TVM) , (nCVM + TVM)�  for any n = 0, 1, 2, … 
and horizontal lines connecting them. Fig. 1 displays a general piece of the curve, and the points Pn  =  �(2(TVM −
 CVM) + nTVM) , CVM� are the lower corners in the graph.  

We now define the inverse function  

  t =  f−1(f (t, TVM, CVM), TVM, CVM)            (3) 

 
Fig. 1.Worst-case scenario when scheduling a VM with period 𝐓𝐕𝐌 and (worst-case) execution time 𝐂𝐕𝐌.



 
Fig. 2. The function 𝐟−𝟏(𝐭,𝐓𝐕𝐌,𝐂𝐕𝐌); 𝐭  is the parameter on the x-axis in the graph. 

By looking at Fig. 2 we see that 

 f−1(t, TVM, CVM) = 2(TVM −  CVM) +  t + ⌊t CVM⁄ ⌋(TVM − CVM)       (4) 

From previous results on Ri (see [9] and above), and from the definition of f−1 we get that the worst-case response 
time for task τi is 

Ri =  f−1 ��Ci +  ∑ �Ri Tj⁄ �Cji−1
j=1 �, TVM, CVM�      (5) 

 For example if we have two tasks and T1 = 8, C1 = 1, and T2 = 15, C2 = 3, and TVM = 6 and CVM = 3 we get 
 7 = R1 =  f−1(1, 6, 3) and 14 =  R2 =  f−1�(3 + ⌈14/8⌉ ∗ 1), 6, 3�. 

In order to solve Equation (5), one needs to use numeric and iterative methods, i.e., a very similar approach as the 
well-known method used for obtaining Ri in the non-virtualized case [9] (this approach can easily be implemented 
in a program that calculates the Ri values). In order to meet all deadlines for all tasks τi, we need to select  TVM and 
CVM so that Equation (5) ≤  Ti(1 ≤ i ≤ n). 

5. EXAMPLE 
Consider the following small real-time application with three tasks. 

Table 1. Example of a small real-time application with three tasks. 

Task Period (Ti) Worst-case execution time  (Ci) Utilization (Ui) 

τ1 16 2 2/16 = 0.125 

τ2 24 1 1/24 = 0.042 

τ3 36 4 4/36 = 0.111 

 ∑ = 0.278 



As discussed above, we use fixed priorities and RMS priority assignment. If we let the VM that executes this 
application use 40% of a CPU resource, i.e., if CVM TVM  = 0.4 ⁄ , we can use Equation (4) to calculate the maximum 
TVM  so that all three tasks will meet their deadlines. When CVM TVM  = 0.4 ⁄  we can replace CVM with 0.4TVM in 
Equation (4), thus obtaining the function  f−1(t, TVM) = 1.2TVM +  t +  ⌊t 0.4TVM⁄ ⌋(0.6TVM) . 

We start by looking at τ1 . We need to find the maximal TVM  so that R1 =  f−1 ��C1 +  ∑ �R1 Tj⁄ �Cj0
j=1 �, TVM� =

 f−1(C1, TVM) = f−1(2, TVM)  ≤  T1 = 16.  In general, f−1  is solved using a numeric and iterative approach in a 
similar way as Ri  is obtained in the non-virtualized case [9]. However, we will see that for this τ1  the 
⌊t CVM⁄ ⌋(TVM −  CVM)  part of f−1  can be ignored. In that case, we get the following equation for the 
maximum TVM: 1.2TVM +  2 = 16, and from this we get TVM =  14 1.2 =⁄ 11.7. If we have a period of 11.7 we get 
a CVM = 0.4 × 11.7 = 4.68, and (as predicted above) since CVM >  C1, we know that we do not have to consider 
the ⌊t CVM⁄ ⌋(TVM −  CVM) part of f−1. 

We now look at  τ2. We want to find the maximal TVM so that R2 =  f−1 ��C2 +  ∑ �R2 Tj⁄ �Cj1
j=1 �, TVM� ≤  T2 = 24. 

