
Performance Aspects on Databases and

Virtualized Real-time Applications

Christine Niyizamwiyitira

Blekinge Institute of Technology doctoral dissertation series

No 2018:02

Performance Aspects of Databases and

Virtualized Real-time Applications

Christine Niyizamwiyitira

Doctoral Dissertation in Computer Systems Engineering

Department of Computer Science and Engineering

Blekinge Institute of Technology

SWEDEN

2018 Christine Niyizamwiyitira
Department of Computer Science and Engineering
Publisher: Blekinge Institute of Technology,
SE-371 79 Karlskrona, Sweden
ISBN: 978-91-7295-348-2
ISSN: 1653-2090

urn:nbn:se:bth-15758

http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Abth-15758

i

Abstract

Context: High computing system performance depends on the interaction

between software and hardware layers in modern computer systems. Two

strong trends that effect different layers in computer systems are that single

processors are now more or less completely replaced by multiprocessors,

which are often organized into clusters, and virtualization of resources.

The performance evaluation of different software on such physical and

virtualized resources, is the focus of this thesis.

Objectives: The objectives of this thesis are to investigate

 The performance evaluation of SQL and NoSQL database, namely

Cassandra, CouchDB, MongoDB, PostgreSQL, and RethinkDB;

 Soft real-time application namely, voice-driven web;

 Scheduling algorithms for resource allocation for hard real-time

applications on virtual machine (VM).

Methods: Experiment is used to measure the performance of SQL and

NoSQL databases, and to develop a prototype and predicts processor

performance of voice-driven web on multiprocessors. Theoretical methods

are used to model and design algorithms to schedule real-time applications

on the VM. Simulation is used to quantify the performance of parameter

values and to compare expected performance with theoretical bounds in

schedulability tests.

Results: The performance of SQL and NoSQL database management

systems namely, Cassandra, CouchDB, MongoDB, PostgreSQL, and

RethinkDB is evaluated for writing and reading throughput and latencies.

For reading throughput, all databases are horizontally scalable, however,

only Cassandra and couchDB exhibit horizontal scalability for data

writing. The overall evaluation shows that Cassandra has the most writing

scalable throughput with a relative low latency, whereas PostgreSQL has

the lowest writing latency, and MongoDB has the lowest reading latency.

The architectures’ tradeoffs of voice-driven web show that the voice

ii

engine should be installed on the server side where its performance scales

with the number of processors.

The thesis presents scheduling techniques for real-time applications in

VM. VM’s period and execution time that allow real-time applications to

meet their deadlines are defined using these techniques. Simulation results

show the impact of the length of different VM periods with respect to

overhead, the tradeoffs between resources consumption and period length.

A utilization based test for scheduling real-time application on virtual

machine that determines if a taskset is schedulable or not is also presented.

If the taskset is schedulable the algorithm provides the priority for each

task. This algorithm avoids Dhall’s effect that may cause tasksets with

even very low utilization to miss deadlines.

Conclusions: The thesis presents the performance evaluation for reading

and writing throughput and latencies for SQL and NoSQL databases. The

thesis quantifies the tradeoffs of voice-driven web architectures and the

performance scalability of the speech engine with respect to number of

processors. Furthermore, this thesis proposes scheduling algorithms for

real-time application with hard deadline on VMs.

Keywords: SQL and NoSQL database, Bigdata management systems,

Voice-driven web, Multicore performance prediction, real-time

Scheduling, Virtual Multiprocessor Scheduling.

iii

Acknowledgements

I would like to thank my main supervisor, Professor Lars Lundberg. His

guidance, generous and continuous support have been a great source of

encouragement through the course towards the PhD degree. I am

particularly grateful for his patience and humility in dealing with me. I

would like also to thank my supervisor Dr. Mikael Svahnberg. I am

particularly grateful for his inputs during the supervisory meetings, which

have brought new perspectives and understanding during my PhD study. I

would like to thank my senior reviewer Professor Håkan Lennerstad for

his very good mathematical explanation as a part of my research. My time

at Blekinge Tekniska Högskola (BTH) was made enjoyable in large part

due to colleagues, friends and BTH staff that have become a part of my

life. I would like to thank Sogand Shirinbab, Siva Krishna Dasari and Dr.

Thi My Chinh Chu for many constructive discussions. Also, I would like

to extend my acknowledgement to Eva-Lotta Runesson, Monica Nilsson,

and the entire DIDD department for all the practical help they provided

me. I would like to thank Dr. Louis Sibomana, Dr.Charles Kabiri and Dr.

Said Ngoga Rutabayiro for supporting me socially and career wise both in

Sweden and Rwanda. I am grateful to Anita Kayihura for enjoyable life in

Sweden. I would like to thank Dr. Felix K. Akorli, for introducing me

about BTH. I gratefully acknowledge the funding source that made my

PhD studies possible, the University of Rwanda (UR) in partnership with

the Swedish International Development Agency (SIDA). I thank the

research project “Scalable resource-efficient systems for big data

analytics” funded by the Knowledge Foundation (grant: 20140032) at

BTH for giving me the opportunity to work on industrial problem through

Telenor Sverige. Last but not least, I would like to express my deepest

gratitude to my family, who have always been encouraging me throughout

my studies.

Karlskrona, May 2018

 Christine Niyizamwiyitira

iv

Dedicated to Mucyo Faustin and Mucyo Isimbi Christa

v

List of publications

The thesis is based on the following publications:

1. C. Niyizamwiyitira and L. Lundberg, “Performance Evaluation of SQL

and NoSQL Database Management Systems in a Cluster,” International

Journal of Database Management Systems (IJDMS) Vol.9, No.6,

December 2017

2. C. Niyizamwiyitira, L. Lundberg, and M. Svahnberg, “Evaluation of

Voice-driven Web Application Architecture,” in Signal Image

Technology and Internet Based Systems (SITIS), 2012 Eighth

International Conference on, 2012, pp. 555-562

3. C. Niyizamwiyitira and L. Lundberg, “Performance evaluation and

prediction of open source speech engine on multicore processors,” in

Proceedings of the Fifth International Conference on Management of

Emergent Digital EcoSystems, 2013, pp. 345-352

4. C. Niyizamwiyitira and L. Lundberg, “Real-time scheduling of multiple

virtual machines,” International journal of Computers and their

applications (IJCA) , Vol. 24, No. 3, pp.91-109, Sept. 2017

5. C. Niyizamwiyitira and L. Lundberg, “Period assignment in real-time

scheduling of multiple virtual machines,” in Proceedings of the 7th

International Conference on Management of computational and collective

intElligence in Digital EcoSystems, 2015, pp. 180-187

6. C. Niyizamwiyitira, L. Lundberg, and H. Lennerstad, “A Utilization-

based Schedulability Test of Real-time Systems Running on a

Multiprocessor Virtual Machine,” accepted for publication in the

Computer Journal

The following publications are associated with, but not included in this

thesis:

1. C. Niyizamwiyitira, L. Lundberg, and H. Lennerstad, “Utilization-Based

vi

Schedulability Test of Real-Time Systems on Virtual Multiprocessors,”

in Parallel Processing Workshops (ICPPW), 2015 44th International

Conference on, pp. 267-276, Oct. 2015

2. C. Niyizamwiyitira and L. Lundberg, “Performance Evaluation of

Trajectory Queries on Multiprocessor and Cluster,” Computer Science

& Information Technology (CS & IT), v.6, pp. 145-163, May 2016

vii

Table of Contents

Abstract .. i

Acknowledgements .. iii

List of publications ... v

Table of Contents ... vii

Chapter One .. 1
1.1 Motivation .. 1
1.2 Historical Background .. 2
1.2.1 Cluster Computing ... 4
1.2.2 Virtualization .. 4
1.2.3 Database Applications .. 6
1.2.4 Voice-driven Web Applications ... 13
1.2.5 Real-time Applications ... 14
1.3 Objectives and Research Questions .. 17
1.4 Research Methodology ... 17
1.5 Thesis Overview ... 18
1.6 Thesis Contributions .. 20
1.6 Related Work ... 21
1.7 Research Validity ... 24
1.8 Conclusions .. 25
References ... 26

Chapter Two .. 33

viii

Performance Evaluation of SQL and No SQL Database

Management Systems in a Cluster .. 34
Abstract ... 34
2.1 Introduction ... 35
2.2 Trajectory Data .. 37
2.2.1 Definition of trajectory... 37
2.2.2 Data Description .. 38
2.2.3 Definition of Trajectory Queries .. 39
2.2.4 Distance Query ... 40
2.2.5 k-Nearest Neighbour Query ... 41
2.2.6 Range Query .. 41
2.2.7 Region Query ... 42
2.3 Related Work ... 42
2.4 Database Management System Overview .. 45
2.4.1 Cassandra ... 46
2.4.2 CouchDB.. 47
2.4.3 MongoDB .. 47
2.4.4 PostgreSQL .. 47
2.4.5 RethinkDB ... 47
2.5 Methodology .. 48
2.5.1 Experiment setup ... 48
2.5.2 Write procedure ... 51
2.5.3 Reading procedure ... 52
2.5.4 Measurement procedure ... 52
2.6 Results .. 53
2.7 Discussion and Analysis .. 59
2.8 Conclusions .. 62
References ... 63

Chapter Three ... 84

Section 1 ... 84

Evaluation of Voice-driven Web Application Architecture 85
Abstract ... 85
3.1.1 Introduction .. 86

ix

3.1.2 Background .. 87
3.1.2.1 Voice driven web ... 87
3.1.2.3 Related Work ... 90
3.1.3 Methodology .. 90
3.1.4 Results and Analysis .. 97
3.1.5 Discussions .. 101
3.1.6 Conclusions .. 102
References ... 103

Section 2 ... 107

Performance evaluation and prediction of open source speech engine

on multicore processors ... 108
Abstract ... 108
3.2.1 Introduction .. 109
3.2.2 Background .. 110
3.2.2.1 Concept Overview ... 110
3.2.2.2 Related work .. 111
3.2.3 Methodology .. 112
3.2.3.1 Experiment setup ... 112
3.2.3.2 ASR and TTS architecture ... 114
3.2.3.3 Linear regression Performance Modeling 116
3.2.4 Results .. 118
3.2.5 Discussions .. 122
3.2.6 Conclusions .. 127
References ... 128

Chapter Four .. 130

Section 1 ... 130

Real-time scheduling of multiple virtual machines 131
Abstract ... 131
4.1.1 Introduction .. 132

x

4.1.2 Background and Related Work .. 133
4.1.3 Problem Definition ... 136
4.1.4 Defining 𝑇𝑉𝑀𝑖

 and 𝐶𝑉𝑀𝑖
 ... 140

4.1.5 Accounting for Overhead ... 151
4.1.6 Example when overhead is omitted ... 156
4.1.7 Simulations .. 161
4.1.8 Conclusions .. 164
References ... 165

Section 2 ... 169

Period assignment in real-time scheduling of multiple virtual

machines .. 170
Abstract ... 170
4.2.1 Introduction .. 171
4.2.2 Background and Related Work .. 172
4.2.3 Problem Definition ... 174
4.2.4 Accounting for Overhead ... 181
4.2.5 Simulation .. 183
4.2.6 Results and Discussion .. 184
4.2.7 Conclusions .. 186
References ... 186

Chapter Five .. 189

A Utilization-based Schedulability Test of Real-time Systems

Running on a Multiprocessor Virtual Machine 190
Abstract ... 190
5.1 Introduction .. 191
5.2 Background and Related Work .. 193
5.3 Definition ... 199
5.4 Algorithm Description ... 209
5.4.1 Example ... 211
5.5 The effect of different deadlines (DVM) .. 213
5.5.1 Example ... 217

xi

5.5.2 Hypervisor scheduling parameters trade-off 220
5.6 Evaluation of Average Performance .. 221
5.7 Conclusions .. 223
References ... 224

1

Chapter One

1.1 Motivation

Providing high computer system performance has been a key challenge

since the design of the very first computers. Today, performance is an

intricate function of the interaction between different software and

hardware layers in modern computer systems. Two strong trends that affect

different layers in modern computer systems are that single processors are

now more or less completely replaced by multiprocessors, which are often

organized into clusters, and that more and more resources are being

virtualized.

 The multiprocessor and cluster trend is mainly driven by hardware design

issues, e.g., modern processor chips are designed with a number of cores.

The trend with software virtualization of hardware resources such as

processors, network and storage, is mainly driven by the need for high and

cost-effective resource utilization.

 One important class of computer system applications is so called real-time

applications. A real-time application is an application for which the

correctness of the system requires not only a correct logical output for a

certain input, which is a fundamental correctness requirement in all

computer systems; a correct real-time application (or real-time system)

must also present the correct output within certain time limits, otherwise

the output is of no value (in the case of so called hard real-time systems)

or of significantly reduced value (in the case of so called soft real-time

systems). This means that high and predictable performance is a key aspect

in real-time systems. There are numerous examples of real-time systems,

ranging from embedded controllers in washing machines, to the systems

that control the breaks in our cars, to control systems in fighter aircrafts, to

systems that control nuclear plants and huge telecom networks. The

common aspect is that these systems need to handle and interact with real-

world events within certain time limits. Such events must be handled in a

correct and timely manner in order to avoid that the car, nuclear plant or

plane will not crash, and to make sure that users will not suffer from frozen

2

images etc. when streaming video or music over a telecommunication

network.

