
Scheduling Tasks with Hard Deadlines in Virtualized
Software Systems

Sogand Shirinbab
School of Computing

Blekinge Institute of Technology
SE-379 71 Karlskrona, Sweden

Sogand.Shirinbab@bth.se

Lars Lundberg
School of Computing

Blekinge Institute of Technology
SE-379 71 Karlskrona, Sweden

Lars.Lundberg@bth.se
ABSTRACT. There is scheduling on two levels in real-time applications
executing in a virtualized environment: traditional real-time scheduling of the tasks
in the real-time application, and scheduling of different Virtual Machines (VMs)
on the hypervisor level. In this paper, we describe a technique for calculating a
period and an execution time for a VM containing a real-time application with
hard deadlines. This result makes it possible to apply existing real-time scheduling
theory when scheduling VMs on the hypervisor level, thus making it possible to
guarantee that the real-time tasks in a VM meet their deadlines. If overhead for
switching from one VM to another is ignored, it turns out that (infinitely) short
VM periods minimize the utilization that each VM needs to guarantee that all real-
time tasks in that VM will meet their deadlines. Having infinitely short VM
periods is clearly not realistic, and in order to provide more useful results we have
considered a fixed overhead at the beginning of each execution of a VM.
Considering this overhead, a set of real-time tasks, the speed of the each processor
core, and a certain processor utilization of the VM containing the real-time tasks,
we present a simulation study and some performance bounds that make it possible
to determine if it is possible to schedule the real-time tasks in the VM, and in that
case for which periods of the VM that this is possible.

Keywords: Cloud, Virtualization, Real-Time Scheduling, Hard Deadlines, Virtual
Machine.

1. INTRODUCTION
Most real-time services were originally designed for physical (un-virtualized) computer systems. However, the trend
towards virtualization pushes, for cost reasons, more and more systems onto virtualized machines, and at some point
one would also like to run real-time systems with hard deadlines in a virtualized environment. Moving a real-time
system with hard deadlines to a virtualized environment where a number of Virtual Machines (VMs) share the same
physical computer is a challenging task. The original real-time application was designed so that all tasks were
guaranteed to meet their deadlines provided that the physical computer was fast enough. In a system with faster
processors, and more cores, one would like to put several VMs on the same hardware and some (or all) of these
VMs may contain real-time tasks with hard deadlines. In such a system there will be scheduling at two levels [6]:
traditional real-time scheduling of the tasks within a VM, and hypervisor controlled scheduling of several VMs on
the same physical server. In [25] and [32] the authors refer to this technique as Component-based design. This
technique is also known as Hierarchical scheduling [21] [22] [31] [32] [34].

Traditional scheduling of tasks on a physical uni-processor computer is well understood, and a number of useful
results exist [9], e.g., it is well known that Earliest Deadline First (EDF) is optimal when we allow dynamic task
priorities. Similarly, it is well-known that Rate-Monotonic Scheduling (RMS) where tasks are assigned priorities
based on their deadlines is optimal for the case when we use static task priorities. These priority scheduling
algorithms are based on a number of parameters for each task τi. These parameters are typically, the period Ti the
worst-case execution time Ci, and the deadline Di, for task τi. Often, we assume that Di = Ti, and in that case we
only need two parameters for each task, namely, Ti and Ci. Priority assignment schemes such as EDF and RMS are
typically used in the original real-time scheduling applications, i.e., in the applications that will be running in a VM.

If we ignore the overhead for context switching from one VM to another and if we use (infinitely) small time slots,
we could let a VM get a certain percentage of the physical computer, e.g., two VMs where each VM uses every
second time slot. This kind of situation could be seen as two VMs running in parallel with 50% of full speed each. In
that case, the real-time application would meet all deadlines if the processor on the physical computer is (at least)

mailto:Sogand.Shirinbab@bth.se
mailto:Lars.Lundberg@bth.se

two times as fast as the processor for which the original real-time application was designed for. However, the
overhead for switching from one VM to another cannot be ignored and the time slot lengths for this kind of
switching can obviously not be infinitely small. In order to minimize the overhead due to switching between VMs
we would like to have relatively long time periods between switching from one VM to another VM. In order to
share the physical hardware between as many VMs as possible we would also like to allocate a minimum percentage
of the physical CPU to a VM, i.e., we would only like to allocate enough CPU resources to a VM so that we know
that the real-time application that runs in that VM meets all its deadlines.

In order to use EDF, RMS or similar scheduling algorithms also on the hypervisor level, i.e., when scheduling the
different VMs to the physical hardware, we need to calculate a period TVM and a (worst-case) execution time CVM
for each VM that share a physical computer. It can be noted that also most real-time multiprocessor scheduling
algorithms are based on the period and the worst-case execution time [8] [20]. This is important since most modern
hardware platforms, i.e., most platforms on which the VMs will run, are multiprocessors.

VMs with one virtual processor will, for several reasons, be a very important case. Many existing real-time
applications with hard deadlines have been developed for uniprocessor hardware. Moreover, even when using state-
of-the-art multiprocessor real-time scheduling algorithms, one may miss deadlines for task sets with processor
utilization less than 40% [8]. For the uni-processor case it is well known that when using RMS we will always meet
all deadlines as long as the processor utilization is less than ln(2) = 69.3% [9]. This indicates that, compared to
having a small number of VMs with many virtual cores each, it is better to use a larger number of VMs with one
virtual core each on a multicore processor (we will discuss this in Section 2). We will present our results in the
context of VMs with one virtual core. However, the results could easily be extended to VMs with multiple virtual
cores as long as each real time task is allocated to a core (we will discuss this in Section 9). Systems that use global
multiprocessor scheduling of real-time tasks, i.e., systems that that allow tasks to migrate freely between processors,
are not considered here.

In this paper we will, based on an existing real-time application and the processor speed of the physical hardware,
calculate a period TVM and an execution time CVM such that the existing real-time application will meet all deadlines
when it is executed in a VM, provided that the VM executes (at least) CVM time unites every period of length TVM.
We will show, and it is also well known from previous studies, that if overhead for switching from one VM to
another is ignored, it turns out that (infinitely) short VM periods minimizes the utilization that each VM needs to
guarantee that all real-time tasks in that VM will meet their deadlines. Having infinitely short VM periods is clearly
not realistic, and in order to provide more useful results we consider a fixed overhead at the beginning of each
execution of a VM. Considering this overhead, a set of real-time tasks, the speed of the each processor core, and a
certain processor utilization of the VM containing the real-time tasks, we present a simulation study and some
performance bounds that make it possible to determine if it is possible to schedule the real-time tasks in the VM, and
in that case for which periods of the VM that this is possible. We will base our calculations on the case when we use
static priorities, and thus RMS, in the original real-time applications. However, we expect that our approach can
easily be generalized to cases when other scheduling policies, such as EDF, are used in the original real-time
applications (we will discuss this in Section 2).