It is clear that τ2  will miss its deadline with TVM =  14 1.2 =⁄ 11.7 (which is the maximal TVM period for which τ1 
will meet its deadlines); if we use TVM =  14 1.2 =⁄ 11.7, the first execution period will (in the worst-case, see Fig. 
1) start at time 2(TVM − CVM) = 1.2TVM = 14. Since T1 = 16 and C1 = 2 we see that τ1  will execute two times 
back-to-back in this interval, i.e., after the first execution of τ1 it will be released again at time 16. Consequently, τ2 
cannot start executing until time 18, and the first execution period of the VM will end at 2TVM − CVM (see Fig 
1) = 1.6TVM = 1.6 × 11.7 = 18.7, and since C1 = 1, τ2 cannot complete during the first execution period of the 
VM. The second period of the VM starts at time 3TVM −  2CVM (see Fig 1) =  2.2TVM = 2.2 × 11.7 = 25.7, which 
is after the deadline of τ2(T2 = 24). 

By using our formulas we see that in order for τ2 to meet its deadlines TVM cannot be larger than 13 1.2⁄ = 10.8. 
This means that we now know that the real-time application can at most have TVM = 10.8 when CVM TVM = 0.4⁄ . 
For TVM = 10.8 and CVM TVM = 0.4⁄ , the corresponding CVM is 0.4 × 10.8 = 4.33. 

We finally look at τ3. We need to find the maximum TVM so that R3 =  f−1 ��C3 +  ∑ �R3 Tj⁄ �Cj2
j=1 �, TVM� ≤  T3 =

36. In this case we see that τ3 will not meet its deadline when TVM = 13 1.2⁄ = 10.8. The reason for this is that both 
τ1 and τ2 will cause interference on τ3, and  τ3 will as a consequence of this not complete in the first TVM cycle, 
since  C1 + C2 + C3 = 2 + 1 + 4 = 7 > 4.33. The second TVM  cycle will complete at time 3TVM − CVM (see Fig. 
1) = 3 × 10.8 − 4.33 = 28.07. Before the end of this cycle both τ1 and τ2 will have had one new release each (τ1 at 
time 16 and τ2 at time 24). This means that τ3 will not complete during the second cycle of TVM since2C1 + 2C2 +
C3 = 4 + 2 + 4 = 10 > 2 × 4.33 = 8.66. In the worst-case scenario (see Fig. 1), the third cycle of TVM  will start at 
time 4TVM − 2CVM = 4 × 10.8 − 2 × 4.33 = 34.54. At time 32 there is a new release of task τ1, and since τ1 has 
higher priority than τ3, task τ1 will execute for two time units starting at time 34.54. 

 
Fig. 3. The upper bound for 𝐓𝐕𝐌 / T1 



Since T3 = 36, we see that τ3  will miss its deadline. This means that we need a shorter period TVM in order to 
guarantee that also τ3 will meet its deadlines. When using our formulas, we see that TVM = 10 is the maximal period 
that τ3 can tolerate in order to meet its deadline when CVM TVM  = 0.4⁄ , i.e., for CVM TVM  = 0.4⁄  we get TVM = 10, 
and τ3 is the task that requires the shortest period TVM. When  CVM TVM  = 0.5⁄  we can use our formulas to calculate 
a  TVM. In this case we get a maximal TVM of 14 for task τ1, and the calculations for tasks τ2 and τ3 will result in 
larger values on the maximal TVM. 

This means that τ1  is the task that requires the shortest period  TVM , i.e., TVM = 14 when CVM TVM  = 0.5⁄ .  In 
general, the period TVM will increase when the utilization CVM TVM ⁄  increases, and the task that is “critical” may 
change when CVM TVM⁄  changes (e.g., task τ3 when CVM TVM  = 0.4⁄  and task τ1when CVM TVM  = 0.5⁄ ). 

6. SIMULATION STUDY 
In Section 5 we saw that the maximal TVM, for which a task set inside the VM is schedulable increases when 
CVM TVM⁄  increases. In this section we will quantify the relation between the maximal  TVMthe utilization CVM TVM⁄ . 

We will do a simulation study where we consider two parameters:  

• n – the number of tasks in the real-time application 

• u – the total utilization of the real-time application 

The periods Ti are taken from a rectangular distribution between 1000 and 10000. The worst-case execution time Ci for task τi is 
initially taken from a rectangular distribution between 1000 and Ti.  