 One of the main research areas in real-time systems is how to schedule

and prioritize different activities in a computer system so that one can

guarantee that the system will respond within certain time frames. A real-

time scheduling strategy should address two aspects: it should define a

priority order for the different activities (or tasks), and it should provide a

so called schedulability test which makes it possible to determine if the

application will indeed meet all its deadlines using this priority order. Both

multiprocessors and virtualization introduce new challenging when it

comes to scheduling and prioritization of such activities. Finding

techniques to handle these new challenges is very important so that real-

time applications can benefit from these two important technologies.

 Many applications, including hard and soft real-time applications, use

database systems to handle the big data that are facing almost all

applications. Understanding and being able to predict the performance of

different database technologies is therefore very important.

 In this thesis I investigate the performance of different database systems.

I also investigate the performance of a soft real-time application called

voice-driven web for different software architectures. In the context of

real-time applications in virtualized environments, I have designed

schedulability tests and algorithms for virtualized single- and

multiprocessor systems.

1.2 Historical Background

The background of this thesis starts with a brief history of microprocessor.

A microprocessor is the heart of Central Processing Unit (CPU), CPU is the

controlling element of a computer system. It all started in early 1970s when

Intel developed its first microprocessor, a 4 bit microprocessor 4004. This

microprocessor was followed by the 8 bit microprocessor Intel 8008 and

Intel 8080 in 1971 and 1973 respectively. About the same time, Motorola

released its first microprocessor, an 8 bit 6800 which had approximately the

same processing power as Intel 8080. Based on 6800, Motorola developed

3

other microprocessors namely, 6805, 6808, and 6811. Motorola processors

have kept evolving until the PowerPC version. Meanwhile Intel improved

to 16 bit microprocessors, 8086, and 8088.

 Intel 8088 is the first microprocessor that was implemented in personal

computers (PC) by IBM in 1981. Intel 8086/8088 served as the basis for

Intel 80386, a 32 bit microprocessor that was developed in 1986. Intel kept

improving their microprocessors until the Pentium microprocessor was

introduced in 1993. From generation to generation, microprocessor grew

smaller and faster, with heat dissipation and more energy consumption.

Intel Pentium evolved into Pentium 1, Pentium 2, Pentium3, and Pentium 4

versions that have higher clock respectively. Those are, Pentium 2, Pentium

3, Pentium 4, and Core2 which marked the end of the evolution of the 32

bit microprocessor architecture. Pentium 4 was first introduced in 2000 [1].

As PCs became pervasive, many applications have been designed to run on

them. Later, these applications required more and faster processing because

of the growing amount of data that they need to handle. The initial response

to this demand was to increase a processor speed by boosting its clock

speed. In 1975, Gordon Moore stated that the number of transistors doubles

every two years for increasing the computer performance[2], [3]. However,

increasing the clock speed increases the power consumption and the heat

dissipation to extremely high levels, thus making the processor impractical.

Due to advances in circuit integration technology and performance

limitations in wide-issue, super speculative processors, Chip-

Multiprocessor (CMP) or multi-core technology has become the

mainstream in CPU designs [4]. The above CPU design are supported by

superscalar and VLIW (Very Long Instruction Word) design. Super-scalar

and VLIW implement a form of parallelism called instruction level, i.e.,

dispatch multiple instructions during a single clock cycle. Super-scalar

issue instruction dynamically whereas VLIW issues instructions statically.

Besides that, Simultaneous multithreading (SMT) improves the overall

efficiency of superscalar and VLIW CPU through hardware multithreading

(multithreading is called hyperthreading in Intel processor) [5].

The Core2 microprocessor was introduced in 2006. It had an architecture

that supports more than one core on a die [1]. The current microprocessors,

4

such as dual core, quad core etc. that we have in our computers, are

microprocessor generations of the Core2 microprocessor family. In 2008,

there existed two and four cores processors in 2009, AMD releases quad

core processors Phenom and Athlon while Intel releases Core 2 Quad

processor Q8400. In 2010, AMD releases hex/six core processor while Intel

releases Core 2 Quad processor, Core i5, Core i3 Desktop processors and

mobile processors. In 2011, AMD releases mobile and desktop processors

in A4, A6, and A8 line, these processors support bigger cache memory

respectively. In 2011 Intel releases Core i5 processors with 4 cores. In 2012

AMD releases desktop processors in A10 line, Intel releases Core i7

processor that is almost as fast as Core i3 and core i5 but with addition hyper

threading feature that let each core to be used twice which makes the

impression of doubling the number of cores. In 2017 Intel releases core i9

processors. As technology evolves, cluster computing and virtualization are

two trends that increase the performance of processors.

1.2.1 Cluster Computing

During the past decade many different computer systems that support high

performance computing have emerged. Their taxonomy is based on how

their processors, memory, and interconnection are organized. Among such

systems, there are so called clusters. In a cluster, different computers work

together in order to achieve the same goal. Nodes (computers) are

interconnected in a local area network (LAN), these nodes have the same

type of hardware and the same operating system. A node can be a single or

a multiprocessor system (PCs, workstations, or symmetric multiprocessor

systems) with memory, I/O facilities, and an operating system. A cluster

generally refers to two or more nodes connected together [6]. Applications

that require high performance computing benefit from cluster. In this thesis,

the performance of database systems, is evaluated on a cluster based

environment.

1.2.2 Virtualization

The concept of virtualization has its origins in the mainframe days in the

late 1960s and early 1970s, when IBM invested a lot of time and effort in

5

developing robust time-sharing solutions. Time-sharing refers to the shared

usage of computer resources among a large group of users, aiming to

increase the efficiency of the expensive computer resources the users share.

This model represented a major breakthrough in computer technology.

Similar reasons are driving virtualization for industry standard computing

today: the capacity in a single server is so large that many workloads cannot

use it effectively. The best way to improve resource utilization, and at the

same time simplify data center management, is through virtualization. Data

centers today use virtualization techniques to make abstractions of the

physical hardware, create large aggregated pools of logical resources

consisting of CPUs, memory, disks, file storage, applications, networking,

and offer those resources to users or customers in the form of agile, scalable,

consolidated virtual machines. Even though the technology and use cases

have evolved, the core meaning of virtualization remains the same: to

enable a computing environment to run multiple independent systems at the

same time [7]. Virtualization becomes more important in cloud computing

whereby it helps to deliver shared resources as service on demand.

In order to monitor and control different users that are time sharing the

hardware used for virtualization, a layer called hypervisor between the users

and the hardware creates a virtual platform on the host hardware. On top of

the virtual platform multiple guest operating systems are executed and

monitored. In this way, multiple operating systems, which are either

multiple instances of the same operating system, or different operating

systems, can share the hardware resources offered by the host. Hypervisors

are classified as native (or bare metal), and as hosted. Native hypervisors

are software systems that run directly on the host's hardware to control the

hardware, and monitor the guest operating systems. Consequently, the guest

operating system runs on a separate level above the hypervisor. Example of

those are VMware and Xen [8], [9]. Hosted hypervisors are designed to run

on top of a traditional operating system. In other words, a hosted hypervisor

adds a distinct software layer on top of the host operating system, and the

guest operating system becomes a third software level above the hardware.

Example of those are KVM and Virtual box[10], [11]. One of the important

applications nowadays is real-time application, this thesis proposes the

schedulability algorithms of real-time application in virtual environments.

6

1.2.3 Database Applications

A database application is defined as a collection of information that is

organized in order to be easily retrieved, managed, and updated. A

Database Management System (DBMS) is a collection of interrelated data

and a set of programs to access the data. The primary goal of a DBMS is

to provide a way to store and retrieve database information that is both

convenient and efficient [12].

From the earliest days of computers, storing and manipulating data has

been a major focus. The first general-purpose DBMS was designed by

Charles Bachman at General Electric in the early 1960s and was called the

Integrated Data Store. It formed the basis for the network data model,

which was standardized by the Conference on Data Systems Languages

(CODASYL) and strongly influenced database systems through the 1960s.

In 1970, Edgar Codd, at IBM's San Jose Research Laboratory, proposed a

new data representation framework called the relational data model.

Relational DBMS (RDBMS) have become the most popular DBMS[13].

According to database models [14], the most known models are given

below;

 Relational Database is a database that consists of a collection of

tables, each of which is assigned a unique name. A table is a collection

of records, and each record is a collection of fields (attribute values). In

a table, attributes are represented as columns whereas records are

represented as rows. In general a row in a table represents a relationship

among a set of values. Since a table is a collection of such relationships,

there is a close correspondence between the concept of table and the

mathematical concept of relation, from which the relational data model

takes its name. Examples of relational database are MySQL, Oracle,

Microsoft SQL.

 Network Database is a database that consists of a collection of

records connected to one another through links. A record is in many

respects similar to an entity in the entity relationship (E-R) model. Each

7

record is a collection of fields (attributes), each of which contains only

one data value. A link is an association between precisely two records.

Thus, a link can be viewed as a restricted (binary) form of relationship

in the sense of the E-R model [15]. An example of a network database

is Integrated Database Management System (IDMS).

 Hierarchical Database is a database that consists of a collection of

records that are connected to each other through links. A record is

similar to a record in the network model. Each record is a collection of

fields (attributes), each of which contains only one data value. A link is

an association between precisely two records. Thus, a link here is

similar to a link in the network model. The schema for a hierarchical

database consists of boxes which correspond to record types and lines

which correspond to links [15]. An example of hierarchical database is

IBM's Information Management System (IMS).

Record types are organized in the form of a rooted tree and no cycles in

the underlying graph. Relationships formed in the graph must be such

that only one-to-many or one-to-one relationships exist between a

parent and a child. A parent may have an arrow pointing to a child, but

a child must have an arrow pointing to its parent.

 Object Oriented Database is a database that has been proposed as an

alternative to relational systems and such systems are aimed at

application domains where complex objects play a central role. The

approach is heavily influenced by object-oriented programming

languages and can be understood as an attempt to add DBMS

functionality to a programming language environment such as Python,

Java, and Objective-C [15]. Example of an object oriented database is

ObjectDB.

 Relational Object Oriented Database can be thought of as an attempt

to extend relational database systems with the functionality necessary

to support a broader class of applications and, in many ways, provide a

bridge between the relational and object-oriented paradigms. Relation

object database extends the relational data model by including object-

8

orientation and constructs to deal with added data types. It allows

attributes of tuples to have complex types, including non-atomic values

such as nested relations, e.g., an address with subpart like street, post

number, etc. Relational object oriented database systems preserve

relational foundations, in particular declarative access to data, while

extending modelling power. It again upwards compatibility with

existing relational languages [14], [15]. Example of a relational object

oriented database is PostgreSQL.

 Column Oriented Database is a database that stores data tables as

sections of columns of data rather than as rows of data, i.e., it stores all

values of the same attribute of the relational conceptual schema relation

together [16]. In comparison, most relational DBMSs store data in rows,

it is more beneficial to use row-oriented storage structure if there is

mostly transaction queries performed on a database. Those transactions

are known as OnLine Transaction Processing (OLTP). OLTP queries

imply a set of reads and writes to a few rows at a time. However, a

column-oriented storage structure is more beneficial if there are mostly

analytical queries performed on a database; those analytical queries are

known as OnLine Analytical Processing (OLAP). OLAP queries imply

bulk updates and large scans of a few columns but many rows (e.g.,

aggregate values calculation). Columns compress better than rows,

typically row-store compression ratio is 1:3 whereas for column-store is

1:10. The reason is that rows contain values from different domains,

hence more entropy, difficult to dense-pack. Columns exhibit

significantly less entropy [17], [18]. An example of column oriented

database is Cassandra.

 Document Oriented Database is a database that stores data as XML

files. The advantage is that the XML format is widely accepted, a wide

variety of tools are available to assist in its processing and XML has

become the dominant format for data exchange over internet.

Compared to storage of data in a relational database, the XML

representation may be inefficient, since tag names are repeated

http://en.wikipedia.org/wiki/Relational_DBMS

9

throughout the document. However, in spite of this disadvantage, an

XML representation has significant advantages when it is used to

exchange data between organizations, and for storing complex

structured information in files [15]. An example of a document oriented

database is MongoDB.

 Graph Database is a graph, which is just a collection of vertices and

edges. In other words, a set of nodes and the relationships that connect

them. For example, Twitter’s data is easily represented as a graph, the

relationship between people is indicated by the edge “follows”, i.e., on

Twitter or Facebook, users can see who follows who, who likes what,…,

example of a graph database is Neo4J, Neo4J uses an expressive

querying language called Cypher [19].

 Flat file Database, a flat file database describes any of various means

to encode a database model (most commonly a table) as a single file.

This table has rows and columns with the same meaning as of relational

database. There are usually no structural relationships between the

records. One limitation of flat file databases is data redundancy [20].

Example of a flat file database is Microsoft Excel.

 There exist some database systems that combine two models, e.g.,

column oriented and relation database such as SAP HANA. SAP HANA

is an in-memory, column oriented relational database system

management developed by SAP SE in 2010 [21]. SAP partners with

Hasso Plattner Institute (HPI) to improve SAP HANA [22]. The goal of

the SAP HANA database is the integration of transactional and

analytical workload within the same database management system.

Since SAP HANA is an in-memory database, it relies on the main

memory for computer storage in contrary to disk storage mechanism

that is used but mostly other database management systems. Main

memory database systems are faster than disk-optimized database

systems because the disk access is slower than memory access,

however, main memory is more expensive than disk storage, and

http://en.wikipedia.org/wiki/Database_model
http://en.wikipedia.org/wiki/Table_%28database%29

10

therefore a drawback could be the size of the main memory with respect

to big data processing requirements. The architecture of SAP HANA

allows online transaction processing (OLAP) [23], [24].