2. RELATED WORK
Today, most physical servers will contain multiple processor cores. Modern virtualization systems, such as KVM,
VMware and Xen, make it possible to define VMs with a number of (virtual) cores, thus allowing parallel execution
within a VM. This means that one can use the physical hardware in different ways: one can have a large number of
VMs with one (virtual) core each on a physical (multi-core) server, or a smaller number of VMs with multiple
(virtual) cores each (or a combination of these two alternatives). It is also possible to make different design
decisions in the time domain, e.g., allowing a VM with one virtual core to execute for relatively long time periods,
or restricting a VM with multiple cores to relatively short execution periods. Real-time scheduling theory (for non-
virtualized systems) shows that the minimum processor utilization for which a real-time system can miss a deadline,
using fixed priority scheduling, decreases as the number of processors increases, e.g., 69.3% for one processor
systems [7] (using RMS) and 53.2% for two processor systems [8] and then down to as little as 37.5% for systems
with (infinitely) many processors [8].

Consequently, compared to multiprocessor systems, the processor utilization is in general higher for systems with
one processor. This is one reason why we have assumed that the VM containing the original real-time application

only has one (virtual) processor. Also, most existing real-time applications are developed for systems with one
processor.

In this paper we have assumed that the real-time application in the VM uses RMS. If we assume some other
scheduling policy, e.g., EDF we can use the same technique. The only difference is that the formula Ri = Ci +
 ∑ �Ri Tj⁄ �Cji−1

j=1 (see Section 3), needs to be replaced with the corresponding analysis for EDF.

Very little has been done in the area of scheduling real-time tasks with hard deadlines in virtualized systems. Some
results on real-time tasks with soft deadlines exist [1] [16].

There are a number of results concerning so called proportional-share schedulers [2][3][4][18]. These results look at
a real-time application that runs inside an operating system process. The proportional-share schedulers aim at
dividing the processor resource in predefined proportions to different processes.

In [10] the authors look at a model for deciding which real-time tasks to discard when the cloud system’s resources
cannot satisfy the needs of all tasks. This model does, however, not address the problems associated with hard
deadlines.

In [11] the authors ran an experiment using a real-time e-learning distributed application for the purpose of
validating the IRMOS approach. The IRMOS uses a variation of the Constant Bandwidth Server (CBS) algorithm
based on EDF. Furthermore in [17] the authors developed their particular strategy in the context of IRMOS project.
They tried to consider isolation and CPU scheduling effects on I/O performance. However, in IRMOS they do not
consider hard real-time tasks scheduled using the RMS.

Reservation-based schedulers are used as hypervisor level schedulers. In [12] and [19] the authors used CPU
reservation algorithm called, Constant Bandwidth Server (CBS) in order to prove that the real time performance of
the VMs running on the hypervisor is affected by both the scheduling algorithm (CBS) and VM technology (in this
case KVM). However, the authors do not present a method for how to schedule different VMs running on the
hypervisor.

In [13] the authors presented two algorithms for real-time scheduling. One is the hypervisor scheduling algorithm
and the other is the processor selection algorithm. However they only consider scheduling VMs on the hypervisor
level, they do not investigate scheduling of the hard real-time tasks that run inside the VMs.

Eucalyptus is open-source software for building private and hybrid clouds. There are several algorithms already
available in Eucalyptus for scheduling VMs with some advantages and disadvantages. In [14] the authors proposed a
new algorithm for scheduling VMs based on their priority value, which varies dynamically based on their load
factors. However they consider dynamic priority based scheduling not static priority.

In [15], a priority based algorithm for scheduling VMs is proposed. The scheduler is first distinguishing the best
matches between VMs and empty places and then deploying the VMs onto the corresponding hosts. The authors did
a comparison between their priority algorithm and First Come First Serve (FCFS) algorithm, they concluded that the
resource performance of their algorithm is not higher than the FCFS algorithm all the time but it has higher average
resource performance. Nevertheless, they do not consider periodic tasks and static priority assignment.

The VSched system, which runs on top of Linux, provides soft real-time scheduling of VMs on physical servers [5].
However, the problems with hard deadlines are not addressed in that system.

In [21], the authors proposed a hierarchical bounded-delay resource model that constructs multiple levels resource
partitioning. Their approach is designed for the open system environment. Their bounded-delay resource partition
model can be used for specifying the real-time guarantees supplied from a parent model to a child model where they
have different schedulers, while in [22] and [32], the authors proposed a resource model that can provide a
compositional manner such that if the parent scheduling model is schedulable, if and only, its child scheduling
models are schedulable. However, none of the proposed resource models consider scheduling in virtualized
environment.

In [23] and [31], the authors presented a methodology for computing exact schedulability parameters for two-level
framework while in [24] they did an analysis on systems where the fixed priority pre-emptive scheduling policy is
used on both level. Further in [26], the authors presented a method for analysis of platform overheads in real-time
systems. Similar work by [33] represents that their proposed approach can reduce pre-emption and overhead by
modifying the period and execution time of the tasks.

In [25], the authors developed compositional real-time scheduling framework based on the periodic interface, they
have also evaluated the overheads that this periodic interface incur in terms of utilization increase. Later in [41], the
authors proposed an approach to eliminate abstraction overhead in composition. In their latest study the authors have
improved their previous works and proposed a new technique for the cache-related overhead analysis [40].

In [27], the authors implemented and evaluated a scheduling framework that built on Xen virtualization platform.
Another similar work has been done by [29]; they represent an implementation of compositional scheduling
framework for virtualization using the L4/Fiasco micro kernel which has different system architecture compared to
Xen. The authors calculated clock cycle overhead for the L4/Fiasco micro kernel. In [28], the authors proposed and
compare the results of overhead of an external scheduler framework called ExSched that is designed for real time
systems. In [30], the authors presented and compared several measurements of overheads that their implemented
hierarchical scheduling framework imposes through its implementation over VxWorks.

Compositional analysis framework based on the explicit deadline periodic resource model has been proposed by
[38]. They have used EDF and Deadline Monotonic (DM) scheduling algorithm and their model supports sporadic
tasks. In [39], the authors present the RM schedulability bound in a periodic real time system which is an
improvement to the earlier bound that has been proposed by [7]. However none of these works consider the
overhead in their models.

3. PROBLEM DEFINITION
We consider a real-time application consisting of n tasks. Task τi (1 ≤ i ≤ n) has a worst-case execution
time Ci (1 ≤ i ≤ n), and a period Ti (1 ≤ i ≤ n). This means that task τi generates a job at each integer multiple
of Ti and each such job has an execution requirement of Ci time units that must be completed by the next integer
multiple of Ti. We assume that each task is independent and does not interact (e.g., synchronize or share data) with
other tasks. We also assume that the first invocation of a task is unrelated to the first invocation of any other task,
i.e., we make no assumptions regarding the phasing of tasks with equal or harmonic periods. We assume that the
deadline Di is equal to the period, i.e., Di = Ti (1 ≤ i ≤ n). The tasks are executed using static task priorities, and
we use RMS scheduling, which means that the priority is inversely proportional to the period of the task (i.e., tasks
with short periods get high priority). This static priority assignment scheme is optimal for the uni-processor case [9].