 
Fig. 4. Standard deviation for 𝐓𝐕𝐌 divided with average 

𝐓𝐕𝐌when the total utilization u = 0.1. 

 
Fig. 5. Average  𝐓𝐕𝐌 𝐓𝟏⁄  when the total utilization u = 0.1. 

 
Fig. 6. Standard deviation for 𝐓𝐕𝐌 divided with average 

𝐓𝐕𝐌when the total utilization u = 0.2. 

 
Fig. 7. Average  𝐓𝐕𝐌 𝐓𝟏⁄  when the total utilization u = 0.2. 



All worst-case execution times are then scaled by a factor so that we get a total utilization u. For each task, we then 
find the maximum TVM using Equation (5) so that all tasks meet their deadlines. We refer to this period as Tmax, and 
we then select the minimum of the n different Tmax values (one value for each task). For each pair of n and u, we 
calculate the minimum Tmax  for (CVM TVM  = 0.9⁄ ), (CVM TVM  = 0.8⁄ ), (CVM TVM  = 0.7⁄ ), (CVM TVM  = 0.6⁄ ), 
(CVM TVM  = 0.5⁄ ), (CVM TVM  = 0.4⁄ ), (CVM TVM  = 0.3⁄ ), (CVM TVM  = 0.2⁄ ), (CVM TVM  = 0.1⁄ ) for 10 randomly 
generated programs (we generate the programs using the distribution and the technique described above). We look 
at n = 10, 20, and 30, and u = 0.1, 0.2 and 0.3. This means that we look at 3*3 = 9 combinations of n and u, and for 
each of these nine combinations we look at 9 different values on CVM TVM⁄ . This means that we looked at 3*3*9 = 
81 different scenarios. For each such scenario we generated 10 programs using a random number generator. 

7. RESULTS 
In the worst-case scenario (see Fig. 1), the maximum time that a virtual machine may wait before its first execution 
is 2(TVM − CVM). In order for the real-time tasks not to miss their deadlines the maximum waiting time,  2(TVM −
CVM) must be less than the shortest period, T1 (i.e., 2(TVM − CVM) < T1 ). For each value of CVM TVM⁄ , we can 
replace  CVM and calculate the  TVM T1⁄   using the formula above. For example, if  CVM TVM = 0.7⁄  then we can 
replace CVM by 0.7TVM in 2(TVM − CVM) < T1 so we have 2(TVM − 0.7TVM) < T1 , from that we get 0.6TVM < T1 , 
this means that TVM T1⁄ <  1 0.6⁄ = 1.66. By continuing this we can calculate the values of   TVM T1⁄  for each value 
of  CVM TVM⁄ . The corresponding graph is presented in Fig. 3. These values are clearly the upper bound for all the 
values of TVM T1⁄  , and our simulation study shows that, for all combinations of u, n, and CVM TVM ⁄ , TVM T1⁄  is less 
than this upper bound.  

7.1 Total Utilization of 0.1 
In Fig. 4, we see that the standard deviation is very small for u = 0.1. For n = 10 we get values around 0 and for n = 
20, we get 0.006 and for n = 30, we get 0.009.  

As shown in Fig. 5, for different number of the tasks (n = 10, 20 and 30) TVM / T1 increases when CVM TVM⁄  
increases. The first observation is thus that the maximum TVMfor which the task set inside the VM is schedulable 
increases when the VM gets a larger share of the physical processor, i.e., when CVM TVM⁄  increases. The second 
observation is that the curves in Fig. 5 are below, but very close to, the upper bound in Fig. 3.  Also, when total 
utilization (u) is 0.1, we observe that TVM / T1 is zero when CVM TVM⁄ = 0.1 . This means that the task set inside the 
VM is not schedulable when CVM TVM⁄ = 0.1. 

7.2 Total Utilization of 0.2 
Fig. 6 shows that the standard deviation divided with the average is almost zero except when CVM TVM⁄ = 0.3. This 
means that for  CVM TVM⁄ = 0.3 (and n = 10, 20, and 30) some task sets are schedulable with TVM / T1  close to the 
upper bound (0.71, see Fig. 3), but other task sets need a much shorter TVM . When is  CVM TVM⁄  larger than 0.3, all 
task sets are schedulable with TVM / T1  close to the upper bound. 