 There are two main revolutions in data management, namely Big

Data analytics and not-only Structured Query Language (NoSQL),

aiming at making real-time decisions using volume of complex data sets

that could be both structured and unstructured [25]. An example of a

structured table is given in Table 1. All the rows (records) have the same

attributes (same number of columns) and there is a primary key. An

unstructured table (see Table 2) does not necessary need to have the

same number of attributes. Every record has an automatic unique

identification that is generated by the database system (see the first

column of Table 2).

Table 1. Structured Table

ID (primary key) Name State Birth-Date

12 Bill DC 1985

25 Howard PA 1984

46 David NY 1956

11 Edward CA 1976

Table 2. Unstructured Table

7b976c48 Name: Bill State: DC Birth-date:1985

7c8f33e2 Name: Howard State: PA Birth-date: 1984

7d2a3630 Name: David State: NY

7da30d76 Name: Edward State: CA

 The presence of unstructured data stimulated the invention of new

database systems since Relational Database Management Systems

11

(RDBMS) uses Structured Query Language (SQL) to deal with

structured data only. Relational database has been the default choice for

data model adoption in businesses worldwide over the past thirty years

with Structured Query Language (SQL). However with the rapid

increase of data, SQL has become inefficient. As a result, NoSQL was

introduced with a set of new database management features, such as

flexibility towards data structure and horizontal scalability for big data

processing [26], [27].

The main features of NoSQL follow the CAP (Consistency, Availability,

and Partition tolerance) theorem [28]. The core idea of CAP is that a

distributed system cannot meet the three distinct needs, i.e., Consistency,

Availability, and Partition tolerance, simultaneously. According to data

storage models, NoSQL can be, key value based, column oriented based,

document oriented based, and graph oriented based. Column oriented

based, document oriented based, and graph oriented based are explained

previously in section 1.2.3.

Key value data model means that a value corresponds to a key, i.e., a string

that represents the key and the actual data that represents the value, thus

creating a “key-value” pair. The performance aspects of a database system

is an important issue, since very large data repositories are increasing

rapidly. Some of the most popular SQL and NoSQL open source database

systems are evaluated in this thesis, those are Cassandra, CouchDB,

MongoDB, PostgreSQL, and RethinkDB.

 Cassandra is an open-source NoSQL column based database that is

written in Java. It is a top level Apache project born at Facebook and

built on Amazon’s Dynamo and Google’s BigTable. It is a distributed

database for managing large amounts of structured data across many

commodity servers, while providing highly available service and no

single point of failure. In CAP, Cassandra has availability and partition

tolerance (AP) with eventual consistency. Cassandra offers continuous

availability, linear scale performance, operational simplicity and easy

http://en.wikipedia.org/wiki/Apache_Cassandra#History
http://www.datastax.com/documentation/articles/cassandra/cassandrathenandnow.html

12

data distribution across multiple data centers and cloud availability

zones. Cassandra has a masterless ring architecture [29]. Keyspace

(Cassandra concept that mean a collection of tables) is similar to

database in RDBMS, inside keyspace there are tables which are similar

to tables in RDBMS, column and rows are similar to those of RDBMS’

tables. The querying language is Cassandra Query Language (CQL) that

is similar to SQL in RDBMS. Cassandra does not natively support spatial

indexing but this can be extended via Stratio’s Cassandra Lucene index.

Stratio’s Cassandra Lucene Index is a plugin for Apache Cassandra , it

extends Cassandra’s index functionality to provide near real time search

[30].

 CouchDB is a database that is written in Erlang, it stores data with

JSON documents. CouchDB accesses documents and queries indexes

with a web browser, via HTTP. Indexing, and transforming documents

are perfomed using JavaScript. CouchDB is highly available and

partition tolerant, but is also eventually consistent, CouchDB supports

masterless setup [31]. CouchDB does not natively support spatial

queries, GeoCouch extends CouchDB’s spatial indexing [32].

 MongoDB is an open-source NoSQL document database; MongoDB

is written in C++. MongoDB consists of a database, that contains

collections, these are like tables in RDBMS, inside a collection there are

documents, these are like a tuple/row in RDBMS, and inside a document

there are fields which are like column in RDBMS [33], [34]. MongoDB

is consistent and partition tolerant. MongoDB has natively a built in

function for spatial queries and it has a sharding feature to support

horizontal scalability of the database ina master/slave fashion [35].

 PostgreSQL is an open source object RDBMS that is written in C, it

has two features according to the CAP theorem. Those are availability,

i.e., each user can always read and write and consistency, i.e., all users

have the same view of data. PostgreSQL organises data in columns and

rows [36, p. 3]. PostgreSQL does not natively support horizontal

scalability and spatial queries, PostgreSQL is extended by CITUS and

http://guide.couchdb.org/editions/1/en/consistency.html

13

PostGIS to support scalability in a master/slave fashion and spatial

queries indexing respectively [37], [38].

 RethinkDB is an open source NoSQL database that is written in

C++.Rethink is horizontally scalable in a master/slave fashion, it is

mostly designed to facilitate real-time updates for query results to

applications [39]. RethinkDB natively supports spatial queries using

GeoJson. The database uses the ReQL query language that is available

for Python, Ruby, and Java.

1.2.4 Voice-driven Web Applications

Voice-driven web is a Voice XML soft real-time application that provides

automated interaction for callers, making it possible to retrieve information

from the web through a telephone keypad or speech recognition. It controls

and responds to callers by using speech technologies [40]. The architecture

of voice-driven web has three main parts; (1) a voice browser that interacts

directly with the terminal, (2) a speech technology server, i.e., Automatic

Speech Recognition (ASR) that recognizes the input speech from the end-

user and Text To Speech (TTS) that reads the content from the web in

response to the end-user request, and (3) the back end which is composed

of a web proxy and the World Wide Web (www). Figure 1 shows the voice-

driven web architecture. ASR and TTS are the most computationally

demanding parts in the voice-driven web architecture. Hence, implementing

these parts on powerful processors would improve the overall response time

which is an important factor for the quality of voice-driven web

applications.

14

Figure 1. Architecture of voice-driven web.

1.2.5 Real-time Applications

Real-time applications are those applications for which the time that the

output is produced matters very much. It can also be defined as an

application that has to respond to a stimuli within a finite and specific

period. This definition covers a very wide range of computer activities, e.g.,

an operating system like windows, Linux, maybe considered to be real- time

in that when a user enters a command the response must be prompted within

seconds. Fortunately, it is not a disaster if the response is not forthcoming.

These real-time applications are distinguished from those when a system

fails to responds at a correct time, thus the response is wrong. Therefore,

real-time application are distinguished by the correctness of the response

which depends not only on the logical results but also on the time at which

results are produced. Consequently, we classify real-time application as

hard or soft on the basis of severity of meeting its deadlines. Hard real-time

applications are those that the response must absolutely occur within a

specific and explicit deadline, e.g., flight controller, if a deadline is missed

it could lead to catastrophe, a car brake, etc. For soft real-time applications,

the system will still function if deadlines are occasionally missed, e.g.,

video and audio streaming, and voice driven web applications.

Example of a real-time application with 3 tasks {τ 1 , τ 2, τ 3}, every task has

a period T and execution time C. A task with shorter period has higher

15

priority using the common scheduling algorithm Rate Monotonic (RM). In

figure 2, it is clear task τ1 has the highest priority.

Figure 2. Real-time tasks

Real-time application’s tasks are classified as follows [41];

 Periodic tasks: a periodic task has a regular inter arrival time equal to

its period, and a deadline that is shorter than its period, or at most the

deadline coincides with the end of its current period. Periodic tasks

usually have hard deadlines, but in some applications the deadlines can

be soft.

 Aperiodic tasks: aperiodic tasks arrive at irregular intervals, i.e., tasks

respond to randomly arriving events. The minimum separation between

two consecutive tasks can be zero if more tasks of an aperiodic real-time

application occur at the same time instant. Aperiodic tasks typically

require a fast response time.

 Sporadic tasks: These are aperiodic tasks with a minimum inter arrival

time. Note that without a minimum inter arrival time restriction, it is

impossible to guarantee that a deadline of a sporadic task would always

be met.

In this thesis, the performance of virtual processors is evaluated when

handling critical systems that require strict regular resource and are time

constrained. Those are real-time applications with hard deadline. Real-time

applications with hard deadlines are important applications that need to be

predicted if they are schedulable on a given resource in advance in order to

meet their deadlines. Moving a real-time application with hard deadlines

16

to a virtualized environment where a number of Virtual Machines (VMs)

share the same physical computer is a challenging task. The original real-

time application was designed such that all tasks were guaranteed to meet

their deadlines provided that the physical computer was fast enough. In a

system with faster processors, and more cores, one would like to put

several VMs on the same physical hardware and some (or all) of these VMs

may contain real-time tasks with hard deadlines. In order to take full

advantage of the hardware, more than one VM may share a processor core.

This is the scenario that is considered in this thesis, where a number of

VMs share the same processor core, and each VM contains a real-time

application.

 Moreover, for processors that have many cores, virtualization makes it

possible to run virtual multiprocessor machine on one physical

multiprocessor, and it is possible to configure that VM to use all or a subset

of the physical cores. Different techniques and algorithms are proposed to

schedule the processor resources so that real-time applications meet their

deadlines. A real-time application is a sequence of real-time tasks that

execute according to priority. Real-time applications are classified as fixed

or dynamic priority. In fixed priority real-time applications, every task has

a priority that does not change in all periods. In dynamic priority based

real-time applications, the priority of a task depends on the current

situation, this may change the task priority in different periods.

Scheduling real-time applications on virtual machines happens at two

levels [42], [43]. The first level is traditional real-time scheduling of the

tasks within a VM. The second level is scheduling of VMs by the

hypervisor on the physical hardware.

Two classic real-time scheduling algorithms are Rate Monotonic

Scheduling (RMS) where tasks are assigned static priorities based on

deadlines, and Earliest Deadline First (EDF) where task priorities are

dynamic [44]. These kinds of scheduling algorithms make it to guarantee

certain real-time properties in non-virtualized systems. These scheduling

algorithms are based on the periodic behavior of the real-time tasks, i.e.,

each task has a period T and a worst-case execution time C. This means

that a task may (in the worst-case) need to use the processor for C time

units during each period (the length of the period is T time units). In order

17

to use existing real-time scheduling theory also on the hypervisor level,

i.e., when scheduling different VMs on the physical hardware, given the

blocking time 𝐵𝑝 that a VM does not have access to the processor, it is

necessary to determine a period 𝑇𝑉𝑀 and a (worst-case) execution time

𝐶𝑉𝑀 for the VM such that all real-time tasks in the VMs will meet their

deadlines.

1.3 Objectives and Research Questions

The objective of this thesis is to investigate the performance evaluation of

SQL and NoSQL database systems, namely Cassandra, CouchDB,

MongoDB, PostgreSQL, RethinkDB; and a soft real-time application,

namely voice-driven web. Furthermore, schedulability algorithms for

resource allocation for hard real-time applications on virtual processors, are

proposed. In order to achieve the thesis’ objectives, the four research

questions that guide this thesis are,

Research Question One: How do SQL and NoSQL database systems

perform on clusters?

Research Question Two: How does a voice engine’s performance scale

with respect to increasing of number of processors in a multiprocessor?

Research Question Three: How to schedule the processor resources when

a number of VMs share a single core processor, so that real-time

applications meet their deadlines?

Research Question Four: Based on the utilization, how to test the

schedulability of real-time application on a virtual multiprocessor machine?

1.4 Research Methodology

Three different methods are used to conduct this thesis; those are

experiment, theoretical research, and simulation.

 Experiment is a research method that helps to predicts and measure

phenomena about a thing. Experiment is used at different stages, such as

18

development, evaluation, and problem solving research. Experiment is

performed under a controlled environment. [45].

Theoretical research is a way of developing basic theory, mathematical

models, and proofs. This research method can be appropriate for formal

sciences, e.g., mathematics and parts of computer science [46], [47].

Simulation is a way of imitating the real world and model it on a computer

with the purpose of prediction, performing some tasks, training, proof, and

theory discovery [48].

In Chapter two, the experiment method is used to evaluate the performance

of database systems in cluster computing.

In Chapter three, experiments are used to evaluate different architectures of

voice-driven web and in this chapter prototypes are developed in the same

chapter I also evaluate the performance of a voice engine on a

multiprocessor.

Theoretical research is used in Chapter four and five with mathematical

modeling which are used to design algorithm and techniques that are used

for processor resource allocation in virtual machines so that real-time

applications that run on top of those machines meet their deadlines.

Simulations are used to quantify the performance implications of certain

parameter values in our theoretical results in Chapter four. Simulations are

also used to compare expected performance with theoretical bounds in our

schedulability tests in Chapter five. Matlab is used to conduct our

simulations.

1.5 Thesis Overview

In order to understand multicore processor and multiprocessor cluster

performance towards different applications, this thesis reports performance

evaluation of SQL and NoSQL database systems, notably Cassandra,

CouchDB, MongoDB, PostgreSQL, and RethinkDB; and a soft real-time

application called voice-driven web. Virtualization gives the ability to run

multiple operating systems on a single physical hardware, whereby the

operating systems share underlying physical hardware resources. In order

19

to benefit from virtualization technology, one would like to move real-time

applications to virtualized processors. In order to guarantee that a real-time

application is schedulable on a given virtual processor, scheduling

algorithms must be developed. This thesis proposes scheduling algorithms

for hard real-time application on virtual processors.

Figure 3 depicts the overview of the thesis. I investigate the performance

of SQL and NoSQL database systems on clusters. I also present the

architecture and quantify the performance of a voice-driven web

application on a multiprocessor. I finally provide schedulability algorithms

of hard real-time applications on virtual processors. Figure 4 shows the

structure of the thesis.

