
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Performance Comparision between Scaling of Virtual

Machines and Containers using Cassandra NoSQL

Database

Sogand Shirinbab, Lars Lundberg, Emiliano Casalicchio
Department of Computer Science
Blekinge Institute of Technology

Karlskrona, Sweden
{Sogand.Shirinbab, Lars.Lundberg, Emiliano.Casalicchio}@bth.se

Abstract—Cloud computing promises customers the on-

demand ability to scale in face of workload variations. There are

different ways to accomplish scaling, one is vertical scaling and the

other is horizontal scaling. The vertical scaling refers to buying

more power (CPU, RAM), buying a more expensive and robust

server, which is less challenging to implement but exponentially

expensive. While, the horizontal scaling refers to adding more

servers with less processor and RAM, which is usually cheaper

overall and can scale very well. The majority of cloud providers

prefer the horizontal scaling approach, and for them would be

very important to know about the advantages and disadvantages

of both technologies from the perspective of the application

performance at scale. In this paper, we compare performance

differences caused by scaling of the different virtualization

technologies in terms of CPU utilization, latency, and the number

of transactions per second. The workload is Apache Cassandra,

which is a leading NoSQL distributed database for Big Data

platforms. Our results show that running multiple instances of the

Cassandra database concurrently, affected the performance of

read and write operations differently; for both VMware and

Docker, the maximum number of read operations was reduced

when we ran several instances concurrently, whereas the

maximum number of write operations increased when we ran

instances concurrently.

Keywords—Cassandra; Cloud computing; Docker container;

Horizontal scaling; NoSQL database; Performance comparison;

Virtualization; VMware virtual machine

I. INTRODUCTION

Today’s modern data centers are increasingly virtualized
where applications are hosted on one or more virtual servers that
are then mapped onto physical servers in the data center.
Virtualization provides a number of benefits such as flexible
allocation of resources and scaling of applications. Scalability
corresponds to the ability of a system uniformly to handle an
increasing amount of work [1] [2] [3]Error! Reference source
not found.. Nowadays, there are two types of server
virtualization technologies that are common in data center
environments, hardware-level virtualization and operating
system level virtualization. Hardware-level virtualization
involves embedding virtual machine software (known as

hypervisor or Virtual Machine Monitor (VMM)) into the
hardware component of a server. The hypervisor controls
processor, memory, and other components by allowing several
different operating systems to run on the same machine without
the need for a source code. The operating system running on the
machine will appear to have its own processor, memory, and
other components. Virtual machines are extensively used in
today’s practice. However, during the last few years, much
attention has been given to operating system level virtualization
(also known as container-based virtualization or
containerization). Operating system level virtualization refers to
an operating system feature in which the kernel allows the
existence of multiple isolated user-space instances (also known
as partitions or containers) instead of just one. As has been
shown in Fig. 1, containers are more light weight than virtual
machines, various applications in container share the same
operating system kernel rather than launching multiple virtual
machines with separate operating system instances. Therefore,
container-based virtualization provides better scalability than
the hypervisor-based virtualization [4].

Currently, two concepts are used to scale virtualized systems,
vertical and horizontal scaling [5] [6] [7][8]. Vertical scaling
corresponds to the improvement of the hardware on which
application is running, for example addition of memory,
processors, and disk space. While horizontal scaling
corresponds to duplication of virtual servers to distribute the
load of transactions. Horizontal scaling approach is almost
always more desirable because of its advantages such as, no

Fig. 1. Different of Virtual Machines and Containers Architecture

limit to hardware capacity, easy to upgrade, and easier to run
fault-tolerance.

In our previous study, we explored the performance of a real
application, Cassandra NoSQL database, on the different
environments. Our goal was to understand the overhead
introduced by virtual machines (specifically VMware) and
containers (specifically Docker) relative to non-virtualized
Linux [9]. In this study, our goal is to provide an up-to-date
comparison of containers and virtual machine environments
using recent software versions. In addition, explore how much
horizontal scaling of virtual machines and containers will
improve the performance in terms of the system CPU utilization,
latency, and throughput. In this work, we have used multiple
instances of the Cassandra running concurrently on the different
environments.

The presented work is organized as follows: In Section II we
discuss related work. Section III describes the experimental
setup and test cases. Section IV presents the experimental results
and we conclude our work in Section V.