 
Fig. 8. Standard deviation for 𝐓𝐕𝐌 divided with average 

𝐓𝐕𝐌when the total utilization u = 0.3. 

 
Fig. 9. Average  𝐓𝐕𝐌 𝐓𝟏⁄  when the total utilization u = 0.3. 



Fig. 7 shows that the maximum TVM,  for which the task set inside the VM is schedulable, increases when 
 CVM TVM⁄  increases. When  CVM TVM⁄  is larger than 0.3 the curves in Fig. 7 are very close to the upper bound in Fig. 
3. When CVM TVM⁄ = 0.1, and 0.2, Fig. 7 shows that the task set inside the VM is not schedulable (i.e., TVM / T1 = 0 
for these values). When CVM TVM⁄ = 0.3, Fig. 7 shows that the average TVM / T1 are significantly below the upper 
bound. As discussed above, the reason for this is that when  CVM TVM⁄ = 0.3 some task sets are schedulable with 
TVM / T1 close to the upper bound, but other task sets need a much shorter TVM.  

7.3 Total Utilization of 0.3 
Fig. 8 shows that the standard deviation divided with the average is almost zero except when  𝐂𝐕𝐌 𝐓𝐕𝐌⁄ = 𝟎.𝟒 (for n 
= 10, 20, and 30), and when  𝐂𝐕𝐌 𝐓𝐕𝐌⁄ = 𝟎.𝟓 (for n = 10). This means that for  𝐂𝐕𝐌 𝐓𝐕𝐌⁄ = 𝟎.𝟒 (and n = 10, 20, 
and 30) some task sets are schedulable with 𝐓𝐕𝐌 / T1 close to the upper bound (0.83, see Fig. 3), but other task sets 
need a much shorter 𝐓𝐕𝐌. For n = 10, we have a similar situation when 𝐂𝐕𝐌 𝐓𝐕𝐌⁄ = 𝟎.𝟓. In general, the standard 
deviation decreases when n increases. 

8. CONSIDERING OVERHEAD  
In our previous model presented in Section 3, we neglected the overhead induced by switching from one VM to 
another. However, in reality this is not the case. So in this section we consider overhead at the beginning of 
execution of each VM. 

8.1 DEFINING OVERHEAD  
By considering the overhead we can rewrite the Equation (4) as  

f−1(t, TVM, CVM, X) = (TVM − CVM) + t + � t
(CVM−X)

� (TVM − CVM + X)           (6) 

 
Fig 10. Worst-case scenario when considering context switches overheads. 



 
Fig 11. The function 𝐟−𝟏(𝐭,𝐓𝐕𝐌,𝐂𝐕𝐌,𝐗); 𝐭  is the parameter on the x-axis in the graph. 

where X denotes the overhead (see figures 10 and 11). So in the worst-case scenario considering this overhead 
model, the first execution of task τ1   is after 2(TVM − CVM) + X time units (see Fig. 10). Our model is obviously 
valid for non-preemptive scheduling since we have considered overhead at the beginning of the execution of each 
task [35]. The overhead model can also be used in systems with preemptive scheduling, since one can put a bound 
on the number of preemptions in RM and EDF schedulers [36]. By multiplying the maximum number of 
preemptions with the overhead for a preemption, and then making the safe (but pessimistic) assumption that all this 
overhead occurs at the start of a period, we arrive at the model considered here. In [25] and [41] the authors 
calculated a different kind of overhead for periodic tasks; using our notation they calculated the ratio ((CVM TVM⁄ ) – 
u)/u (which for fixed CVM TVM⁄  and u is an increasing function of TVM).  In [26] and [40] the authors considered 
different overhead models (including overhead due to cache misses) on the task level in compositional analysis of 
real-time systems. Our model considers overhead on the hypervisor level, and our overhead analysis is in thus 
orthogonal to the overhead analysis on the task level (i.e., both models could be applied independently).  