Figure 3. Thesis Overview

20

Figure 4. Thesis Structure

1.6 Thesis Contributions

This thesis presents performance of SQL and NoSQL database management

systems, Cassandra, CouchDB, MongoDB, PostgreSQL, and RethinkDB

as well as a soft real-time application called voice-driven web. This thesis

also presents schedulability algorithms for hard real-time applications on

virtual processors. The results are useful for:

 Application developers: to improve software.

 Research and education community: serve as the base for new research

findings.

 Business: business decision support such as selecting a proper

computing environment, sharing resource in Infrastructure as Service

(IaaS) in cloud computing.

The main contributions of this thesis are,

Chapter Two: This chapter focuses on the performance of SQL and

NoSQL database management systems namely Cassandra, CouchDB,

MongoDB, PostgreSQL, and RethinkDB executing on a cluster. The

evaluation shows how fast these database systems process queries

21

according to the number of computer nodes in the cluster. The results help

in decision support process in order to choose proper hardware that fits

application requirements.

Chapter Three: A voice-driven web architecture is investigated and

prototypes are implemented. The tradeoffs between different architectures

are presented. The architecture that implements speech engine Automatic

Speech Recognition and Text To Speech on the server side is found to be

scalable with the number of processors. The performance of this speech

engine is quantified on a multicore processor with and without

hyperthreading. The response time and the speedup are presented with

respect to number of cores in the processor.

Chapter Four: This chapter presents scheduling techniques for real-time

applications on virtual machines (VM). Techniques for virtual processor

resource allocation for periodic real-time applications presented in this thesis

makes possible to reuse classical scheduling techniques such Rate

Monotonic Scheduling on the hypervisor level where the hypervisor maps

VMs on the physical processors. A virtual machine requires a period and

execution time in order to run real-time applications, this chapter explains

how to determine the VM’s period and execution time with or without

overhead. Simulation shows the impact of the length of different VMs’

periods whether the VMs’ overhead is present or not. The tradeoffs between

resources consumption and period length are also detailed.

Chapter Five: This chapter proposes an algorithm to schedule real-time

tasks on a virtual multiprocessor machine. This algorithm provides a

utilization-based test that shows if a task set is schedulable or not. If the

task set is schedulable the algorithm provides the priority for each task.

This algorithm avoids Dhall’s effect, which may cause task sets with even

very low utilization to miss deadlines.

1.6 Related Work

Performance aspects of database systems and voice-driven web have been

investigated. Different techniques for scheduling virtual processors

resource for real-time applications with hard deadline have been studied.

22

Insights on how to improve applications in order to benefit from the

scalability of processors have been also revealed for some specific

applications. Furthermore, results of the evaluation are recommendations to

make a proper choice of hardware platform given the application’s

requirements. The following literature provides previous related work.

Query processing on multiprocessors has been studied in [49]. The authors

implemented an emulator of a parallel DBMS that uses cluster that consists

of multiprocessor nodes. In this thesis, query processing is evaluated on

real physical hardware with existing general purpose databases (Cassandra,

CouchDB, MongoDB, PostgreSQL, and RethinkDB). Query processing on

FPGA and GPU on spatial-temporal data was studied in [50]. The authors

present a FPGA and GPU implementation that process complex queries in

parallel. However the study did not investigate the performance of various

existing database systems. Also, the distributed environment was not also

evaluated, whereas, in this thesis query processing are investigated on

various SQL and NoSQL database systems running on a cluster. In [51],

the authors conducted a survey on mining massive-scale spatio-temporal

trajectory data based on parallel computing platforms such as GPU and

FPGA, in this thesis existing general purpose databases are evaluated.

In [52], the authors presented an architecture for voice-enabled interfaces

over local wireless networks, they found that the use of speech synthesis is

preferred over the use of pre-recorded prompts. This increases flexibility

of the dialogue and an easier upgrade of the applications. Due to wireless

networks fluctuation, synthesized speech would have good quality once

implemented on the mobile device. However, due to ergonomic and

economic reasons, the embedded CPU and memory resources are very

limited in the mobile device. Since speech synthesis systems require a lot

of CPU, it is proposed to be implemented on a separate server. In this

thesis, voice-driven web architectures are evaluated based on software

architecture qualities, the tradeoffs between those architectures are also

quantified.

The performance of FreeTTS that is implemented in Java, and C was

evaluated on a dual core processor in [53]. The experimental results showed

that FreeTTS that is implemented in Java performs better in terms of

23

response time than the one implemented in C. These authors also evaluated

the performance of Sphinx-4 (Automatic Speech Recognition) and they

presented results on a dual core processor [54]. In this thesis, FreeTTS and

Sphinx-4 are studied on a higher number of processor cores, up to eight

cores and that hyperthreading is also considered.

In [55], the authors found a method for calculating an execution time 𝐶𝑉𝑀

and a period 𝑇𝑉𝑀 for a VM such that all real-time tasks in the VM will meet

their deadlines. That study considers each VM in isolation, i.e., without

considering other VMs that could share the processor. In this thesis, an

improved VM execution time 𝐶𝑉𝑀𝑖
 and period 𝑇𝑉𝑀𝑖

 are defined by

considering a holistic perspective. It means that the whole work-load of all

VMs that share a processor core is considered. As a result, more real-time

concurrent applications become schedulable on a single core processor. The

presence of overhead for context switches between VMs is also considered.

If the overhead is not considered, it means that there are no co-located VM,

therefore the hypervisor offers resource assuming that virtual machines are

isolated. As results, this could lead to excessive use of CPU resources

(referred as overprovisioning in datacenter) and low network throughput

due to neglected inter-VMs communication overhead [56], [57]. In this

thesis, period assignment techniques that compensate the overhead from co-

residents VMs are presented.

There are two approaches to schedule real-time applications on

multiprocessor systems, partitioned and global. In the partitioned

approach, a task is statically allocated to a particular processor core, i.e., a

task is not allowed to migrate to another processor. In the global approach,

any tasks can execute on any processor core. The theory behind

uniprocessor scheduling can be used for partitioned multiprocessor

scheduling, e.g., the well-known uniprocessor schedulability test [44].

However, when it comes to global scheduling, the so called Dhall’s effect

shows that a direct application of the RM priority assignment scheme may

result in failure to meet deadlines even for systems with very low

multiprocessor utilization regardless of how many processors are used

[58]. In [59], the authors presented a method to schedule real-time

applications on multiprocessors by virtualizing the processors. Tasks are

24

clustered and each cluster is assigned to a set of virtual processors. This

mean that the scheduling happens at two levels. The first is scheduling

virtual processors onto physical processors and the second is scheduling

tasks on a set of virtual processors.

In virtualized systems, it is not possible to define a schedulability bound

based on a fixed (multiprocessor) utilization. The reason for this is that

even real-time application with very low utilization may miss deadlines if

the period of the task is shorter than the length of the time interval that the

virtual processor does not have access to the physical hardware. In [60],

the authors studied a scheduling method for real-time applications on

multicore processors using a concept called synchronized deferrable

server. They categorize tasks into non-migrating tasks and migrating. Non-

migrating tasks are statically bound to a core. The schedulability analysis

of non-migrating tasks is essentially a uniprocessor scheduling using

existing scheduling algorithm such as RM. Migrating tasks are modelled

as sporadic tasks and are allowed to migrate across the cores and thus can

be processed by deferrable server. This results in using partitioning and

global scheduling at the same time which is an advantage since neither

partitioning scheduling nor global scheduling outperforms the other in all

cases [61]. In this thesis, an algorithm that provides a utilization based test

is proposed. The test classifies tasks into two priority classes, namely

heavy and light tasks. Heavy tasks have higher priority than light tasks.

The algorithm checks each task in the task set in order to make sure that

the whole task set is schedulable.

1.7 Research Validity

In order to accurately measure the performance of SQL and NoSQL

management systems on a cluster. New servers are used, i.e., apart from

operating system, these database systems are the first applications that are

installed and are the only applications that are running on those servers

during the time of experiment. Stable releases of open source databases are

considered and are used in order to allow reproducibility.

The results of voice-driven web architecture are based on measurements

that have been recommended and used by a wide range of researchers.

25

Prototypes use real-world data such as live weather forecast data.

Recordings are done from a native English speaker, and prototypes can be

tested using telephone calling from any types of telephone. In order to

evaluate the performance of voice-driven web speech engine on variety of

processors, measurement are conducted on two different types of

processors. Intel core i 7 quad-core and Intel-xeon dual quad-core. In order

to explore processor features, measurements are conducted on those

processors with and without hyperthreading. In order to allow

reproducibility, open source Automatic Speech Recognition and Text To

Speech (Sphinx-4 and FreeTTS) are used.

For real-time applications schedulability in virtual machines, algorithms are

proposed and they are proved using mathematical formulation. These

algorithms are supported by simulation studies that apply algorithms on a

large number of tasks in a real-time application. A limitation is to test these

algorithms in real-world environment like in cloud at a layer of

Infrastructure as Service, where resource could be shared among real-time

applications using the proposed algorithms. In order to cope with this, the

simulation includes an overhead model that mimics the real-world

infrastructure behavior.

1.8 Conclusions

The main purpose of this thesis is to investigate the performance of SQL

and NoSQL database management systems and real-time applications, and

propose schedulability algorithms for real-time applications on virtual

processors. This thesis is guided by four research questions.

 Research question one is the performance of SQL and NoSQL

management systems on a cluster; this question is addressed in Chapter two.

The performance of open source database systems, namely Cassandra,

CouchDB, MongoDB, PostgreSQL, and RethinkDB are evaluated for

different queries on a cluster. The results show that Cassandra has the most

writing scalable throughput with relative low latency, whereas, PostgreSQL

has the lowest writing latency. MongoDB has the lowest reading latency.

Research question two is the performance scalability of a voice engine with

26

respect to increasing the number of cores in a multiprocessor. This question

is addressed in Chapter three. Section 3.1 evaluates different voice-driven

web architectures; the tradeoffs based on the software requirements showed

that the voice engine should be installed on the server instead of being on

the mobile device. Section 3.2 presents the performance evaluation results

about how the voice engine scales with respect to number of cores in a

multiprocessor with and without hyperthreading.

Research question three is about how to schedule virtual machines in order

that the real-time application that runs inside a VM can meet its deadlines.

This question is addressed in Chapter four. In this chapter, Section 4.1

presents scheduling techniques for real-time applications that run inside

virtual machines which are time sharing the virtual processors. Each virtual

multiprocessor has a period and an execution time that allow real-time

applications to meet their deadlines that can be defined using these

techniques. In Section 4.2, simulation shows the impact of the length of

different virtual machine periods with and without overhead. The tradeoffs

between resources consumption and period length are also discussed.

Research question four is to find a utilization based test for scheduling real-

time applications on virtual multiprocessors. This question is addressed in

Chapter five. This chapter presents a utilization-based test that determines

if a task set is schedulable or not. If the task set is schedulable the algorithm

provides the priority for each task. This algorithm avoids Dhall’s effect,

which may cause task sets with even very low utilization to miss deadlines.

References

[1] B. B. Brey, The Intel Microprocessors: 8086/8088, 80186/80188, 80286,

80386, 80486, Pentium, Pentium Pro Processor, Pentium II, Pentium III,

Pentium 4, and Core2 with 64-bit Extensions: Architecture, Programming,

and Interfacing. Pearson Education India, 2009.

[2] Moore’s Law, "How overall processing power for computers will double

every two years", http://www.mooreslaw.org.

[3] “Moore’s law,” Wikipedia, the free encyclopedia. 21-Feb-2016.

27

[4] L. Peng, J.-K. Peir, T. K. Prakash, Y.-K. Chen, and D. Koppe, “Memory

performance and scalability of Intel’s and AMD’s dual-core processors: a

case study,” in Performance, Computing, and Communications Conference,

2007. IPCCC 2007. IEEE International, 2007, pp. 55–64.

[5] J. Yan and W. Zhang, “Hybrid multi-core architecture for boosting single-

threaded performance,” ACM SIGARCH Comput. Archit. News, vol. 35,

no. 1, pp. 141–148, 2007.

[6] M. Bakery and R. Buyyaz, “Cluster computing at a glance,” High Perform.

Clust. Comput. Archit. Syst., vol. 1, pp. 3–47, 1999.

[7] Oracle, “Brief History of Virtualization.” [Online]. Available:

https://docs.oracle.com/cd/E26996_01/E18549/html/VMUSG1010.html.

[Accessed: 06-Mar-2016].

[8] K. Adams and O. Agesen, “A comparison of software and hardware

techniques for x86 virtualization,” ACM Sigplan Not., vol. 41, no. 11, pp.

2–13, 2006.

[9] P. Barham et al., “Xen and the art of virtualization,” ACM SIGOPS Oper.

Syst. Rev., vol. 37, no. 5, pp. 164–177, 2003.

[10] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the Linux

virtual machine monitor,” in Proceedings of the Linux symposium, 2007,

vol. 1, pp. 225–230.

[11] A. J. Younge, R. Henschel, J. T. Brown, G. Von Laszewski, J. Qiu, and G.

C. Fox, “Analysis of virtualization technologies for high performance

computing environments,” in Cloud Computing (CLOUD), 2011 IEEE

International Conference on, 2011, pp. 9–16.

[12] A. Silberschatz, H. F. Korth, S. Sudarshan, and others, Database system

concepts, vol. 4. McGraw-Hill New York, 1997.

[13] R. Ramakrishnan and J. Gehrke, Database management systems.