II. RELATED WORK

Both container-based and virtual machine-based
virtualization technologies have been growing at a rapid space,
and research work evaluating the performance aspects of these
platforms provides an empirical basis for comparing their
performance. Our previous research [9], has compared
performance overheads of Docker containers, VMware virtual
machines versus Non-virtualized. We have shown that, Docker
had lower overhead compared to the VMware. In this paper, we
try to expand our previous work and compare the two
technologies; Container-based and Virtual Machine-based
virtualization in terms of their scalabilities running Cassandra
workload. There have not been many studies on both scalability
and performance comparison between the two technologies. A
comparison between Linux containers and AWS ec2 virtual
machines is performed in [10]. According to their results,
containers outperformed virtual machines in terms of both
performance and scalability.

In [11]Error! Reference source not found., the authors
evaluated the performance differences caused by the different
virtualization technologies in data center environments where
multiple applications are running on the same servers (multi-
tenancy). According to theirs study, containers may suffer from
performance in multi-tenant scenarios, due to the lack of

isolation. However, containers offer near bare-metal
performance and low footprint. In addition, containers allow soft
resource limits which can be useful in resource over-utilization
scenarios. In [12], the authors studied performance implications
on the NoSQL MongoDB during the horizontal scaling of
virtual machines. According to their results, horizontal scaling
affects the average response time of the application by 40%.

III. EVALUATION

The goal of the experiment was that of comparing the
performance scalability of the Cassandra while running it on
multiple virtual machines versus on multiple containers
concurrently.

Fig. 2. Experimental Setup

A. Experimental Setup

All our tests were performed on three HP servers DL380 G7
with processors for a total of 16 cores (plus HyperThreading)
and 64 GiB of RAM and disk of size 400 GB. Red Hat
Enterprise Linux Server 7.3 (Maipo) (Kernel Linux 3.10.0-
514.e17.x86_64) and Cassandra 3.11.0 are installed on all hosts
as well as virtual machines. Same version of Cassandra used on
the load generators. To test containers, Docker version 1.12.6
installed and in case of virtual machines VMware ESXi 6.0.0
installed. In total 4 times 3-node Cassandra clusters configured
for this study (see Fig. 2).

B. Workload

To generate workload, we used Cassandra-stress tool. The
Cassandra-stress tool is a Java-based stress utility for basic
benchmarking and load testing of a Cassandra cluster. Creating
the best data model requires significant load testing and multiple
iterations. The Cassandra-stress tool helps us in this endeavor by
populating our cluster and supporting stress testing of arbitrary
CQL tables and arbitrary queries on tables. The Cassandra
package comes with a command-line stress tool (Cassandra-
stress tool) to generate load on the cluster of servers, the cqlsh
utility, a python-based command line client for executing
Cassandra Query Language (CQL) commands and the nodetool
utility for managing a cluster. These tools are used to stress the
servers from the client and manage the data in the servers.

The Cassandra-stress tool creates a keyspace called
keyspace1 and within that, tables named standard1 or counter1
in each of the nodes. These are automatically created the first
time we run the stress test and are reused on subsequent runs
unless we drop the keyspace using CQL. A write operation

inserts data into the database and is done prior to the load testing
of the database. Later, after the data are inserted into the
database, we run the mix workload, and then split up the mix
workload and run the write only workload and the read only
workload. In [9] [1], we described in detail each workload as
well as the commands we used for generating the workloads, in
this paper we have used the same approach for generating the
workload.

C. Performance Metrics

The performance of Docker containers and VMware virtual
machines are measured using the following metrics:

• CPU Utilization (percentage),

• Maximum Transactions Per Second (TPS), and

• Mean Latency (milisecond).

The CPU utilization is measured directly on the server nodes
by means of sar command. The latency and maximum
transactions per second (TPS) are measured on the client side,
that are measured by the stress test tool. The term transactions
per second refers to the number of database transactions
performed per second.

D. Test Cases

1) One-Cassandra-three-node-cluster: In this case, one

virtual machine/container deployed on each host running

Cassandra application. All virtual machines/containers

configured as one 3-node cluster.

2) Two-Cassandra-three-node-clusters: In this case, two

containers/virtual machines deployed on each host running

Cassandra application. Each container/virtual machine on each

host belongs to its own 3-node cluster, so in total two 3-node

clusters configured to run concurrently.

3) Four-Cassandra-three-node-clusters: In this case, four

containers/virtual machines deployed on each host running

Cassandra application. Each container/virtual machine on each

host belongs to its own 3-node cluster, so in total four 3-node

clusters configured to run concurrently.

In this experiment, we compare the performance of virtual
machines and containers running different Cassandra workload
scenarios, Mix, Read and Write. However, unlike our previous
study [9], here we decided to set the replication-factor as three.
In our test environment with three-node clusters, replication
factor three means that each node should have a copy of the input
data splits.