The real-time application is executed by a VM with one virtual processor. The real-time tasks may miss their
deadlines if the VM containing the tasks is not scheduled for execution by the hypervisor during a certain period of
time. For instance, if some period that the VM is not running exceeds some Ti, it is clear that the corresponding task
τi will miss a deadline. Also, if the VM gets a too low portion of a physical processor, the tasks may also miss their
deadlines since there will not be enough processor time to complete the execution time before the next deadline.

In a traditional real-time application a task τi will voluntarily release the processor when it has finished its execution
in a period, and Ci denotes the maximum time it may execute before it releases the processor. In the case with real-
time scheduling of VMs on the hypervisor level it is more natural to assume that the hypervisor preempts VMj and
puts VMj in the blocked state when it has executed for CVMj time units in a period. The hypervisor then moves VMj
to the ready state at the start of the next period. As mentioned before, the length of the period for VMj is TVMj .

On the hypervisor level one may use any scheduling policy as long as one can guarantee that each VM is
executed CVM, during each period TVM. On multicore processors one could for instance bind each VM to a core and
let the VMs that share the same core share it using RMS, or one could let the VMs share a global ready queue, i.e., a
VM could be executed on different cores during different time periods.

4. DEFINING TVM AND CVM
Without loss of generality, we order the tasks τi (1 ≤ i ≤ n) such that Ti ≤ Ti+1 . This means that τ1 has the
highest priority and τn has the lowest priority using RMS. Let Ri denote the worst-case response time for taskτi.
From previous results we know that

Ri = Ci + ∑ �Ri Tj⁄ �Cji−1
j=1 (1)

on a physical uni-processor server (or when the VM has uninterrupted access to a physical processor). In order to
obtain Ri from Equation (1) one needs to use iterative numeric methods [9]. In order to meet all deadlines we must
make sure that Ri ≤ Ti (1 ≤ i ≤ n).

Consider a time period of length t, which may extend over several periods TVM . The scenario with minimum
execution of the VM during period t, starts with a period of 2(TVM − CVM) with no execution (see Fig. 1) [37][25],
i.e., the period starts exactly when the VM has executed CVM time units as early as possible in one of its periods.
Following this line of discussion, it is also clear that for the worst-case scenario ��t − 2(TVM − CVM)� TVM⁄ � is the
number of whole periods of length TVM (each containing a total execution of CVM) that is covered by t.

Let t′ denote the minimum amount of time that the VM is running during a time period of length t. From Fig 1 we
get the minimum t’ as:

t′ = ��t−2(TVM− CVM)�
TVM

� CVM + min ��t − 2(TVM − CVM) − ��t−2(TVM− CVM)�
TVM

�TVM� , CVM� (2)

In Equation (2), the first term (��t − 2(TVM − CVM)� TVM⁄ �CVM) corresponds to the full periods, and the last term to
the remaining part. The term t − 2(TVM − CVM) − ��t − 2(TVM − CVM)� TVM⁄ �TVM is the time that the VM has
access to a physical processor during the part of t that exceeds the full periods. The minimum comes from the fact
that time that the VM has access to a physical processor during the time interval that exceed the full periods cannot
be more than CVM. This means that t′ is a function of three parameters, i.e., t′ = f (t, TVM, CVM). For fixed TVM and
CVM , t′ = f (t, TVM, CVM) is a continuous increasing function in t , consisting of straight line segments from
�(2(TVM − CVM) + nTVM), nCVM� to �(2(TVM − CVM) + (n + 1)TVM) , (nCVM + TVM)� for any n = 0, 1, 2, …
and horizontal lines connecting them. Fig. 1 displays a general piece of the curve, and the points Pn = �(2(TVM −
 CVM) + nTVM) , CVM� are the lower corners in the graph.

We now define the inverse function

 t = f−1(f (t, TVM, CVM), TVM, CVM) (3)

Fig. 1.Worst-case scenario when scheduling a VM with period 𝐓𝐕𝐌 and (worst-case) execution time 𝐂𝐕𝐌.

Fig. 2. The function 𝐟−𝟏(𝐭,𝐓𝐕𝐌,𝐂𝐕𝐌); 𝐭 is the parameter on the x-axis in the graph.

By looking at Fig. 2 we see that

 f−1(t, TVM, CVM) = 2(TVM − CVM) + t + ⌊t CVM⁄ ⌋(TVM − CVM) (4)

From previous results on Ri (see [9] and above), and from the definition of f−1 we get that the worst-case response
time for task τi is

Ri = f−1 ��Ci + ∑ �Ri Tj⁄ �Cji−1
j=1 �, TVM, CVM� (5)

 For example if we have two tasks and T1 = 8, C1 = 1, and T2 = 15, C2 = 3, and TVM = 6 and CVM = 3 we get
 7 = R1 = f−1(1, 6, 3) and 14 = R2 = f−1�(3 + ⌈14/8⌉ ∗ 1), 6, 3�.

In order to solve Equation (5), one needs to use numeric and iterative methods, i.e., a very similar approach as the
well-known method used for obtaining Ri in the non-virtualized case [9] (this approach can easily be implemented
in a program that calculates the Ri values). In order to meet all deadlines for all tasks τi, we need to select TVM and
CVM so that Equation (5) ≤ Ti(1 ≤ i ≤ n).

5. EXAMPLE
Consider the following small real-time application with three tasks.

Table 1. Example of a small real-time application with three tasks.

Task Period (Ti) Worst-case execution time (Ci) Utilization (Ui)

τ1 16 2 2/16 = 0.125

τ2 24 1 1/24 = 0.042

τ3 36 4 4/36 = 0.111

 ∑ = 0.278

As discussed above, we use fixed priorities and RMS priority assignment. If we let the VM that executes this
application use 40% of a CPU resource, i.e., if CVM TVM = 0.4 ⁄ , we can use Equation (4) to calculate the maximum
TVM so that all three tasks will meet their deadlines. When CVM TVM = 0.4 ⁄ we can replace CVM with 0.4TVM in
Equation (4), thus obtaining the function f−1(t, TVM) = 1.2TVM + t + ⌊t 0.4TVM⁄ ⌋(0.6TVM) .

We start by looking at τ1 . We need to find the maximal TVM so that R1 = f−1 ��C1 + ∑ �R1 Tj⁄ �Cj0
j=1 �, TVM� =

 f−1(C1, TVM) = f−1(2, TVM) ≤ T1 = 16. In general, f−1 is solved using a numeric and iterative approach in a
similar way as Ri is obtained in the non-virtualized case [9]. However, we will see that for this τ1 the
⌊t CVM⁄ ⌋(TVM − CVM) part of f−1 can be ignored. In that case, we get the following equation for the
maximum TVM: 1.2TVM + 2 = 16, and from this we get TVM = 14 1.2 =⁄ 11.7. If we have a period of 11.7 we get
a CVM = 0.4 × 11.7 = 4.68, and (as predicted above) since CVM > C1, we know that we do not have to consider
the ⌊t CVM⁄ ⌋(TVM − CVM) part of f−1.