Osborne/McGraw-Hill, 2000.

[14] R. Ramakrishnan, J. Gehrke, and J. Gehrke, Database management systems,

vol. 3. McGraw-Hill New York, 2003.

28

[15] A. Silberschatz, H. F. Korth, and S. Sudarshan, Database System Concepts.

McGraw-Hill, 2011.

[16] S. S. ur Rahman, E. Schallehn, and G. Saake, “ECOS: evolutionary column-

oriented storage,” in Advances in Databases, Springer, 2011, pp. 18–32.

[17] D. J. Abadi, P. A. Boncz, and S. Harizopoulos, “Column-oriented database

systems,” Proc. VLDB Endow., vol. 2, no. 2, pp. 1664–1665, 2009.

[18] D. J. Abadi, S. R. Madden, and N. Hachem, “Column-stores vs. row-stores:

how different are they really?,” in Proceedings of the 2008 ACM SIGMOD

international conference on Management of data, 2008, pp. 967–980.

[19] I. Robinson, J. Webber, and E. Eifrem, Graph databases. O’Reilly Media,

Inc., 2013.

[20] “Flat file database,” Wikipedia, the free encyclopedia. 16-Nov-2014.

[21] “SAP HANA,” Wikipedia. 14-Feb-2017.

[22] heise online, “SAP und HPI erhalten Deutschen Innovationspreis 2012,”

heise online. [Online]. Available:

http://www.heise.de/newsticker/meldung/SAP-und-HPI-erhalten-

Deutschen-Innovationspreis-2012-1474254.html. [Accessed: 16-Feb-

2017].

[23] F. Färber et al., “The SAP HANA Database–An Architecture Overview.,”

IEEE Data Eng Bull, vol. 35, no. 1, pp. 28–33, 2012.

[24] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and W. Lehner,

“SAP HANA database: data management for modern business

applications,” ACM Sigmod Rec., vol. 40, no. 4, pp. 45–51, 2012.

[25] S. Venkatraman, K. Fahd, S. Kaspi, and R. Venkatraman, “SQL Versus

NoSQL Movement with Big Data Analytics,” 2016.

[26] J. Han, E. Haihong, G. Le, and J. Du, “Survey on NoSQL database,” in

Pervasive computing and applications (ICPCA), 2011 6th international

conference on, 2011, pp. 363–366.

29

[27] Y.-L. Choi, W.-S. Jeon, and S.-H. Yo, “Improving Database System

Performance by Applying NoSQL.,” J. Inf. Process. Syst., vol. 10, no. 3,

2014.

[28] J. Browne, “Brewer’s CAP Theorem, 2009,” URL Httpwww Julianbrowne

Comarticleviewerbrewers-Cap-Theorem, 2011.

[29] “What is Apache Cassandra?,” Planet Cassandra, 18-Jun-2015. [Online].

Available:http://www.planetcassandra.org/what-is-apache-cassandra/.

[Accessed: 18-Aug-2016].

[30] “Stratio/cassandra-lucene-index,” GitHub. [Online]. Available:

https://github.com/Stratio/cassandra-lucene-index. [Accessed: 18-Aug-

2016].

[31] “Apache CouchDB.” [Online]. Available: http://couchdb.apache.org/.

[Accessed: 18-Aug-2016].

[32] “couchbase/geocouch,” GitHub. [Online]. Available:

https://github.com/couchbase/geocouch. [Accessed: 18-Aug-2016].

[33] “MongoDB for GIANT Ideas | MongoDB.” [Online]. Available:

https://www.mongodb.com/. [Accessed: 18-Aug-2016].

[34] tutorialspoint.com, “MongoDB Overview,” www.tutorialspoint.com.

[Online]. Available:

http://www.tutorialspoint.com/mongodb/mongodb_overview.htm.

[Accessed: 18-Aug-2016].

[35] “Sharding — MongoDB Manual 3.2,”

https://github.com/mongodb/docs/blob/master/source/sharding.txt.

[Online]. Available: https://docs.mongodb.com/manual/sharding/.

[Accessed: 18-Aug-2016].

[36] J. Worsley and J. D. Drake, Practical PostgreSQL. O’Reilly Media, Inc.,

2002.

[37] “Multi-node setup on Ubuntu or Debian — Citus 5.1.0 documentation.”

[Online]. Available:

http://docs.citusdata.com/en/v5.1/installation/production_deb.html.

[Accessed: 18-Aug-2016].

30

[38] “PostGIS — Spatial and Geographic Objects for PostgreSQL.” [Online].

Available: http://postgis.net/. [Accessed: 18-Aug-2016].

[39] “RethinkDB: the open-source database for the realtime web.” [Online].

Available: https://www.rethinkdb.com/. [Accessed: 18-Aug-2016].

[40] D. Amyot and R. Simoes, “Combining VoiceXML with CCXML,” in IEEE

Consumer Communications & Networking Conference (CCNC 2007),

2007, pp. 342–346.

[41] B. Sprunt, L. Sha, and J. Lehoczky, “Scheduling sporadic and aperiodic

events in a hard real-time system,” DTIC Document, 1989.

[42] L. Abeni and T. Cucinotta, “Efficient virtualisation of real-time activities,”

in Service-Oriented Computing and Applications (SOCA), 2011 IEEE

International Conference on, 2011, pp. 1–4.

[43] H. Salimi, M. Najafzadeh, and M. Sharifi, “Advantages, Challenges and

Optimizations of Virtual Machine Scheduling in Cloud Computing

Environments,” Int. J. Comput. Theory Eng., vol. 4, no. 2, p. 189, 2012.

[44] A. Burns and A. Wellings, Real-Time Systems and Programming

Languages: Ada, Real-Time Java and C/Real-Time POSIX. Addison-

Wesley Educational Publishers Inc, 2009.

[45] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A.

Wesslén, Experimentation in software engineering. Springer Science &

Business Media, 2012.

[46] “Research Approach.” [Online]. Available:

http://www.idi.ntnu.no/grupper/su/publ/html/totland/ch013.htm.

[Accessed: 08-Mar-2016].

[47] N. K. Denzin and Y. S. Lincoln, Handbook of qualitative research. Sage

Publications, Inc, 1994.

[48] K. Dooley, “Simulation research methods,” Companion Organ., pp. 829–

848, 2002.

[49] K. Y. Besedin and P. S. Kostenetskiy, “Simulating of query processing on

multiprocessor database systems with modern coprocessors,” in

31

Information and Communication Technology, Electronics and

Microelectronics (MIPRO), 2014 37th International Convention on, 2014,

pp. 1614–1616.

[50] R. Moussalli, I. Absalyamov, M. R. Vieira, W. Najjar, and V. J. Tsotras,

“High performance FPGA and GPU complex pattern matching over spatio-

temporal streams,” GeoInformatica, vol. 19, no. 2, pp. 405–434, 2015.

[51] P. Huang and B. Yuan, “Mining Massive-Scale Spatiotemporal Trajectories

in Parallel: A Survey,” in Trends and Applications in Knowledge Discovery

and Data Mining, Springer, 2015, pp. 41–52.

[52] M. Bagein, O. Pietquin, C. Ris, and G. Wilfart, “An Architecture for Voice-

Enabled Interfaces over Local Wireless Networks,” in Proceedings of the

7th World Multiconference on Systemics, Cybernetics and Informatics (SCI

2003), Orlando,(USA, FL), 2003.

[53] W. Walker, P. Lamere, and P. Kwok, “FreeTTS: a performance case study,”

Sun Microsyst. Inc, 2002.

[54] W. Walker et al., “Sphinx-4: A flexible open source framework for speech

recognition,” Sun Microsyst. Inc, 2004.

[55] L. Lundberg and S. Shirinbab, “Real-time scheduling in cloud-based

virtualized software systems,” in Proceedings of the Second Nordic

Symposium on Cloud Computing & Internet Technologies, 2013, pp. 54–

58.

[56] Y. Ren et al., “Residency-Aware Virtual Machine Communication

Optimization: Design Choices and Techniques,” in Cloud Computing

(CLOUD), 2013 IEEE Sixth International Conference on, 2013, pp. 823–

830.

[57] M. Kurtadikar, A. Patil, P. Toshniwal, and J. Abraham, “An inter-VM

communication model supporting live migration,” in Cloud & Ubiquitous

Computing & Emerging Technologies (CUBE), 2013 International

Conference on, 2013, pp. 63–68.

[58] S. K. Dhall and C. L. Liu, “On a real-time scheduling problem,” Oper. Res.,

vol. 26, no. 1, pp. 127–140, 1978.

32

[59] I. Shin, A. Easwaran, and I. Lee, “Hierarchical scheduling framework for

virtual clustering of multiprocessors,” in Real-Time Systems, 2008.

ECRTS’08. Euromicro Conference on, 2008, pp. 181–190.

[60] H. Zhu, S. Goddard, and M. B. Dwyer, “Response Time Analysis of

Hierarchical Scheduling: The Synchronized Deferrable Servers Approach,”

in Real-Time Systems Symposium (RTSS), 2011 IEEE 32nd, 2011, pp.

239–248.

[61] J. Y.-T. Leung and J. Whitehead, “On the complexity of fixed-priority

scheduling of periodic, real-time tasks,” Perform. Eval., vol. 2, no. 4, pp.

237–250, 1982.

33

Chapter Two

Published as C. Niyizamwiyitira and L. Lundberg, “Performance

Evaluation of SQL and NoSQL Database Management Systems in a

Cluster,”International Journal of Database Management Systems (IJDMS)

Vol.9, No.6, December 2017

34

Performance Evaluation of SQL and No

SQL Database Management Systems in a

Cluster
Abstract

In this study, we evaluate the performance of SQL and No SQL database

management systems namely; Cassandra, CouchDB, MongoDB, PostgreSQL,

and RethinkDB. We use a cluster of four nodes to run the database systems,

with external load generators. The evaluation is conducted using data from

Telenor Sverige, a telecommunication company that operates in Sweden. The

experiments are conducted using three datasets of different sizes. The write

throughput and latency as well as the read throughput and latency are evaluated

for four queries; namely distance query, k-nearest neighbour query, range

query, and region query. For write operations Cassandra has the highest

throughput when multiple nodes are used, whereas PostgreSQL has the lowest

latency and the highest throughput for a single node. For read operations

MongoDB has the lowest latency for all queries. However, Cassandra has the

highest throughput for reads. The throughput decreases as the dataset size

increases for both write and read, for both sequential as well as random order

access. However, this decrease is more significant for random read and write.

In this study, we present the experience we had with these different database

management systems including setup and configuration complexity.

Keywords

Trajectory queries, cluster computing, SQL database, NoSQL database,

Cassandra, CouchDB, MongoDB, PostgreSQL, RethinkDB

35

2.1 Introduction

Immense volumes of data are generated continuously at a very high speed in

different domains. Being unstructured and semi structured make these data

heterogeneous and complex. However, efficient processing and analysis

remain high priorities. The challenges include what technology in terms of

software and hardware to use in order to handle these data efficiently.

Processing and analysis is needed in different domains such as transportation

optimization and different business analytics for telecommunication

companies that seek common patterns from their mobile users in order to

support business decisions.

The variety of SQL and No SQL database management systems makes it

difficult to pick the most appropriate system for a specific use case. In this

paper, five database systems are evaluated with respect to write and read

throughput and latency. Throughput is interesting since telecom data is

generated at high pace, and latency is also interesting since the speed of

telecom data processing is critical.

 Since big data processing requires high performance computing, we use a

cluster computing environment in order to take advantage of parallel

computing. We consider a case of trajectory data of mobile users.

Trajectory data represents information that describes the location of the user

in time and space. A typical application of such data is that a

telecommunication company wants to optimize the use of cell antennas and

identify different points of interests in order to expand its business. In order

to successfully process trajectory data, a proper choice of database system that

efficiently respond to different queries is required.

We use trajectory data that are collected from Telenor Sverige (a

telecommunication company that operates in Sweden). Mobile users'

positions are tracked every five minutes for an entire week (Monday to

Sunday) in a medium sized city. We are interested to know how mobile users

move around the city during different hours and days of the week. This will

give insights about typical behaviour in certain area at certain time. We expect

periodic movement in some areas, e.g., at the location of stores and restaurants

36

during lunch time.

Our data are spatio-temporal where at a given time 𝑡 a mobile user is located

at a position (𝑥, 𝑦). The location of a mobile user is a triple (𝑥, 𝑦, 𝑡) such that

user’s position is represented as a spatial-temporal point 𝑝𝑖 with 𝑝𝑖 =
(𝑥𝑖, 𝑦𝑖 , 𝑡𝑖).

By optimizing points of interests, different types of queries are proposed.

They differ in terms of input and output:

Distance query which finds points of interests that are located in equal or less

than a distance (or a radius), e.g., one kilometer from a certain position of a

mobile user.

K-Nearest neighbour query that finds k nearest points of interests from a

certain position of a mobile user.

Range query that finds points of interests within a space range (the range can

be a triangle, polygon, …).

Region query that finds the region that a mobile user frequently passes through

at certain time throughout the week.

The performance is evaluated on five open source database management

systems that are capable to handle big data; Cassandra, CouchDB, MongoDB,

PostgreSQL, and RethinkDB. We consider random access requests as well as

sequential requests. The hardware is a cluster with four nodes that run the

database, with four external load generators for random workloads, and one

load generator for sequential workloads. By using this kind of data, an

operator knows the locations that are the most, or the least visited during a

certain time. Therefore, in order to avoid overloading and underloading at

such locations, antenna planning can be updated accordingly. For business

expansion, a busy location during lunch time is for instance good for putting

up a restaurant.