8.2 PREDICTION MODEL 
For any task set, if CVM TVM⁄  is given, it is possible to predict a range where we can search for values of TVM that can 
make the task set inside the VM schedulable (i.e., a value of TVM such that all tasks meet their deadlines). For values 
of TVM that are outside of this interval, we know that there is at least one task that will not meet its deadline. In Fig 
12(a) and (b), the solid line represents Maximum Ri Ti⁄  (1 ≤ i ≤ n) versus different values of TVM, for given values 
of CVM TVM⁄   and overhead X. As long as Maximum Ri Ti⁄ ≤ 1 we know that the task set is schedulable. If we can 
find two values of TVM such that Maximum Ri Ti⁄  = 1, Fig. 12(a) indicates that the interval between these two values 
is the range of values of TVM for which the task set is schedulable.  

We now define a prediction model consisting of three lines that will help us to identify the range of values that will 
result in a schedulable task set. We will refer to these three lines as: the left bound, the lower bound and the 
schedulability limit. These three lines will produce a triangle. The intersection between the schedulability limit line 
and the left bound will give us the first point and the intersection between the schedulability limit line and the lower 
bound will give us the second point. We consider the corresponding TVM  values of these two points on the x-axis 
and the interval between these two values (see Fig 12(a) and (b)). If the intersection between the lower bound and 
the schedulability limit is left of the intersection of the left bound and the schedulability limit (see Fig. 12(b)), then it 
is not possible to find a TVM that will make the task set schedulable. 



In order to find the left bound we use the equation below: 

                            ((CVM−X)
TVM

) ≥ Total Utilization        (7) 

According to Equation (7) a TVM value must be selected so that ((CVM−X)
TVM

) ≥ Total Utilization. Here X represents the 

amount of overhead and (CVM − X) represents the effective execution of the VM in one period. Obviously, ((CVM−X)
TVM

) 
should be higher than or equal to total utilization since in order to successfully schedule all tasks in the VM, the 
utilization of the VM should be a value that is the same as the total utilization or higher.    

In order to calculate the lower bound we consider the Maximum  Ri Ti⁄  (1 ≤ i ≤ n )  value. Our previous 
experiments showed that it is often (but not always) the task with the shortest period that restricts the length of TVM. 
τ1 is the task in the task set which has the shortest period T1, and obviously R1 T1⁄  ≤  Maximum Ri Ti⁄ .  

We have R1 T1⁄ =  (2(TVM − CVM) + X + C1) T1⁄ , and if we rewrite this equation and consider  TVM as a variable 
then we can calculate the lower bound using the equation below: 

                f(TVM) = 2(TVM−CVM)
T1

+ (C1+X)
T1

        (8) 

By considering the common form of a linear equation  f(x) = mx + b where m and b are constant values and m 
represents the slope of the line and b represents the offset, we can rewrite the Equation (8) if the value of CVM TVM⁄  
is given, e.g., CVM TVM⁄ = 0.54, we can rewrite the Equation (8) as f(TVM) = 2(1−0.54)

T1
(TVM) + (C1+X)

T1
,. Thus the 

slope of the line becomes m=2(1−0.54)
T1

 and the offset is b=(C1+X)
T1

.  

The schedulability limit is represented by a horizontal line at Maximum Ri Ti⁄ = 1. Ri Ti⁄  (1 ≤ i ≤ n ).  

In order to calculate the value Maximum Ri Ti⁄ , we first calculate Ri Ti⁄  for each task τi  (1 ≤ i ≤ n ), and then 
Maximum Ri Ti⁄  (1 ≤ i ≤ n ) is selected for the entire task set.  

For instance in Fig 12(a), total utilization U = 0.3, CVM TVM⁄ = 0.54 and X = 1, so to calculate the left bound using 
Equation (7), for TVM = 1, we will get (0.54TVM − 1) TVM =⁄ (0.54(1) − 1) 1 =⁄ − 0.46 for  TVM = 2 we get 0.04, 
for TVM = 3 we get 0.206 and for  TVM = 4 we will have 0.29 while for  TVM = 5 we will get 0.34. So in this case 
for TVM = 5 we get the value of 0.34 which is higher than total utilization (0.3) so we know that for TVM values that 
are higher than 5 we have a chance to find the suitable TVM for the entire task set.  

However for different values of X the same TVM value may not be valid anymore, e.g., if we consider X = 2, then for 
 TVM = 5 we will get (CVM−X)

TVM
= 0.14. For TVM = 9 we get (CVM−X)

TVM
= 0.31 which is higher than total utilization (0.3). 