IV. PERFORMANCE AND SCALABILITY COMPARISON

A. Transactions per second (tps)

Figure 3 shows transactions per second (tps) during write,
read and mixed load. In this figure we summarized the total
transactions per second from different number of Cassandra
clusters running on Docker containers and VMware virtual
machines. According to the results, overall in all cases Docker
containers could handle higher number of database transactions
per second than VMware virtual machines. In the case of the
mixed load, Docker containers could handle around 25% more
transactions per second than VMware virtual machines. In the
case of only write load the difference is around 19% more for
containers than virtual machines. While in the case of only read
load, there is a huge difference of around 40% in the number of
transactions per second between virtual machines and
containers. Another aspect to consider according to the
transactions per second results is that, running multiple instances
of the Cassandra database concurrently, affected the
performance of read and write operations differently; for both
VMware and Docker, the maximum number of read operations
was reduced when we ran several instances concurrently,
whereas the maximum number of write operations increased
when we ran instances concurrently. Note that increasing the
number of Cassandra clusters did not have any significant
impact on the number of transactions per second in the case of
the mixed-load.

B. CPU utilization

Figure 4 shows the results of CPU utilization of multiple
number of Cassandra clusters running on virtual machines and
containers during write, read, and mix workloads. According to
the results, in general CPU utilization of one cluster of virtual

Fig. 3. Transactions per second (tps)

machines/containers are lower than two clusters and CPU
utilization of two clusters is less than three clusters. It can be
observed from the figures that, the overhead of running multiple
clusters in terms of CPU utilization is around 10% for both
containers and virtual machines. This overhead decrease as the
load increases, one reason for this can be the background jobs
that are running in Cassandra and as the load increases
Cassandra by default delays these jobs since there are not

enough resources available for executing the jobs. In addition, it
can be observed from the figures that, the overall CPU
utilization of containers is lower than virtual machines for all
different workloads. Considering the mix workload CPU
utilization of containers is around 15% lower than CPU
utilization of virtual machines. The difference between CPU
utilization of containers and virtual machines is around 12% for
the write workload which is very close to the difference that we

a.

b.

c.

d.

e.

f.

Fig. 4. CPU utilization results for Write, Read and Mix workload for multiple Cassandra clusters running on virtual machines and containers concurrently.

saw for the mix workload case. However, this difference is
significantly higher for the read workload up to around 40%.
According to these results, read operations utilize more CPU
cycles on virtual machines than on containers.

C. Latency

Figure 5 shows the results of latency mean of multiple
number of Cassandra clusters running on virtual machines and

containers during write, read, and mix workloads. As it can be
observed from the figures, in general, the latency of containers
is 50% lower than virtual machines as the load increases.

In the case of the mixed workload, the latency difference
between having one cluster and two clusters is negligible.
However, the latency difference between having one or two
clusters compared with four clusters is around 33%. In the case
of the write workload the difference between having containers.

a. b.

c.

d.

e.

f.

Fig. 5. Latency mean results for Write, Read and Mix workload for multiple Cassandra clusters running on virtual machines and containers concurrently

However, for virtual machines, the latency becomes around
10ms in the case of 4 clusters when the tps is only 80k. Also, in
the case of two clusters and 1cluster, since the cluster did not
handle the load of 80k tps the latency is only shown for 40k tps
which is around 2-3 ms. In the case of read workload, for the
virtual machines the latency increases up to around 50% higher
for the case with two clusters compared with one cluster. The
latency increases up to around 20% for the case of four clusters
compared with the case of two clusters and there is an increase
of up to around 60% compared to the case of only one cluster.
According to these results scaling would be very expensive for
virtual machines in terms of latency mean which will have a
negative impact on the application performance. However, in
the case of containers the cost in terms of latency difference for
having multiple clusters compared with one cluster is up to
around 23%. According to the results, running multiple clusters
inside containers will have less impact on the latency and the
performance of the application (in this case Cassandra) than
running multiple clusters inside virtual machines. The latency
difference increases exponentially as the number of clusters
increases as well as the load increases. The latency difference
increases up to around 23% on containers and up to around 60%
on virtual machines while having 100% read workload. The

latency difference is negligible in the case of write workload.
Also, there is a moderate latency difference in the case of mixed
workload which is up to around 20% for virtual machines when
the tps is 80k and up to around 25% for containers when the tps
is 120k.