We now look at τ2. We want to find the maximal TVM so that R2 = f−1 ��C2 + ∑ �R2 Tj⁄ �Cj1
j=1 �, TVM� ≤ T2 = 24.

It is clear that τ2 will miss its deadline with TVM = 14 1.2 =⁄ 11.7 (which is the maximal TVM period for which τ1
will meet its deadlines); if we use TVM = 14 1.2 =⁄ 11.7, the first execution period will (in the worst-case, see Fig.
1) start at time 2(TVM − CVM) = 1.2TVM = 14. Since T1 = 16 and C1 = 2 we see that τ1 will execute two times
back-to-back in this interval, i.e., after the first execution of τ1 it will be released again at time 16. Consequently, τ2
cannot start executing until time 18, and the first execution period of the VM will end at 2TVM − CVM (see Fig
1) = 1.6TVM = 1.6 × 11.7 = 18.7, and since C1 = 1, τ2 cannot complete during the first execution period of the
VM. The second period of the VM starts at time 3TVM − 2CVM (see Fig 1) = 2.2TVM = 2.2 × 11.7 = 25.7, which
is after the deadline of τ2(T2 = 24).

By using our formulas we see that in order for τ2 to meet its deadlines TVM cannot be larger than 13 1.2⁄ = 10.8.
This means that we now know that the real-time application can at most have TVM = 10.8 when CVM TVM = 0.4⁄ .
For TVM = 10.8 and CVM TVM = 0.4⁄ , the corresponding CVM is 0.4 × 10.8 = 4.33.

We finally look at τ3. We need to find the maximum TVM so that R3 = f−1 ��C3 + ∑ �R3 Tj⁄ �Cj2
j=1 �, TVM� ≤ T3 =

36. In this case we see that τ3 will not meet its deadline when TVM = 13 1.2⁄ = 10.8. The reason for this is that both
τ1 and τ2 will cause interference on τ3, and τ3 will as a consequence of this not complete in the first TVM cycle,
since C1 + C2 + C3 = 2 + 1 + 4 = 7 > 4.33. The second TVM cycle will complete at time 3TVM − CVM (see Fig.
1) = 3 × 10.8 − 4.33 = 28.07. Before the end of this cycle both τ1 and τ2 will have had one new release each (τ1 at
time 16 and τ2 at time 24). This means that τ3 will not complete during the second cycle of TVM since2C1 + 2C2 +
C3 = 4 + 2 + 4 = 10 > 2 × 4.33 = 8.66. In the worst-case scenario (see Fig. 1), the third cycle of TVM will start at
time 4TVM − 2CVM = 4 × 10.8 − 2 × 4.33 = 34.54. At time 32 there is a new release of task τ1, and since τ1 has
higher priority than τ3, task τ1 will execute for two time units starting at time 34.54.

Fig. 3. The upper bound for 𝐓𝐕𝐌 / T1

Since T3 = 36, we see that τ3 will miss its deadline. This means that we need a shorter period TVM in order to
guarantee that also τ3 will meet its deadlines. When using our formulas, we see that TVM = 10 is the maximal period
that τ3 can tolerate in order to meet its deadline when CVM TVM = 0.4⁄ , i.e., for CVM TVM = 0.4⁄ we get TVM = 10,
and τ3 is the task that requires the shortest period TVM. When CVM TVM = 0.5⁄ we can use our formulas to calculate
a TVM. In this case we get a maximal TVM of 14 for task τ1, and the calculations for tasks τ2 and τ3 will result in
larger values on the maximal TVM.

This means that τ1 is the task that requires the shortest period TVM , i.e., TVM = 14 when CVM TVM = 0.5⁄ . In
general, the period TVM will increase when the utilization CVM TVM ⁄ increases, and the task that is “critical” may
change when CVM TVM⁄ changes (e.g., task τ3 when CVM TVM = 0.4⁄ and task τ1when CVM TVM = 0.5⁄).

6. SIMULATION STUDY
In Section 5 we saw that the maximal TVM, for which a task set inside the VM is schedulable increases when
CVM TVM⁄ increases. In this section we will quantify the relation between the maximal TVMthe utilization CVM TVM⁄ .

We will do a simulation study where we consider two parameters:

• n – the number of tasks in the real-time application

• u – the total utilization of the real-time application

The periods Ti are taken from a rectangular distribution between 1000 and 10000. The worst-case execution time Ci for task τi is
initially taken from a rectangular distribution between 1000 and Ti.

Fig. 4. Standard deviation for 𝐓𝐕𝐌 divided with average

𝐓𝐕𝐌when the total utilization u = 0.1.

Fig. 5. Average 𝐓𝐕𝐌 𝐓𝟏⁄ when the total utilization u = 0.1.

Fig. 6. Standard deviation for 𝐓𝐕𝐌 divided with average

𝐓𝐕𝐌when the total utilization u = 0.2.

Fig. 7. Average 𝐓𝐕𝐌 𝐓𝟏⁄ when the total utilization u = 0.2.

All worst-case execution times are then scaled by a factor so that we get a total utilization u. For each task, we then
find the maximum TVM using Equation (5) so that all tasks meet their deadlines. We refer to this period as Tmax, and
we then select the minimum of the n different Tmax values (one value for each task). For each pair of n and u, we
calculate the minimum Tmax for (CVM TVM = 0.9⁄), (CVM TVM = 0.8⁄), (CVM TVM = 0.7⁄), (CVM TVM = 0.6⁄),
(CVM TVM = 0.5⁄), (CVM TVM = 0.4⁄), (CVM TVM = 0.3⁄), (CVM TVM = 0.2⁄), (CVM TVM = 0.1⁄) for 10 randomly
generated programs (we generate the programs using the distribution and the technique described above). We look
at n = 10, 20, and 30, and u = 0.1, 0.2 and 0.3. This means that we look at 3*3 = 9 combinations of n and u, and for
each of these nine combinations we look at 9 different values on CVM TVM⁄ . This means that we looked at 3*3*9 =
81 different scenarios. For each such scenario we generated 10 programs using a random number generator.

7. RESULTS
In the worst-case scenario (see Fig. 1), the maximum time that a virtual machine may wait before its first execution
is 2(TVM − CVM). In order for the real-time tasks not to miss their deadlines the maximum waiting time, 2(TVM −
CVM) must be less than the shortest period, T1 (i.e., 2(TVM − CVM) < T1). For each value of CVM TVM⁄ , we can
replace CVM and calculate the TVM T1⁄ using the formula above. For example, if CVM TVM = 0.7⁄ then we can
replace CVM by 0.7TVM in 2(TVM − CVM) < T1 so we have 2(TVM − 0.7TVM) < T1 , from that we get 0.6TVM < T1 ,
this means that TVM T1⁄ < 1 0.6⁄ = 1.66. By continuing this we can calculate the values of TVM T1⁄ for each value
of CVM TVM⁄ . The corresponding graph is presented in Fig. 3. These values are clearly the upper bound for all the
values of TVM T1⁄ , and our simulation study shows that, for all combinations of u, n, and CVM TVM ⁄ , TVM T1⁄ is less
than this upper bound.