The rest of the paper is organized as follows; Section 2 defines trajectory data

concept, Section 3 summarizes related work, Section 4 gives an overview of

37

database management systems, Section 5 describes the methodology, Section

6 presents the results. Section 7 presents some discussions and analysis, and

finally Section 8 draws conclusions.

2.2 Trajectory Data [1]

2.2.1 Definition of trajectory

A trajectory is a function from a temporal domain to a range of spatial values,

i.e., it has a start and end time during which a space has been travelled (see

Equation 1) [2].

[𝑡𝑏𝑒𝑔𝑖𝑛 𝑡𝑒𝑛𝑑] → 𝑠𝑝𝑎𝑐𝑒 (1)

A complete trajectory is characterized by a list of triples 𝑝 = (𝑥, 𝑦, 𝑡), thus a

trajectory is defined as a sequence of positions Ʈ𝑝𝑜𝑠.

Ʈ𝑝𝑜𝑠 = {𝑝1, 𝑝2, … , 𝑝𝑛} (2)

where 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑡𝑖) represents a spatio-temporal point, Figure 1 shows a

trajectory.

Figure 1. Mobile user’s trajectory as a sequence of triples

In this study, the trajectory data space is represented by latitude and

longitude; 𝑥 represents latitude and 𝑦 represents longitude, and time is

38

represented by 𝑡.

2.2.2 Data Description

A location update is generated when a handset is generating traffic either by

downloading or uploading data. The data used in this paper are collected every

five minutes for an entire week in a medium sized city, i.e., the data is at rest.

This data is anonymized in order to comply with the company agreement

about undisclosuring users’ information.

Table 1. Mobile user data description

Mobile User’s

attributes

Short description

1 User ID User identification

2 Site ID Identification number of the site location

3 Weekday Day of the week that the data has been

recorded

4 Time Clock Time that the data has been recorded

5 Profile ID The user profile identification such as a

salesperson, a store, with a mobile that runs a

certain operating system like android or any

other

6 Segment ID Type of client such as Corporate client, Cost

Aware, Quality Aware

7 SourceGSM Used network technology is Global System

for Mobile communication (GSM)

8 SourceUMTS Used network technology is Universal

Mobile Telecommunications System

(UMTS)

9 SourceLTE Used network technology is Long Term

Evolution (LTE)

10 Easting User’s position with respect to east

11 Northing User’s position with respect to north

12 Latitude decimal User’s location in terms in latitude

coordinates

39

13 Longitude

decimal

User’s location in terms in longitude

coordinates

14 Cell municipality Municipality of the Cell antenna’s location

15 Cell county County of the Cell antenna’s location

16 Cell city Cell antenna’s location in terms of City

17 Cell postcode Postcode of the Cell antenna’s location

18 Cell address Address of the Cell antenna’s location

We have three datasets with different sizes;

1. Dataset0 has 6,483,398 records and 18 attributes,

2. Dataset1 has 12,966,795 records and 18 attributes,

3. Dataset2 has 25,933,590 records and 18 attributes.

Dataset2 has the biggest size, it is four times Dataset0 or two times Dataset1,

the dataset size was scaled until the available resources for the experiment,

the cluster memory was maximized by the size, thus we stopped at dataset2.

Table 1 shows the 18 attributes in each data record used by Telenor.

2.2.3 Definition of Trajectory Queries

Trajectories queries on spatio-temporal data are the foundation of many

applications such as traffic analysis, mobile user’s behaviour, and many others

[3] [4]. In the context of location optimization, common trajectory queries that

we consider in this study are: Distance query, k-nearest neighbour query,

Range query, and Region query. We will describe these queries in the

subsections below.

Figure 2 visualizes the four query types; 𝐶𝑖 is the location of cell i, each 𝐶𝑖 is

represented by (𝑥𝑖, 𝑦𝑖) where 𝑥𝑖 is latitude and 𝑦𝑖 is longitude. A distance

query returns a list of cells that are located at a certain distance from a location,

e.g., within distance L from the position of 𝐶1. The query returns the list [𝐶2,

𝐶3 , 𝐶4, 𝐶7].

We can find the two cells that are closest to cell 𝐶1, by using a k-nearest

neighbour query with 𝑘 = 2.

40

Given a triangular space, a range query returns the cells that belong to that

space.

A region query returns the cell that is the most frequently visited at a certain

time. e.g., cell 𝐶8 at time ti (see Figure 2).

Figure 2. Visualization for Query Types

2.2.4 Distance Query

Definition: A distance query returns all the cells in the circle whose distance

from a given position is less than a threshold [3], [4]. Figure 3 shows inputs

and output of a distance query.

41

Figure 3. Distance Query

2.2.5 k-Nearest Neighbour Query

Definition: A k-Nearest Neighbour (k-NN) Query returns from zero up to k

cells which are the closest to a given position (𝑥, 𝑦) [5] [6]; the k results are

ordered by proximity. k-NN is bounded by a distance, and if k cells within the

given distance from the given position is not indicated, the query behaves like

a distance query.

Figure 4 shows the inputs and output of a k-NN query.

Figure 4. k-NN query

2.2.6 Range Query

Definition: Range query returns all the cells that are located within a certain

space shape (polygon) [3]. In this paper we only consider triangles. Figure 5

shows inputs and output of range query to find cells that are in the triangle. In

this paper, the range query retrieve cells that are located inside a triangle. The

triangle space is defined by nodes latitude and longitude points.

42

Figure 5 Range query

2.2.7 Region Query

Generally, trajectories of mobile users are independent of each other.

However, they contain common behaviour traits such as passing through a

region at a certain periods, e.g., passing through the shopping center during

lunch time.
Definition: A region query identifies the cell that is the most visited at a given point

in time [3].

Figure 6 shows inputs and output of a region query to find the cell that is the most

visited at time Ti. In this paper, the region query takes time as input, then at a certain

fixed time users are moving around the city, region query picks up the region that

most users are located.

Figure 6. Region query

2.3 Related Work

In [7], the authors proposed an approach and implementation of spatio-

temporal database management systems. This approach treats time-changing

geometries, whether they change in discrete or continuous steps. The same

approach can be used to tackle spatio-temporal data in other database

management systems. We evaluate trajectory queries on existing general

purpose database management systems (Cassandra, CouchDB, MongoDB,

43

PostgreSQL, and RethinkDB). In [8], the author describes requirements for

database management systems that support location-based service for spatio-

temporal data. A list of ten representative queries for stationary and moving

reference objects is proposed. Some of those queries are related to the queries

considered in Section 2.

In [9], Dieter studied trajectory moving point objects, he explained three

scenarios, namely constrained movement, unconstraint movement and

movement in networks. Different techniques to index and to query in these

scenarios define their respective processing performance. The author

modelled a trajectory as triple (𝑥, 𝑦, 𝑡), we use the same model in this study.

In [10], the authors introduced querying moving objects (trajectory) in

SECONDO, a DBMS prototyping environment particularly geared for

extension by algebra modules. The querying is done using an SQL-like

language. In our study, we are querying moving object using SQL and Not

Only SQL (NoSQL) querying languages on top of different database

management systems. The authors provide a benchmark on range queries and

nearest neighbour queries in SECONDO DBMS for moving data object in

Berlin. The moving object data were generated using computer simulation

based on the map of Berlin [11]. This benchmark could be extended to other

queries such as region queries, distance queries, and so on. In our study, we

apply these queries on real world trajectory data, i.e., mobile users’ trajectory

from Telenor Sverige.

In [5], the authors introduced a new type of query, Reverse Nearest Neighbour

(RNN) which is the opposite to Nearest Neighbour (NN). RNN can be useful

in applications where moving objects agree to provide some kind of service

to each other, whenever a service is needed it is requested from the nearest

neighbour. An object knows objects that it will serve in the future using RNN.

RNN and NN are represented by distance query in our study.

In [12], the authors studied an aggregate query language for GIS and no-

spatial data stored in a data warehouse. In [13], the authors studied k-nearest

44

neighbour search algorithm for historical moving object trajectories, this k-

nearest neighbour is one of the queries that is considered in our study.

In [14], the authors presented techniques for indexing and querying moving

object trajectories. These data are represented in three dimensions, where two

dimensions correspond to space and one dimension corresponds to time. We

also represent our data in 3D as (𝑥, 𝑦, 𝑡), with 𝑥, 𝑦 represent space whereas 𝑡

represents time.

Query processing on multiprocessors was studied in [15], the authors

implemented an emulator; this is a software that uses computing cluster with

NVIDIA GPUs or Intel Xeon Phi coprocessors for relational query processing

of a parallel DBMS on a cluster of multiprocessors. This study is different

from ours in a sense that we evaluate query processing on real physical

hardware with existing general purpose database management systems. Query

processing using FPGA and GPU on spatial-temporal data was studied in [16].

The authors presented a FPGA and GPU implementation that process

complex queries in parallel, the study did not investigate the performance on

various existing database systems, a distributed environment was also not

considered. In our study we investigate query processing on various database

management systems on a cluster. In [17], the authors conducted a survey on

mining massive-scale spatio-temporal trajectory data based on parallel

computing platforms such as GPU, MapReduce and FPGA, again existing

general purpose database systems were not evaluated. The authors presented

a hardware implementation for converting geohash codes to and from

longitude/latitude pairs for spatio-temporal data [18], the study shows that

longitude and latitude coordinates are the key points for modelling spatio-

temporal data. In our paper, we also use these coordinates for location based

querying. The benchmark for NoSQL databases, namely Apache Cassandra,

Couchbase, HBase, and MongoDB is presented in [19]. This benchmark was

performed on Amazon Web Service (AWS) EC2 instances. They used Yahoo!

Cloud Serving Benchmark (YCSB) data. In terms of throughput and

horizontal scalability, Cassandra is the best, Hbase is the second, CouchBase

is the third and MongoDB is the fourth. In this paper we have not considered

45

CouchBase and HBase, since they are in memory databases, i.e., they used

direct memory which is good for processing small data in real-time. Therefore

this would be smaller for our workload. We used Cassandra, CouchDB,

MongoDB, PostgreSQL, and RethinkDB on real-world workload instead

simulated workload.

2.4 Database Management System Overview

The presence of unstructured data stimulated the invention of new databases,

since Relational Database Management Systems (RDBMS) that uses

Structured Query Language (SQL) cannot handle unstructured data

efficiently. A new data model, Not Only SQL (NoSQL) was introduced to

deal also with unstructured data [20]. The main features of NoSQL follow the

CAP theorem (Consistency, Availability, and Partition tolerance). The core

idea of CAP is that a distributed system cannot meet these three needs

simultaneously (see Figure 7). Depending on the data models, NoSQL can be

relational, key value based, column based, and document based. In this study

we choose five open source databases that have diverse features of SQL

(PostgreSQL) and NoSQL (Cassandra, CouchDB, MongoDB and

RethinkDB).

A key value data model means that a value corresponds to a key, in column

based systems data are stored by column, each column is an index of the

database, queries are applied to columns, whereby each column is treated one

by one. A document-based database stores in the JSON or XML format, each

document, is indexed and it has a key.

46

Figure 7. Principles of Distributed Database systems.

2.4.1 Cassandra

Apache Cassandra is an open-source NoSQL column based database. It is

written in Java, it is a top level Apache project born at Facebook and built

on Amazon’s Dynamo and Google’s BigTable. It is a distributed database for

managing large amounts of structured data across many commodity servers,

while providing highly available service with no single point of failure. In

CAP, Cassandra has availability and partition tolerance (AP) with eventual

(delayed) consistency. Cassandra offers continuous availability, linearly

scaling performance, operational simplicity and easy data distribution across

multiple data centers and cloud availability zones. Cassandra has a masterless

ring architecture [21]. The keyspace is similar to database in RDBMS, inside

keyspace there are tables which are similar to tables in RDBMS, column and

rows are similar to those of RDBMS’ tables. The querying language is

Cassandra Query Language (CQL) that is very similar to SQL [22]. Cassandra

does not natively support spatial indexing but this can be extended via

Stratio’s Cassandra Lucene index. Stratio’s Cassandra Lucene Index is an

additional module for Apache Cassandra, it extends its index functionality to

provide near real time search for text search, field based sorting, and spatial

index. [23].

http://en.wikipedia.org/wiki/Apache_Cassandra#History
http://www.datastax.com/documentation/articles/cassandra/cassandrathenandnow.html

47

2.4.2 CouchDB

CouchDB is written in Erlang and it stores data as JSON documents. Access

documents and query indexes with a web browser, via HTTP. CouchDB

indexes, combines, and transforms documents with JavaScript. It is highly

available and partition tolerant, but also eventually consistent, CouchDB

supports masterless setup [23]. The system does not natively support spatial

queries, we add a module GeoCouch for spatial index on CouchDB [25].

2.4.3 MongoDB

MongoDB is an open-source NoSQL document database, it is written in C++.

MongoDB has a database, inside the database there are collections, like tables

in RDBMS. Inside a collection there are documents, these are like a tuple/row

in RDBMS, and inside a document there are fields which are like columns in

RDBMS [25][26]. MongoDB is consistent and partition tolerant. MongoDB

has natively a built in function for spatial queries and it has a sharding

(separating very large database into smaller, faster and easily manageable

parts called shards across cluster’s nodes) feature to support horizontal

scalability of the database in master/slave fashion [27].

2.4.4 PostgreSQL

PostgreSQL is an open source object RDBMS written in C that has two

features according to the CAP theorem; those are availability, i.e., each user

can always read and write, and consistency, i.e., all users have the same view

of data. PostgreSQL organises data in columns and rows [28, p. 3].