  

(a)                                                                                     (b) 

Fig 12. (a)Prediction Model for CVM TVM⁄ = 0.54, u = 0.3 and X = 1 and (b) Prediction Model for CVM TVM⁄ = 0.2, u =
0.1 and X = 16 



In Fig 12(b), for total utilization u = 0.1, CVM TVM⁄ = 0.2 and X = 16, if we calculate the left bound using Equation 
(7), then for  TVM = 160  we get (0.2TVM − 1) TVM =⁄ (0.2(160) − 16) 160 =⁄ 0.1  which is equal to total 
utilization (0.1) (i.e., TVM = 160 is the left bound).  

For the lower bound, if we consider the first task in the task set has the shortest period T1 = 157, and its execution 
time is C1 = 2. Using Equation (8), we can get the slope of the line  2(1−0.54)

T1
=  2(0.46)

157
≈ 0.006 and the offset will 

be (C1+X)
T1

=  (2+1)
157

≈ 0.02 so we can plot a line which changes in proportional to  TVM 
values f(TVM) = 0.006(TVM) + 0.02 (see Fig 12 (a)).  

In Fig. 12 (b), we can consider a task in the task set with the shortest period, T = 161 and execution time C = 2, so 
we will have the linear equation f(TVM) = 0.009(TVM) + 0.11 which corresponds to the lower bound and changes 
in proportional to  TVM values. As it can be observed from Fig. 12 (b), if the intersection between the left bound and 
the lower bound become above the schedulability limit line there is no chance of finding any TVM value that can 
schedule this task set when the overhead is X = 16. 

In order to validate our model, in the next section we have presented different experiments with different number of 
task sets and various values of total utilizations and  CVM TVM⁄ . We have also considered different amounts of 
overhead (X). 

8.3 OVERHEAD SIMULATION STUDY 
During overhead simulation we had 10 task sets of 10 tasks each, n = 10 (we saw no major difference when 
increasing the number of tasks). Each task τi  (1 ≤ i ≤ n ) has a period   Ti  (1 ≤ i ≤ n )  and execution 
time  Ci  (1 ≤ i ≤ n ). Each task‘s period Ti  is randomly generated in the range of [100, 1000] and the execution 
time  Ci  is randomly generated in the range of [100, Ti ]. The  Ci values are then multiplied with a factor to get the 
desired utilization u. Different values have been considered for overheads X = 1, 2, 4, 8, 16 . Different values for 
total utilization u and CVM TVM⁄  are also considered (see Table 2).  

Table 2. Overhead simulation, different values for Total utilization (u) and 𝐂𝐕𝐌 𝐓𝐕𝐌⁄   . 

 𝐂𝐕𝐌 𝐓𝐕𝐌⁄  

T
ot

al
 U

til
iz

at
io

n 
(𝐮

) 0.1 0.14 0.16 0.18 0.2 

0.2 0.28 0.32 0.36 0.4 

0.3 0.42 0.48 0.54 0.6 

Given X,  u and CVM TVM⁄ , and using Equation (6) we calculate Ri for all different values of  TVM  in the 
range of [0, 500]. We then calculate  Ri Ti⁄  (1 ≤ i ≤ n ) for each task for each value of TVM, and then 
we obtain the Maximum Ri Ti⁄  (1 ≤ i ≤ n ) for each value of TVM  (see Figures 13-15). The figures 
show the average value of the 10 task sets. 

8.3.1 Total Utilization of 0.1 
Fig. 13 shows that for total utilization of 0.1 and overhead values are more than 4 (X = 8 and X = 16), the task sets 
are not schedulable. However, for small value of overhead X = 1, the task sets are always schedulable for the values 
of CVM TVM⁄   considered here. When the overhead values are X = 2 and X = 4, the task sets are schedulable only 
when CVM TVM⁄  = 0.2. 
8.3.2 Total Utilization of 0.2 
Fig. 14 shows the Maximum Ri Ti⁄  values for different TVM and overhead values when total utilization is 0.2. As we 
can observe in the figures, the task sets are not schedulable when X = 16 (even for  CVM TVM⁄  = 0.4). For other 



overhead values (X = 1, 2, 4 ), we see that in most of the cases the task sets are schedulable. When the value of 
 CVM TVM⁄  = 0.4, even task sets with overhead value of X = 8 are schedulable. 