7.1 Total Utilization of 0.1
In Fig. 4, we see that the standard deviation is very small for u = 0.1. For n = 10 we get values around 0 and for n =
20, we get 0.006 and for n = 30, we get 0.009.

As shown in Fig. 5, for different number of the tasks (n = 10, 20 and 30) TVM / T1 increases when CVM TVM⁄
increases. The first observation is thus that the maximum TVMfor which the task set inside the VM is schedulable
increases when the VM gets a larger share of the physical processor, i.e., when CVM TVM⁄ increases. The second
observation is that the curves in Fig. 5 are below, but very close to, the upper bound in Fig. 3. Also, when total
utilization (u) is 0.1, we observe that TVM / T1 is zero when CVM TVM⁄ = 0.1 . This means that the task set inside the
VM is not schedulable when CVM TVM⁄ = 0.1.

7.2 Total Utilization of 0.2
Fig. 6 shows that the standard deviation divided with the average is almost zero except when CVM TVM⁄ = 0.3. This
means that for CVM TVM⁄ = 0.3 (and n = 10, 20, and 30) some task sets are schedulable with TVM / T1 close to the
upper bound (0.71, see Fig. 3), but other task sets need a much shorter TVM . When is CVM TVM⁄ larger than 0.3, all
task sets are schedulable with TVM / T1 close to the upper bound.

Fig. 8. Standard deviation for 𝐓𝐕𝐌 divided with average

𝐓𝐕𝐌when the total utilization u = 0.3.

Fig. 9. Average 𝐓𝐕𝐌 𝐓𝟏⁄ when the total utilization u = 0.3.

Fig. 7 shows that the maximum TVM, for which the task set inside the VM is schedulable, increases when
 CVM TVM⁄ increases. When CVM TVM⁄ is larger than 0.3 the curves in Fig. 7 are very close to the upper bound in Fig.
3. When CVM TVM⁄ = 0.1, and 0.2, Fig. 7 shows that the task set inside the VM is not schedulable (i.e., TVM / T1 = 0
for these values). When CVM TVM⁄ = 0.3, Fig. 7 shows that the average TVM / T1 are significantly below the upper
bound. As discussed above, the reason for this is that when CVM TVM⁄ = 0.3 some task sets are schedulable with
TVM / T1 close to the upper bound, but other task sets need a much shorter TVM.

7.3 Total Utilization of 0.3
Fig. 8 shows that the standard deviation divided with the average is almost zero except when 𝐂𝐕𝐌 𝐓𝐕𝐌⁄ = 𝟎.𝟒 (for n
= 10, 20, and 30), and when 𝐂𝐕𝐌 𝐓𝐕𝐌⁄ = 𝟎.𝟓 (for n = 10). This means that for 𝐂𝐕𝐌 𝐓𝐕𝐌⁄ = 𝟎.𝟒 (and n = 10, 20,
and 30) some task sets are schedulable with 𝐓𝐕𝐌 / T1 close to the upper bound (0.83, see Fig. 3), but other task sets
need a much shorter 𝐓𝐕𝐌. For n = 10, we have a similar situation when 𝐂𝐕𝐌 𝐓𝐕𝐌⁄ = 𝟎.𝟓. In general, the standard
deviation decreases when n increases.

8. CONSIDERING OVERHEAD
In our previous model presented in Section 3, we neglected the overhead induced by switching from one VM to
another. However, in reality this is not the case. So in this section we consider overhead at the beginning of
execution of each VM.

8.1 DEFINING OVERHEAD
By considering the overhead we can rewrite the Equation (4) as

f−1(t, TVM, CVM, X) = (TVM − CVM) + t + � t
(CVM−X)

� (TVM − CVM + X) (6)

Fig 10. Worst-case scenario when considering context switches overheads.

Fig 11. The function 𝐟−𝟏(𝐭,𝐓𝐕𝐌,𝐂𝐕𝐌,𝐗); 𝐭 is the parameter on the x-axis in the graph.

where X denotes the overhead (see figures 10 and 11). So in the worst-case scenario considering this overhead
model, the first execution of task τ1 is after 2(TVM − CVM) + X time units (see Fig. 10). Our model is obviously
valid for non-preemptive scheduling since we have considered overhead at the beginning of the execution of each
task [35]. The overhead model can also be used in systems with preemptive scheduling, since one can put a bound
on the number of preemptions in RM and EDF schedulers [36]. By multiplying the maximum number of
preemptions with the overhead for a preemption, and then making the safe (but pessimistic) assumption that all this
overhead occurs at the start of a period, we arrive at the model considered here. In [25] and [41] the authors
calculated a different kind of overhead for periodic tasks; using our notation they calculated the ratio ((CVM TVM⁄) –
u)/u (which for fixed CVM TVM⁄ and u is an increasing function of TVM). In [26] and [40] the authors considered
different overhead models (including overhead due to cache misses) on the task level in compositional analysis of
real-time systems. Our model considers overhead on the hypervisor level, and our overhead analysis is in thus
orthogonal to the overhead analysis on the task level (i.e., both models could be applied independently).

8.2 PREDICTION MODEL
For any task set, if CVM TVM⁄ is given, it is possible to predict a range where we can search for values of TVM that can
make the task set inside the VM schedulable (i.e., a value of TVM such that all tasks meet their deadlines). For values
of TVM that are outside of this interval, we know that there is at least one task that will not meet its deadline. In Fig
12(a) and (b), the solid line represents Maximum Ri Ti⁄ (1 ≤ i ≤ n) versus different values of TVM, for given values
of CVM TVM⁄ and overhead X. As long as Maximum Ri Ti⁄ ≤ 1 we know that the task set is schedulable. If we can
find two values of TVM such that Maximum Ri Ti⁄ = 1, Fig. 12(a) indicates that the interval between these two values
is the range of values of TVM for which the task set is schedulable.

We now define a prediction model consisting of three lines that will help us to identify the range of values that will
result in a schedulable task set. We will refer to these three lines as: the left bound, the lower bound and the
schedulability limit. These three lines will produce a triangle. The intersection between the schedulability limit line
and the left bound will give us the first point and the intersection between the schedulability limit line and the lower
bound will give us the second point. We consider the corresponding TVM values of these two points on the x-axis
and the interval between these two values (see Fig 12(a) and (b)). If the intersection between the lower bound and
the schedulability limit is left of the intersection of the left bound and the schedulability limit (see Fig. 12(b)), then it
is not possible to find a TVM that will make the task set schedulable.

In order to find the left bound we use the equation below:

 ((CVM−X)
TVM

) ≥ Total Utilization (7)

According to Equation (7) a TVM value must be selected so that ((CVM−X)
TVM

) ≥ Total Utilization. Here X represents the

amount of overhead and (CVM − X) represents the effective execution of the VM in one period. Obviously, ((CVM−X)
TVM

)
should be higher than or equal to total utilization since in order to successfully schedule all tasks in the VM, the
utilization of the VM should be a value that is the same as the total utilization or higher.