PostgreSQL does not natively support horizontal scalability as well as spatial

queries, PostgreSQL is extended by CITUS and PostGIS to support scalability

in master/slave fashion and spatial queries indexing respectively [29][30].

2.4.5 RethinkDB

RethinkDB is an open source NoSQL database system. RethinkDB is written

in C ++, it is horizontally scalable in a master/slave setup, it is mostly designed

to facilitate real-time updates for query results to applications [31].

http://guide.couchdb.org/editions/1/en/consistency.html

48

RethinkDB natively support spatial queries using GeoJson. The system uses

the ReQL query language that is available for Python, Ruby, and Java.

2.5 Methodology

This section presents details about the experimental setup, hardware and

software; the measurement procedure is also explained. All the data are

represented in the comma separated values (CSV) format.

2.5.1 Experiment setup

A cluster is made up of 4 nodes, each node is Dell powerEdge R320 with

operating system: Ubuntu 14.04.3 LTS x86_64. Each node has 23 GB RAM,

disk size of 279.4 GB, and a processor (Intel(R) Xeon(R) CPU E5-2420 v2)

with 12 cores, each core is hyperthreaded into 2 cores, which gives 24 virtual

cores. These servers run Java development kit jdk 1.8.0.72. These servers are

only running our database management systems, nothing else. Another

machine (called load generator) with the same features outside of this database

cluster generates the load for sequential writing and reading towards the

cluster. This setup is described in Figure 8. We use four load generators for

random writing and reading, each of these generators has also the same

features mentioned earlier. Figure 9 shows the setup for random load.

Cassandra 3.0.3 is installed at each of the nodes in the cluster in a ring

topology with each node has the same role as the other, i.e. master/master

fashion. Stratio Lucene is installed and connected to Cassandra at each of the

nodes. The replication factor equals the number of nodes, i.e., every node has

the same copy of data [32]. The consistency level is Quorum, i.e., return most

recent data from a majority of replicas [34].

CouchDB is also installed on each of the cluster nodes in master/master

fashion, after that Geocouch is installed and connected to CouchDB [23][24].

MongoDB is installed on the cluster in master/slave fashion, where the master

mongos (mongo master server) is installed on one of the nodes, and the three

49

config servers which act like slave servers are installed on the remaining three

nodes [35][34].

PostgreSQL is also installed with PostGIS on each of the cluster nodes. After

that, CITUS is connected to PostgreSQL in order to support the distribution,

and as a result PostgreSQL becomes a distributed database system in

master/slave fashion where one of the nodes acts as the master and the others

as the slaves [30][35].

RethinkDB is also installed at each of the cluster nodes in a master/slave

fashion; one node is a master [31].

Table 2 shows the details of different features of the database management

systems that we are evaluating. In Table 2, BASE is Basically Available, Soft

state, Eventual consistency, and ACID is Atomicity, Consistency, Isolation,

and Durability.

Figure 8. Experiment setup for sequential workload

50

Figure 9. Experiment setup for random workload

Table 2. Database systems features

 Cassandra CouchDB MongoDB PostgreS

QL

RethinkD

B
Extensio

n

module

to

support

Spatial

query

Stratio’s

Cassandra

Lucene

Index

GeoCouch

Natively

support

Spatial

query

PostGIS

Natively

support

Spatial

query

Extensio

n

module

to

support

distribut

ed

computi

ng

Natively

distributed

 Natively

distributed

CITUS Natively

distributed

Langua

ge

Java Erlang C++ C C++

Query

Langua

ge

Cassandra

Query

Language

(CQL)

Json Json Structure

Query

Language

(SQL)

RethinkDB

query

Language

(ReQL in

python)

51

Partitio

ning

method

Sharding Sharding Sharding Sharding Sharding

Replicat

ion

method

Master/Mast

er

Master/Mast

er

Master/slave Master/sla

ve

Master/slave

Transac

tion

propert

y

BASE BASE BASE ACID BASE

Version 3.0.3 1.6.1 3.0.9 9.5.3 2.3.1

License Apache 2.0 Apache 2.0 GNU AGPL

v3.0

PostgreSQ

L

AGPL

Data

Model

Column +

key

Document +

Key

Document +

Key

Column +

row

(relational

DBMS)

Document +

Key

First

Release

2010 2005 2007 1986 2009

2.5.2 Write procedure

Two ways of writing are considered; sequential and random order. During

sequential writing, the workload is generated by one load generator machine

towards the cluster and the given entire dataset is written in sequential order.

For random writing, there are four load generators, each generator contains

the same dataset. Each generator makes a write request that writes a quarter

of the entire dataset size records in a random order into the database cluster.

For Cassandra, data into CSV format is imported into the Cassandra database

cluster. The node that receives the request will get a list of N nodes responsible

for replicas of the keys in the write request from ReplicationStrategy. It then

sends a RowMutation message to each of the N nodes. Then each node append

the write to the commit log and update the in-memory Memtable data

structure with the write. All the writes either random or sequential, are written

using SSTable loader.

For CouchDB, the CSV data format is imported from the load generator into

CouchDB using a couch import script that is written in Node.js. After writing,

each row in the source file becomes a document. In CouchDB, every node in

http://www.gnu.org/licenses/agpl-3.0.html
http://www.gnu.org/licenses/agpl-3.0.html

52

the cluster participates in the importing and writing. Writing are done using

http_bulk.

For MongoDB, CSV data format is imported using mongo import script

towards mongos (master). Each row becomes a document, thereafter mongos

shards the data across the cluster.

For PostgreSQL, CSV data format is imported and written on the master,

which shards it across the cluster nodes.

For RethinkDB, CSV data format is imported and written to the database

through the master node which shards it across the cluster.

When the writing is completed, the message that indicates how many records

are written during how long time, will appear on the load generator machine

(s).

Each record (row) in all datasets have the same size, i.e., each row is 7.94 KB

in CSV format.

2.5.3 Reading procedure

Reading is also conducted in two ways; sequential and random. In the

sequential procedure, the read request is generated from one load generator,

each of the queries, distance, k-nearest neighbour, range, and region is sent 10

times to each of the database systems (Cassandra, CouchDB, MongoDB,

PostgreSQL, and RethinkDB).

For random read, read request, i.e., queries, are generated from 4 load

generators, and the responses are gathered at the load generators.

2.5.4 Measurement procedure

In this study, we measure the write and read latency, as well as the throughput.

The latency measured in these experiments shows how long each individual

write or read request takes to be processed. It does not include network latency

between the load generator and the database cluster. Instead, it is measured

from the database perspective, i.e., the time that is required to process a single

request.

The write latency is the number of milliseconds required to fulfill a single

write request. The time period starts when one of the cluster nodes receives

53

write request from the load generator, and ends when the nodes complete a

write request.

The read latency is the number of milliseconds required to fulfill a read

request. The time period starts when one of the cluster nodes receives read

request from the load generator, and ends when the node completes a read

request. All the results are the average of ten runs. Measurements are

conducted on three datasets of different size, namely dataset0, dataset1, and

dataset2 as defined in Section 2. Read latency is measured with respect to the

four different queries as defined also in Section 2.

For the write latency, the workload is 100% write only, and for read latency,

the workload is 100% read.

We measure the throughput as operations per second,

Throughput = number of completed operations / time to complete those

operations.

The latency is measured on the database cluster servers, whereas the

throughput is measured on load generators.

2.6 Results
All datasets are populated into Cassandra and PostgreSQL, and CouchDB

without any transformation. Whereas, in MongoDB and RethinkDB,

coordinates attributes (latitude and longitude) were combined into an array

location attribute in order to be able to use spatial function in MongoDB and

RethinkDB. Results for dataset0 and dataset1 are presented as tables in the

appendix. Whereas results from dataset2 are plotted in this section.

Results in figures 10 and 11 show the write throughput and latency for

dataset2 for both sequence and random. Figures 12-19 show the read

throughput and the latency for distance, k-NN, range, and region queries in

dataset2. The throughput is measured as operations per second whereas the

latency is presented in milliseconds.

During the write workload, MongoDB, PostgreSQL, and RethinkDB use one

master node only therefore, their latency and throughput are consistent

throughout all nodes. However, Cassandra and CouchDB scale their

throughput as the number of nodes increases. CouchDB has a slightly

54

inconsistent latency as the number of nodes increases, i.e., the latency goes up

and down a little as the number of nodes increases.

The dataset size impacts the throughput negatively, especially for random

write since the search grows as the dataset size increases. Therefore, the

throughput decreases and the latency increases (see Appendix and figures

10(b) and 11(b)).

During read, Cassandra has in most cases the highest throughput, PostgreSQL

has the second highest throughput, and MongoDB has the third whereas

CouchDB has the lowest. The read throughput scales up as the number of

nodes increases for all the database systems, see figures 12, 14, 16, and 18.

Generally, MongoDB has the lowest read latency for higher number of nodes,

see figures 13, 15, 17, and 19.

For one node, the read latency for Cassandra, MongoDB, and PostgreSQL are

similar, and they are significantly lower than CouchDB and RethinkDB.

Generally, Cassandra has the highest read throughput. MongoDB and

PostgreSQL have almost similar read throughput following Cassandra.

RethinkDB has the fourth highest throughput, whereas CouchDB has the

lowest throughput. This is shown in figures 12, 14, 16, and 18 for different

queries. Database systems installed into master/slave fashion exhibit

immediate writing consistency, e.g., MongoDB, PostgreSQL, and

RethinkDB. Whereas those installed into master/master fashion present

eventual consistency, e.g., Cassanda and CouchDB.

55

Figure 10. (a) Sequential write throughput for dataset2, (b) Random write

throughput for dataset2

Figure 11. (a) Sequential write latency for dataset2, (b) Random write latency

for dataset2

56

Figure 12. (a) Sequential read throughput for distance query in dataset2, (b)

Random read throughput for distance query in dataset2

Figure 13. (a) Sequential read latency for distance query in dataset2, (b)

Random read latency for distance query in dataset2

57

Figure 5. (a) Sequential read throughput for k-NN query in dataset2, (b)

Random read throughput for k-NN query in dataset2

Figure 6. (a) Sequential read latency for k-NN query in dataset2, (b) Random

read latency for k-NN query in dataset2

58

Figure 16. (a) Sequential read throughput for Range query in dataset2, (b)

Random read throughput for Range query in dataset2

Figure 17. (a) Sequential read latency for range query in dataset2, (b)

Random read latency for range query in dataset2

59

Figure 7. (a) Sequential read throughput for region query in dataset2, (a)

Random read throughput for region query in dataset2

Figure 19. (a) Sequential read latency for region query in dataset2, (b) Random

read latency for region query in dataset2

2.7 Discussion and Analysis

In terms of scalability, Cassandra outperforms the other database systems

60

throughout our experiments. Cassandra shows lower write latency for one

node and it slightly increases for two nodes, then it stays stable for more nodes.

Cassandra does not presents the best write and read latency, but it has the

highest throughput, this shows that Cassandra has more parallelism.

PostgreSQL presents the lowest write latency, followed by MongoDB, which

is followed by Cassandra, CouchDB, and RethinkDB which has the highest

write latency. In general, Cassandra has the highest write throughput as the

number of nodes increases whereas RethinkDB has the lowest throughput.

CouchDB is scalable, however, the slowest in reading and its reading

throughput is similarly affected. We observe that Cassandra and CouchDB

present similar speed up, However, Cassandra has higher throughput than

CouchDB.The reason is that CouchDB serves mainly as backend to serve the

web whereby retrieving a lot of records at the same time may become very

slow. Usually, there will be cashing functions and closest region hosting that

will support CouchDB when it is backing the web. The writing and reading

throughput of CouchDB is not as high as expected; this is caused by fetching

data over HTTP protocol which is essentially a high latency protocol.

Therefore, CouchDB scalability does not exploit the parallelism by achieving

higher throughput as expected. MongoDB, PostgreSQL, and RethinkDB are

installed in master slave fashion, thus they are not scalable for write since only

the master node writes.

PostgreSQL presents the best write latency and the highest throughput. From

one node until three nodes PostgreSQL outperforms other database systems.

This is due to delayed commit that happens at the end of whole dataset write

workload, thus speeding up the writing. Introducing an explicit commit after

each record (row) insert could slow down PostgreSQL significantly. Delayed

commit is usually the default in PostgreSQL, it may cause data loss in case of

database crash, and therefore it should not be used for very sensitive data like

bank transactions.

MongoDB has in most cases the lowest read latency because it has a spatial

function that quickly process spatial queries. MongoDB is fast for reads

because it shards data across nodes, when a query is launched, only the

61

concerned nodes will respond to the query. This avoid going over the whole

dataset. The same principle is also applied in PostgreSQL with the help of

CITUS, the extension that horizontally scales PostgreSQL across commodity

servers using sharding.

Since RethinkDB is designed for real-time applications such as game live

score and online multiplayer games, during which writing must be

acknowledged by the server and subsequently are available to the client. Such

data are in most cases relatively small in order to be processed at low latency,

due to big size datasets that are used in our experiments, RethinkDB suffers

from high latency and low throughput. However, the performance is better for

read than write.

As expected, sequential processing has higher throughput and a little shorter

latency than random processing. Increase of the dataset size causes the

throughput to decrease significantly, this is a result of the overhead that

becomes higher as the dataset’s size increases. The latency is also affected by

the increase of the dataset in such a way that the latency becomes a bit higher.

However, this increase is not significant. This is intuitively true since the

throughput is measured from the load generator, and latency is measured from

the database servers.