8.3.1 Total Utilization of 0.3 
For total utilization of 0.3, Fig. 15 shows that when  CVM TVM⁄  is 0.54 and 0.6, all tasks in the task set will meet their 
deadlines for at least some TVM value.   

 
(a)  

 
(b)  

 
(c)  

 
(d)  

Fig. 13. Overhead simulation results for 𝐂𝐕𝐌 𝐓𝐕𝐌⁄ = 𝟎.𝟏𝟒,𝟎.𝟏𝟔,𝟎.𝟏𝟖,𝟎.𝟐 when total utilization 𝐮 = 𝟎.𝟏 
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Fig 14. Overhead simulation results for 𝐂𝐕𝐌 𝐓𝐕𝐌⁄ = 𝟎.𝟐𝟖,𝟎.𝟑𝟐,𝟎.𝟑𝟔,𝟎.𝟒 when total utilization is 𝐮 = 𝟎.𝟐 
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(d)  

Fig 15. Overhead simulation results for 𝐂𝐕𝐌 𝐓𝐕𝐌⁄ = 𝟎.𝟒𝟐,𝟎.𝟒𝟖,𝟎.𝟓𝟒,𝟎.𝟔 when total utilization is 𝐮 = 𝟎.𝟑 

9. CONCLUSIONS  
We consider a real time application consisting of a set of n real-time tasks τi(1 ≤ i ≤ n) that are executed in a VM; 
the tasks are sorted based on their periods, and τ1 has the shortest period. We have defined a function 
f−1(t, TVM, CVM) such that a real-time application that uses fixed priorities and RMS priority assignment will meet 
all deadlines if we use a VM execution time CVM  and a VM period TVM  such that 
Ri =  f−1 ��Ci +  ∑ �Ri Tj⁄ �Cji−1

j=1 �, TVM, CVM� ≤  Ti(1 ≤ i ≤ n) . This makes it possible to use existing real-time 
scheduling theory also when scheduling VMs containing real-time applications on a physical server.  



The example that we looked at in Section 5 shows that there is a trade-off between on the one hand a long TVM 
period (which reduces the overhead for switching between VMs), and low processor utilization (i.e., 
low CVM TVM ⁄ ). The example also shows that the “critical” task, i.e., the task which puts the toughest restriction on 
the maximal length of TVM, may be different for different values on CVM TVM ⁄ .  

From the simulation results shown in Section 6, we see that increasing the number of the tasks (n) does not affect the 
maximum  TVM for which the task set inside the VM is schedulable (see Fig. 5, Fig. 7 and Fig. 9). The simulation 
results also show that the standard deviation of the maximum  TVM is almost zero except when  CVM TVM ⁄  is slightly 
above the total utilization (u) of the task set (see Fig. 4, Fig. 6 and Fig. 8).  

We have also presented an upper bound on the maximum  TVM  for which the task set inside the VM is schedulable 
(see Fig. 3). The simulation results show that the maximum  TVM  is very close to this bound when  CVM TVM ⁄  is 
(significantly) larger than the total utilization (u) of the task set inside the VM. 

If overhead from switching from one VM to another is ignored, the simulation study in Section 6 shows those 
infinitely small periods ( TVM) are the best, since they minimize processor utilization. In order to provide more 
realistic results, we included and evaluated an overhead model that makes it possible to consider the overhead due to 
context switches between VMs. Along with the model we also defined two performance bounds and a schedulability 
line, each representing a straight line in a figure that plots the Maximum Ri Ti⁄  as a function of the period of the VM 
(TVM). These three lines form a triangle and we show that the intersection between the performance bounds and the 
schedulability lines defines an interval where valid periods (i.e., periods that could result in all tasks meeting their 
deadlines) can be found. This performance model also makes it possible to easily identify cases when no valid TVM 
can be found. 

We have also done a simulation study that shows how the overhead for switching from one VM to another affects 
the schedulability of task set running in the VM. 

Our method is presented in the context of VMs with one virtual core. However, it is easily extendable to VMs with 
multiple cores as long as each real-time task is allocated to one of the (virtual) cores. In that case we need to repeat 
the analysis for each of the virtual cores and make sure that all real-time tasks on each core meet their deadlines. 
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