In order to calculate the lower bound we consider the Maximum Ri Ti⁄ (1 ≤ i ≤ n) value. Our previous
experiments showed that it is often (but not always) the task with the shortest period that restricts the length of TVM.
τ1 is the task in the task set which has the shortest period T1, and obviously R1 T1⁄ ≤ Maximum Ri Ti⁄ .

We have R1 T1⁄ = (2(TVM − CVM) + X + C1) T1⁄ , and if we rewrite this equation and consider TVM as a variable
then we can calculate the lower bound using the equation below:

 f(TVM) = 2(TVM−CVM)
T1

+ (C1+X)
T1

 (8)

By considering the common form of a linear equation f(x) = mx + b where m and b are constant values and m
represents the slope of the line and b represents the offset, we can rewrite the Equation (8) if the value of CVM TVM⁄
is given, e.g., CVM TVM⁄ = 0.54, we can rewrite the Equation (8) as f(TVM) = 2(1−0.54)

T1
(TVM) + (C1+X)

T1
,. Thus the

slope of the line becomes m=2(1−0.54)
T1

 and the offset is b=(C1+X)
T1

.

The schedulability limit is represented by a horizontal line at Maximum Ri Ti⁄ = 1. Ri Ti⁄ (1 ≤ i ≤ n).

In order to calculate the value Maximum Ri Ti⁄ , we first calculate Ri Ti⁄ for each task τi (1 ≤ i ≤ n), and then
Maximum Ri Ti⁄ (1 ≤ i ≤ n) is selected for the entire task set.

For instance in Fig 12(a), total utilization U = 0.3, CVM TVM⁄ = 0.54 and X = 1, so to calculate the left bound using
Equation (7), for TVM = 1, we will get (0.54TVM − 1) TVM =⁄ (0.54(1) − 1) 1 =⁄ − 0.46 for TVM = 2 we get 0.04,
for TVM = 3 we get 0.206 and for TVM = 4 we will have 0.29 while for TVM = 5 we will get 0.34. So in this case
for TVM = 5 we get the value of 0.34 which is higher than total utilization (0.3) so we know that for TVM values that
are higher than 5 we have a chance to find the suitable TVM for the entire task set.

However for different values of X the same TVM value may not be valid anymore, e.g., if we consider X = 2, then for
 TVM = 5 we will get (CVM−X)

TVM
= 0.14. For TVM = 9 we get (CVM−X)

TVM
= 0.31 which is higher than total utilization (0.3).

(a) (b)

Fig 12. (a)Prediction Model for CVM TVM⁄ = 0.54, u = 0.3 and X = 1 and (b) Prediction Model for CVM TVM⁄ = 0.2, u =
0.1 and X = 16

In Fig 12(b), for total utilization u = 0.1, CVM TVM⁄ = 0.2 and X = 16, if we calculate the left bound using Equation
(7), then for TVM = 160 we get (0.2TVM − 1) TVM =⁄ (0.2(160) − 16) 160 =⁄ 0.1 which is equal to total
utilization (0.1) (i.e., TVM = 160 is the left bound).

For the lower bound, if we consider the first task in the task set has the shortest period T1 = 157, and its execution
time is C1 = 2. Using Equation (8), we can get the slope of the line 2(1−0.54)

T1
= 2(0.46)

157
≈ 0.006 and the offset will

be (C1+X)
T1

= (2+1)
157

≈ 0.02 so we can plot a line which changes in proportional to TVM
values f(TVM) = 0.006(TVM) + 0.02 (see Fig 12 (a)).

In Fig. 12 (b), we can consider a task in the task set with the shortest period, T = 161 and execution time C = 2, so
we will have the linear equation f(TVM) = 0.009(TVM) + 0.11 which corresponds to the lower bound and changes
in proportional to TVM values. As it can be observed from Fig. 12 (b), if the intersection between the left bound and
the lower bound become above the schedulability limit line there is no chance of finding any TVM value that can
schedule this task set when the overhead is X = 16.

In order to validate our model, in the next section we have presented different experiments with different number of
task sets and various values of total utilizations and CVM TVM⁄ . We have also considered different amounts of
overhead (X).

8.3 OVERHEAD SIMULATION STUDY
During overhead simulation we had 10 task sets of 10 tasks each, n = 10 (we saw no major difference when
increasing the number of tasks). Each task τi (1 ≤ i ≤ n) has a period Ti (1 ≤ i ≤ n) and execution
time Ci (1 ≤ i ≤ n). Each task‘s period Ti is randomly generated in the range of [100, 1000] and the execution
time Ci is randomly generated in the range of [100, Ti]. The Ci values are then multiplied with a factor to get the
desired utilization u. Different values have been considered for overheads X = 1, 2, 4, 8, 16 . Different values for
total utilization u and CVM TVM⁄ are also considered (see Table 2).

Table 2. Overhead simulation, different values for Total utilization (u) and 𝐂𝐕𝐌 𝐓𝐕𝐌⁄ .

 𝐂𝐕𝐌 𝐓𝐕𝐌⁄

T
ot

al
 U

til
iz

at
io

n
(𝐮

) 0.1 0.14 0.16 0.18 0.2

0.2 0.28 0.32 0.36 0.4

0.3 0.42 0.48 0.54 0.6

Given X, u and CVM TVM⁄ , and using Equation (6) we calculate Ri for all different values of TVM in the
range of [0, 500]. We then calculate Ri Ti⁄ (1 ≤ i ≤ n) for each task for each value of TVM, and then
we obtain the Maximum Ri Ti⁄ (1 ≤ i ≤ n) for each value of TVM (see Figures 13-15). The figures
show the average value of the 10 task sets.

8.3.1 Total Utilization of 0.1
Fig. 13 shows that for total utilization of 0.1 and overhead values are more than 4 (X = 8 and X = 16), the task sets
are not schedulable. However, for small value of overhead X = 1, the task sets are always schedulable for the values
of CVM TVM⁄ considered here. When the overhead values are X = 2 and X = 4, the task sets are schedulable only
when CVM TVM⁄ = 0.2.
8.3.2 Total Utilization of 0.2
Fig. 14 shows the Maximum Ri Ti⁄ values for different TVM and overhead values when total utilization is 0.2. As we
can observe in the figures, the task sets are not schedulable when X = 16 (even for CVM TVM⁄ = 0.4). For other

overhead values (X = 1, 2, 4), we see that in most of the cases the task sets are schedulable. When the value of
 CVM TVM⁄ = 0.4, even task sets with overhead value of X = 8 are schedulable.

8.3.1 Total Utilization of 0.3
For total utilization of 0.3, Fig. 15 shows that when CVM TVM⁄ is 0.54 and 0.6, all tasks in the task set will meet their
deadlines for at least some TVM value.