V. DISCUSSIONS AND CONCLUSIONS

In this study, we have compared the performance of running
multiple clusters of the NoSQL Cassandra database inside
Docker containers and VMware virtual machines. We have
measured the performance in terms of CPU utilization, Latency
mean and the maximum number of Transactions Per Second
(TPS). According to our results, running Cassandra inside
multiple clusters of VMware virtual machines was showing less
performance in terms of maximum number of transactions per
second compared to the Docker containers. The performance
difference was around 20% lower during the mixed workload,
around 16% lower during the write-only workload and around
29% lower during read-only workload. One reason for this could
be that containers are lighter-weight compared to virtual
machines, therefore there is a less overhead of the virtualization
layer and this helps the application to get more resources and

performs better on containers than virtual machines. Another
reason can be how a write and a read operation procedure works
in Cassandra. In Cassandra, a write operation in general
performs better than a read operation because it does not involve
too much I/O. A write operation is completed when the data has
been both written in the commit log (file) and in memory
(memtable). However, a read operation may require more I/O
for different reasons. A read operation first involves reading
from a filter associated to sstable that might save I/O time saying
that a data is surely not present in the associated sstable and then
if filter returns a positive value, Cassandra starts seeking the
sstable to look for data. In terms of CPU Utilization, the
Cassandra application performs better on containers than on
virtual machines. According to our results, the difference
between CPU utilization on virtual machines is around 16%
higher than containers during the mixed workload, around 8%
higher during the write-only workload and around 32% higher
during the read-only workload. In addition, the Cassandra
application running inside virtual machines got up to around
50% higher latency than containers during the mixed workload.
The difference became up to around 40% higher on virtual
machines during the write-only workload compared to
containers, also up to around 30% higher on virtual machines
during the read-only workload compared to containers. As it has
been discussed before in general the read-only workload is
showing less performance than the write-only workload, and the
impact of the different types of workloads on the performance
in terms of CPU utilization is higher on virtual machines than
containers.

However, considering the scalability aspects of the virtual
machines and the containers, according to our results, containers
scale better without loosing too much performance while virtual
machines overhead is very high, and it has a negative impact on
the performance of the application. This might differ depending
on the application and the type of workload as we have seen

during our experiments. Therefore, cloud providers need to
investigate this issue while deploying both virtual machines and
containers across data centers also at larger scale.

REFERENCES

[1] G. Huang et al., “Auto Scaling Virtual Machines for Web Applications
with Queuing Theory,” in ICSAI conference, pp. 433-438, 2017.

[2] S. He et al., “Elastic Application Container: A Lightweight Approach for
Cloud Resource Provisioning,” in AINA conference, pp. 15-22, 2012.

[3] A. Horiuchi, and K. Saisho, “Development of Scaling Mechanism for
Distributed Web System,” in SNPD conference, pp. 1-6, 2015.

[4] F. Tseng et al., ”A Lightweight Auto-Scaling Mechanism for Fog
Computing in Industrial Applications,” in IEEE Transactions on
Industrial Informatics Journal, vol. PP, no. 99, pp. 1-1, 2018.

[5] W. Wenting, C. Haopeng, C. Xi, “An Availability-Aware virtual Machine
Placement Approach for Dynamic Scaling of Cloud Applications,” in
UIC/ATC conference, pp. 509-516, 2012.

[6] L. Chien-Yu, S. Meng-Ru, L. Yi-fang L. Yu-Chun, L. Kuan-Chou,
”Vertical/Horizontal Resource Scaling Mechanism for Federated
Clouds,” in ICISA conference, pp.1-4 , 2014.

[7] S. Sotiriadis, N. Bessis, C. Amza, R. Buyya, “Vertical and Horizontal
Elasticity for Dynamic Virtual Machine Reconfiguration,” in IEEE
Transactions on Services Computing Journal, vol. PP, no. 99, pp. 1-14,
2016.

[8] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, P. Merie, ”Elasticity in Cloud
Computing: State of the Art and Research Challenges,” in IEEE
Transactions on Services Computing Journal, vol. PP, Issue. 99, pp 1-1,
2017.

[9] S. Shirinbab, L. Lundberg, E. Casalicchio, “Performance Evaluation of
Container and Virtual Machine Running Cassandra Workload, ” in
CloudTech conference, pp. 1-8, 2017.

[10] A.M. Joy, "Performance Comparison between Linux Containers and
Virtual Machines," in ICACEA Conference, pp. 342-346, 2015.

[11] L. Chaufournier, P. Sharma, P. Shenoy, Y.C. Tay, "Containers and Virtual
Machines at scale: A Comparative Study," in Middleware Conference, pp.
1-13, 2016.

[12] C. Huang et al., “The Improvement of Auto-Scaling Mechanism for
distributed Database- A Case Study for MongoDB,” in APNOMS
conference, pp. 1-3, 2013.