(a)

(b)

(c)

(d)

Fig. 13. Overhead simulation results for 𝐂𝐕𝐌 𝐓𝐕𝐌⁄ = 𝟎.𝟏𝟒,𝟎.𝟏𝟔,𝟎.𝟏𝟖,𝟎.𝟐 when total utilization 𝐮 = 𝟎.𝟏

(a)

(b)

(c)

(d)

Fig 14. Overhead simulation results for 𝐂𝐕𝐌 𝐓𝐕𝐌⁄ = 𝟎.𝟐𝟖,𝟎.𝟑𝟐,𝟎.𝟑𝟔,𝟎.𝟒 when total utilization is 𝐮 = 𝟎.𝟐

(a)

(b)

(c)

(d)

Fig 15. Overhead simulation results for 𝐂𝐕𝐌 𝐓𝐕𝐌⁄ = 𝟎.𝟒𝟐,𝟎.𝟒𝟖,𝟎.𝟓𝟒,𝟎.𝟔 when total utilization is 𝐮 = 𝟎.𝟑

9. CONCLUSIONS
We consider a real time application consisting of a set of n real-time tasks τi(1 ≤ i ≤ n) that are executed in a VM;
the tasks are sorted based on their periods, and τ1 has the shortest period. We have defined a function
f−1(t, TVM, CVM) such that a real-time application that uses fixed priorities and RMS priority assignment will meet
all deadlines if we use a VM execution time CVM and a VM period TVM such that
Ri = f−1 ��Ci + ∑ �Ri Tj⁄ �Cji−1

j=1 �, TVM, CVM� ≤ Ti(1 ≤ i ≤ n) . This makes it possible to use existing real-time
scheduling theory also when scheduling VMs containing real-time applications on a physical server.

The example that we looked at in Section 5 shows that there is a trade-off between on the one hand a long TVM
period (which reduces the overhead for switching between VMs), and low processor utilization (i.e.,
low CVM TVM ⁄). The example also shows that the “critical” task, i.e., the task which puts the toughest restriction on
the maximal length of TVM, may be different for different values on CVM TVM ⁄ .

From the simulation results shown in Section 6, we see that increasing the number of the tasks (n) does not affect the
maximum TVM for which the task set inside the VM is schedulable (see Fig. 5, Fig. 7 and Fig. 9). The simulation
results also show that the standard deviation of the maximum TVM is almost zero except when CVM TVM ⁄ is slightly
above the total utilization (u) of the task set (see Fig. 4, Fig. 6 and Fig. 8).

We have also presented an upper bound on the maximum TVM for which the task set inside the VM is schedulable
(see Fig. 3). The simulation results show that the maximum TVM is very close to this bound when CVM TVM ⁄ is
(significantly) larger than the total utilization (u) of the task set inside the VM.

If overhead from switching from one VM to another is ignored, the simulation study in Section 6 shows those
infinitely small periods (TVM) are the best, since they minimize processor utilization. In order to provide more
realistic results, we included and evaluated an overhead model that makes it possible to consider the overhead due to
context switches between VMs. Along with the model we also defined two performance bounds and a schedulability
line, each representing a straight line in a figure that plots the Maximum Ri Ti⁄ as a function of the period of the VM
(TVM). These three lines form a triangle and we show that the intersection between the performance bounds and the
schedulability lines defines an interval where valid periods (i.e., periods that could result in all tasks meeting their
deadlines) can be found. This performance model also makes it possible to easily identify cases when no valid TVM
can be found.

We have also done a simulation study that shows how the overhead for switching from one VM to another affects
the schedulability of task set running in the VM.

Our method is presented in the context of VMs with one virtual core. However, it is easily extendable to VMs with
multiple cores as long as each real-time task is allocated to one of the (virtual) cores. In that case we need to repeat
the analysis for each of the virtual cores and make sure that all real-time tasks on each core meet their deadlines.

REFERENCES
[1] Lee M., Krishnakumar A.S., Krishnan P., Singh N., and Yajnik S. 2010. Supporting Soft Real-Time Tasks in the Xen

Hypervisor. The 2010 ACM SIGPLAN/SIGOPS International Conference on Virtual Execution (Pittsburg, Mar. 2010).

[2] Duda K. and Cheriton D. 1999, Borrowed-Virtual-Time (BVT) scheduling: supporting latency-sensitive threads in a
general-purpose scheduler. ACM SIGOPS Operating Systems Review, 33 (5), December 1999.

[3] Stoica I., Abdel-Wahab H., Jeffay K., Brauha S., Gehrke J., and Plaxton G., 1996. A Proportional Share Resource
Allocation Algorithm for Real-Time, Time-Shared Systems. 17th IEEE Real Time Systems Symposium, December 1996.

[4] Nieh J. and M. Lam. 2003. A SMART scheduler for multimedia applications. ACM Transactions on Computer Systems,
vol. 21, No. 2, May 2003.

[5] Lin B. and DindaP.A. 2005. VSched: Mixing Batch and Interactive Virtual Machines Using Periodic Real-Time Scheduling.
The 2005 ACM/IEEE SC05 Conference (Seattle, Nov. 2005).

[6] Salimi H, Najafzadeh M., and Sharifi M. 2012. Advantages, Challenges and Optimization of Virtual Machine Scheduling in
Cloud Computing Environments, International Journal of Computer Theory and Engineering, vol. 4, no. 2, April 2012.

[7] Liu C. and Leyland J. 1973. Scheduling algorithms for multiprogramming in a hard real-time environment, Journal of the
ACM, 20(1), 1973.

[8] Lundberg L. 2002. Analyzing Fixed-Priority Global Multiprocessor Scheduling. IEEE Real Time Technology and
Applications Symposium, San Jose, USA, September 2002.

[9] Burns A. and Wellings A. 2009. Real-Time Systems and Programming Languages, Addison Wesley, ISBN 978-0-321-
41745-9, 2009.

[10] Liu S., Quan G., and Ren S. 2010. On-line Scheduling of Real-time Services for Cloud Computing. IEEE 6th World
Congress on Services, Miami, USA, July, 2011.

[11] Cucinotta T., Checconi F., Kousiouris G., Kyriazis D., Varvatigou T., Mazzetti A., Zlatev Z., Papay J., Boniface M., Berger
S., Lamp D., Voith T., Stein M. 2010. Virtulised e-Learning with Real-Time Guarantees on the IRMOS Platform. IEEE
International Conference on Service-Oriented Computing and Applications (SOCA).December 2010.

[12] Luca A. and Tommaso C. 2011, Efficient Virtualization of Real-Time Activities. IEEE International Conference on
Service-Oriented Computing and Applications. USA, 2011, pp 1-4.

[13] Yunfa L., Xianghua X., Jian W., Wanqing L., Youwei Y. 2010. A Real-Time Scheduling Mechanism of Resource for
Multiple Virtual Machine System. The ChinaGride Conference. Guangzhou, China, 2010, pp 137-143.

[14] Subramanian S., Nitish K., Kiran K. M., Sreesh P., Karpagam G. R. 2012. An Adaptive Algorithm for Dynamic Priority
Based Virtual Machine Scheduling in Cloud. The IJCSI International Journal of Computer Science, November 2012, pp
397-383.

[15] Xiao J., Wang Z. 2012. A Priority Based Scheduling Strategy for Virtual Machine Allocations in Cloud Computing
Environment. The International Conference on Cloud Computing and Service Computing, Shanghai, China, 2012, pp 50-
55.

[16] Sisu X., Justin W., Chenyang L., Christopher G. 2011. RT-Xen: Towards Real-Time Hypervisor Scheduling in Xen. The
International Conference on Embedded Software, Taipei, Taiwan, 2011, pp 39-48.

[17] Tommaso C., Dhaval G., Dario F., Fabio C. 2010. Providing Performance Guarantees to Virtual Machines. Proceedings of
The 5th Workshop On Virtualization And Cloud Computing, Italy, 2010.

[18] Tommaso C., Gaetano A., Luca A. 2008. Real-Time Virtual Machines. The 29th Real Time Systems Symposium,
Barcelona, Spain, December 2008.

[19] Tommaso C., Gaetano A., Luca A. 2009. Respecting temporal constraints in virtualized services. The Computer Software
and Applications Conference, Seattle, U.S., July 2009, pp 73-78.

[20] Davis R., Burns A. A survey of Hard Real-Time Scheduling for Multiprocessor Systems, ACM Computing Surveys, Vol.
43, No. 4, October, 2011.

[21] Feng X. and Mok A. K. A Model of Hierarchical Real-Time Virtual Resources. In Proceedings of the 23rd IEEE Real-
Time Systems Symposium, Austin, TX USA, Dec. 2002, pp 26-35.

[22] Shih I. and Lee I. Periodic Resource Model for Compositional Real-Time Guarantees. In Proceedings of the 24th Real-
Time Systems Symposium, Cancun, Mexico, Dec. 2003, pp 2-13.

[23] Lipari G. and Bini E. A methodology for designing hierarchical scheduling systems. J. Embedded Computing, 2005, pp
257-269.

[24] Davis R. and Burns A. Hierarchical fixed priority pre-emptive scheduling. In 26th IEEE International Real-Time Systems
Symposium. RTSS 2005.

[25] Shin I. and Lee I. Compositional real-time scheduling framework with periodic model. ACM Transactions on Embedded
Computing Systems (TECS), 7(3):30, 2008.

[26] Phan L. T.X., Xu M., Lee J., Lee I., Sokolsky O. Overhead-Aware Compositional Analysis of Real-Time Systems. In 19th
IEEE Real-Time and Embedded Technology and Applications Symposium, Philadelphia, PA, 2013, pp 237-246.

[27] Lee J., Xi S., Chen S., Phan L. T. X., Gill C., Lee I., Lu C., Sokolsky O. Realizing Compositional Scheduling through
Virtualization. Proceedings of the IEEE 18th Real-Time and Embedded Technology and Applications Symposium, USA,
2012, pp 13-22.

[28] Asberg M., Nolte T., Kato S., Rajkumar R. ExSched: An External CPU Scheduler Framework for Real-Time Systems. 18th
IEEE International conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), Seoul, 2012,
pp 240-249.

[29] Yang J., Kim H., Park S., Hong C., Shin I. Implementation of Compositional Scheduling Framework on Virtualization.
Published in Newsletter ACM SIGBED, Vol 8 Issue 1, 2011, pp 30-37.

[30] Behnam M., Nolte T., Shin I., Asberg M., Bril R. Towards Hierarchical Scheduling in VxWorks. 4th International
Workshop on Operating Systems Platforms for Embedded Real-Time Applications, Prague, Czech Republic, 2008, pp 63-
72.

[31] Lipari G., Bini E. Resource Partitioning among Real-Time Applications. Proceedings of the 15th Euromicro conference on
Real-Time Systems, 2003, pp 151-158.

[32] Shin I., Lee I. Compositional Real-Time Scheduling Framework. 25th IEEE International Real-Time Systems Symposium,
2004, pp 57-67.

[33] Zmaranda D., Gabor G., Popescu D.E., Vancea C., Vancea F. Using Fixed Priority Pre-emptive Scheduling in Real-Time
Systems. Published in International Journal of Computers Communications and Control, 2011, pp 187-195.

[34] Saewong S., Rajkumar R., Lehoczky J., Klein M. Analysis of hierarchical fixed-priority scheduling. Proceedings of the 14th
Euromicro Conference on Real-Time systems, CA, 2002, pp 173-181.

[35] Baruah S. The Non-preemptive scheduling of periodic tasks upon multiprocessors. Published in journal of real-time
systems, USA, 2006, pp 9-20.

[36] Easwaran A., Shin I., Lee I., Sokolsky O. Bounding Preemptions under EDF and RM Schedulers. MS-CIS-06-07,
Department of Computer and Information Science, University of Pennsylvania.

[37] Lundberg L., Shirinbab S. Real-time scheduling in cloud-based virtualized software systems. In proceedings of the Second
Nordic Symposium on Cloud Computing, Oslo, Norway:ACM, 2013, pp 54-58.

[38] Easwaren A., Anand M., Insup L. Compositional analysis framework using EDP resource models. Published in Real-time
systems symposium, 2007, pp 129-138.

[39] Lu W., Li K., Wei H., Shih W. Rate monotonic schedulability tests using period dependent conditions. Published in Journal
Real-Time systems, 2007, pp 123-138.

[40] Meng X., Phan L., Lee I., Sokolsky O. Cache-aware compositional analysis of real-time multicore virtualization platforms.
Published in Real-Time systems symposium, 2013, pp 1-10.

[41] Chen S., Phan L., Lee J., Lee I., Sokolsky O. Removing abstraction overhead in the composition of hierarchical real-time
systems. Proceedings of the 17th IEEE Real-time and embedded technology and applications, 2011, pp 81-90.

	1. INTRODUCTION
	2. RELATED WORK
	3. PROBLEM DEFINITION
	4. DEFINING TVM AND CVM
	5. EXAMPLE
	6. SIMULATION STUDY
	7. RESULTS
	7.1 Total Utilization of 0.1
	7.2 Total Utilization of 0.2
	7.3 Total Utilization of 0.3

	Fig. 8 shows that the standard deviation divided with the average is almost zero except when ,,𝐂-𝐕𝐌.-,𝐓-𝐕𝐌..=𝟎.𝟒 (for n = 10, 20, and 30), and when ,,𝐂-𝐕𝐌.-,𝐓-𝐕𝐌..=𝟎.𝟓 (for n = 10). This means that for ,,𝐂-𝐕𝐌.-,𝐓-𝐕𝐌..=𝟎.𝟒 (a...
	8. CONSIDERING OVERHEAD
	8.1 DEFINING OVERHEAD
	8.2 PREDICTION MODEL
	8.3 OVERHEAD SIMULATION STUDY
	8.3.1 Total Utilization of 0.1
	8.3.2 Total Utilization of 0.2
	8.3.1 Total Utilization of 0.3

	9. CONCLUSIONS
	REFERENCES