The decrease of throughput with the increase of the dataset’s size is even more

noticeable for random writing and reading. Random writing and reading has

lower throughput comparing to sequential writing and reading for dataset0,

dataset1, and dataset2 respectively. This is caused by the overhead due to the

random search order across the entire dataset, thus the search becomes

exhaustive for both writing and reading. We saw a throughput decrease of

almost 10% from sequential to random processing.

In order to get better results, we have used new hardware and we have used

workload of different sizes. We considered also random and sequential

processing for both write and read. Compared to the benchmarking of

Cassandra, Couchbase, HBase, and MongoDB [19], we have similar trends

where Cassandra outperforms MongoDB. Moreover, we include the

comparison for five database systems, Cassandra, CouchDB, MongoDB,

PostgreSQL and RethinkDB. Our results can serve as benchmark for other

62

studies.

2.8 Conclusions

In this paper, we evaluate the write and read throughput as well as the latency

of five SQL and NoSQL database management systems namely; Cassandra,

CouchDB, MongoDB, PostgreSQL, and RethinkDB. The evaluation is

conducted on a cluster using telecommunication data collected from Telenor

Sverige. We did measurements on three datasets of different sizes; dataset0,

dataset1, and dataset2. We measured the write throughput and latency of each

of the datasets, and the read throughput and latency for four queries, namely

distance, k-nearest neighbour, range, and region queries. Both writing and

reading are experimented in sequential, and in random on a database cluster

system of four nodes.

For read queries, all database management systems are scalable as the number

of nodes increases. However, only Cassandra and CouchDB show scalability

for data writing. It is observed that as the dataset’s size increases the

throughput decreases and the latency increases.

The write throughput results show that on a single server, PostgreSQL

performs better than others whereas Cassandra exhibits the highest throughout

for higher number of nodes. PostgreSQL also presents the lowest latency for

all writes. The reading results for all four queries show that Cassandra has the

highest throughput even though it does have the lowest latency. This is a result

of more parallelism in Cassandra. CouchDB has the lowest read throughput

and highest latency though it is scalable, i.e., as the number of nodes increase

the throughput increases as well.

In our experiments, we observed that in some cases PostgreSQL when

featured by CITRUS, shows lower reading latency and horizontal scalability

features than MongoDB, CouchDB, and RethinkDB. If the data to be

processed requires the flexibility of traditional relational database (SQL),

PostgreSQL would be preferred, if scalability matters, one would choose

Cassandra. MongoDB, CouchDB, and RethinkDB would favour data that are

transferred over the web, since they are document oriented that are easy to

interpret for the web.

63

During our experiments, we experienced installation challenges of different

database management systems. In terms of installation, Cassandra was straight

forward except that spatial query extension that was challenging to be

incorporated into the system. CouchDB was the most challenging, it took

more time than the other database systems, especially installing it in a

distributed fashion on many nodes. MongoDB was also straight forward with

sharding that was a bit challenging. PostgreSQL was straight forward.

However incorporating the distributing platform CITUS was challenging.

RethinkDB was the easiest to install. By ranking these database systems

according to easiness of installation, RethinkDB is the first, MongoDB is the

second, Cassandra is the third, PostgreSQL is the fourth, and CouchDB is the

fifth.

 As far as mobile users’ data analytics is concerned, since the processing and

analysis is not done on the fly as the data come in, immediate consistency is

not a big issue. Hence Cassandra would suits to process it, because it has high

throughput and a relatively low latency with eventual consistency and

availability across the cluster.

Acknowledgements

This work is part of the research project "Scalable resource-efficient systems

for big data analytics" funded by the Knowledge Foundation (grant:

20140032) in Sweden. We also thank Telenor Sverige for providing the data.

References

[1] C. Niyizamwiyitira and L. Lundberg, “Performance Evaluation of Trajectory

Queries on Multiprocessor and Cluster,” in Computer Science & Information

Technology, Vienna,Austria, 2016, vol. 6, pp. 145–163.

[2] S. Spaccapietra, C. Parent, M. L. Damiani, J. A. de Macedo, F. Porto, and C.

Vangenot, “A conceptual view on trajectories,” Data Knowl. Eng., vol. 65, no.

1, pp. 126–146, 2008.

[3] Y. Zheng and X. Zhou, Computing with spatial trajectories. Springer Science

& Business Media, 2011.

64

[4] N. Pelekis and Y. Theodoridis, Mobility data management and exploration.

Springer, 2014.

[5] R. Benetis, C. S. Jensen, G. Karčiauskas, and S. Šaltenis, “Nearest neighbor

and reverse nearest neighbor queries for moving objects,” in Database

Engineering and Applications Symposium, 2002. Proceedings. International,

2002, pp. 44–53.

[6] E. Frentzos, K. Gratsias, N. Pelekis, and Y. Theodoridis, “Nearest neighbor

search on moving object trajectories,” in Advances in Spatial and Temporal

Databases, Springer, 2005, pp. 328–345.

[7] M. Erwig, R. H. Gu, M. Schneider, M. Vazirgiannis, and others, “Spatio-

temporal data types: An approach to modeling and querying moving objects in

databases,” GeoInformatica, vol. 3, no. 3, pp. 269–296, 1999.

[8] Y. Theodoridis, “Ten benchmark database queries for location-based services,”

Comput. J., vol. 46, no. 6, pp. 713–725, 2003.

[9] D. Pfoser, “Indexing the trajectories of moving objects,” IEEE Data Eng Bull,

vol. 25, no. 2, pp. 3–9, 2002.

[10] V. T. De Almeida, R. H. Güting, and T. Behr, “Querying moving objects in

secondo,” in null, 2006, p. 47.

[11] C. Düntgen, T. Behr, and R. H. Güting, “BerlinMOD: a benchmark for moving

object databases,” VLDB J., vol. 18, no. 6, pp. 1335–1368, 2009.

[12] L. I. Gómez, B. Kuijpers, and A. A. Vaisman, “Aggregation languages for

moving object and places of interest,” in Proceedings of the 2008 ACM

symposium on Applied computing, 2008, pp. 857–862.

[13] Y.-J. Gao, C. Li, G.-C. Chen, L. Chen, X.-T. Jiang, and C. Chen, “Efficient k-

nearest-neighbor search algorithms for historical moving object trajectories,” J.

Comput. Sci. Technol., vol. 22, no. 2, pp. 232–244, 2007.

[14] D. Pfoser, C. S. Jensen, Y. Theodoridis, and others, “Novel approaches to the

indexing of moving object trajectories,” in Proceedings of VLDB, 2000, pp.

395–406.

65

[15] K. Y. Besedin and P. S. Kostenetskiy, “Simulating of query processing on

multiprocessor database systems with modern coprocessors,” in Information

and Communication Technology, Electronics and Microelectronics (MIPRO),

2014 37th International Convention on, 2014, pp. 1614–1616.

[16] R. Moussalli, I. Absalyamov, M. R. Vieira, W. Najjar, and V. J. Tsotras, “High

performance FPGA and GPU complex pattern matching over spatio-temporal

streams,” GeoInformatica, vol. 19, no. 2, pp. 405–434, Aug. 2014.

[17] P. Huang and B. Yuan, “Mining Massive-Scale Spatiotemporal Trajectories in

Parallel: A Survey,” in Trends and Applications in Knowledge Discovery and

Data Mining, Springer, 2015, pp. 41–52.

[18] R. Moussalli, M. Srivatsa, and S. Asaad, “Fast and Flexible Conversion of

Geohash Codes to and from Latitude/Longitude Coordinates,” in Field-

Programmable Custom Computing Machines (FCCM), 2015 IEEE 23rd

Annual International Symposium on, 2015, pp. 179–186.

[19] “no sql benchmark - Google Search.” [Online]. Available:

https://www.google.rw/search?q=no+sql+benchmark&oq=no+sql+benchmark

&aqs=chrome..69i57j0l5.4785j0j7&sourceid=chrome&ie=UTF-8. [Accessed:

22-Nov-2017].

[20] J. Han, E. Haihong, G. Le, and J. Du, “Survey on NoSQL database,” in

Pervasive computing and applications (ICPCA), 2011 6th international

conference on, 2011, pp. 363–366.

[21] “What is Apache Cassandra?,” Planet Cassandra, 18-Jun-2015. [Online].

 Available:http://www.planetcassandra.org/what-is-apache-cassandra/.

[Accessed: 23-Feb-2016].

[22] “CQL.” [Online].

 Available: http://docs.datastax.com/en//cassandra/2.0/cassandra/cql.html.

[Accessed: 23-Feb-2016].

[23] “Stratio/cassandra-lucene-index,” GitHub. [Online]. Available:

https://github.com/Stratio/cassandra-lucene-index. [Accessed: 23-Mar-2016].

[24] “Apache CouchDB.” [Online].

 Available: http://couchdb.apache.org/. [Accessed: 16-Aug-2016].

66

[25] “couchbase/geocouch,” GitHub. [Online].

 Available: https://github.com/couchbase/geocouch. [Accessed: 16-Aug-2016].

[26] tutorialspoint.com, “MongoDB Overview,” www.tutorialspoint.com. [Online].

 Available: http://www.tutorialspoint.com/mongodb/mongodb_overview.htm.

[Accessed: 23-Feb-2016].

[27] “MongoDB for GIANT Ideas,” MongoDB. [Online].

 Available: https://www.mongodb.com/. [Accessed: 23-Feb-2016].

[28] MongoDB installation, “Sharding Introduction MongoDB Manual 3.2,”

https://github.com/mongodb/docs/blob/master/source/core/sharding-

introduction.txt. [Online].

 Available:https://docs.mongodb.org/manual/core/sharding-introduction/.

[Accessed: 24-Feb-2016].

[29] J. Worsley and J. D. Drake, Practical PostgreSQL. O’Reilly Media, Inc., 2002.

[30] “Multi-node setup on Ubuntu or Debian — Citus 5.1.0 documentation.”

[Online].

 Available: http://docs.citusdata.com/en/v5.1/installation/production_deb.html.

[Accessed: 16-Aug-2016].

[31] “PostGIS — Spatial and Geographic Objects for PostgreSQL.” [Online].

Available: http://postgis.net/. [Accessed: 16-Aug-2016].

[32] “RethinkDB: the open-source database for the realtime web.” [Online].

Available: https://www.rethinkdb.com/. [Accessed: 16-Aug-2016].

[33] “Stratio/cassandra-lucene-index,” GitHub. [Online]. Available:

https://github.com/Stratio/cassandra-lucene-index. [Accessed: 30-Mar-2016].

[34] “Consistency & Cassandra,” Planet Cassandra, 10-Apr-2013. [Online].

 Available:http://www.planetcassandra.org/blog/consistency-cassandra/.

[Accessed: 29-Sep-2016].

[35] “How To Create a Sharded Cluster in MongoDB Using an Ubuntu 12.04 VPS,”

DigitalOcean. [Online].

67

 Available: https://www.digitalocean.com/community/tutorials/how-to-create-

a-sharded-cluster-in-mongodb-using-an-ubuntu-12-04-vps. [Accessed: 29-

Sep-2016].

[36] “Multi-node setup on Ubuntu or Debian — Citus 5.1.0 documentation.”

[Online].

 Available: http://docs.citusdata.com/en/v5.1/installation/production_deb.html.

[Accessed: 16-Aug-2016

68

APPENDIX

I. Writing Throughput (operations per second) and latency in milliseconds

1. Dataset0

a. Sequential writing

Table 3. Throughput (Th) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Th. Stdv Th. Stdv Th. Stdv Th. Stdv Th. Stdv

1node 18222.02 0.55 5178.01 0.55 24437.98 0.72 39848.78 0.39 14714.92 0.41

2nodes 26006.40 0.54 6538.31 0.49 24437.98 0.72 39848.78 0.39 14714.92 0.41

3nodes 35899.21 0.42 9113.57 0.9 24437.98 0.72 39848.78 0.39 14714.92 0.41

4nodes 48311.46 0.51 15709.71 0.80 24437.98 0.72 39848.78 0.39 14714.92 0.41

Table 4. Latency (Lat.) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv

1node 0.036 0.000045 0.044 0.000055 0.039 0.000052 0.033 0.000039 0.049 0.000041

2nodes 0.037 0.000051 0.043 0.000049 0.039 0.000052 0.033 0.000039 0.049 0.000041

69

3nodes 0.037 0.000044 0.045 0.00002 0.039 0.000052 0.033 0.000039 0.049 0.000041

4nodes 0.037 0.000050 0.045 0.000040 0.039 0.000052 0.033 0.000039 0.049 0.000041

b. Random writing

Table 5. Throughput (Th) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Th. Stdv Th. Stdv Th. Stdv Th. Stdv Th. Stdv

1node 15488.72 0.75 3883.51 0.65 20039.14 0.71 29886.59 0.81 9417.55 0.72

2nodes 22105.44 0.61 4903.73 0.65 20039.14 0.71 29886.59 0.81 9417.55 0.81

3nodes 30514.33 0.72 6835.18 0.62 20039.14 0.71 29886.59 0.81 9417.55 0.81

4nodes 41064.74 0.59 11782.28 0.58 20039.14 0.71 29886.59 0.81 9417.55 0.81

Table 6. Latency (Lat.) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv

1node 0.0383 0.000056 0.048 0.000066 0.043 0.000058 0.032 0.000052 0.054 0.000061

2nodes 0.0385 0.000062 0.046 0.000053 0.043 0.000058 0.032 0.000052 0.054 0.000061

3nodes 0.0392 0.000057 0.050 0.000059 0.043 0.000058 0.032 0.000052 0.054 0.000061

4nodes 0.0399 0.000060 0.0499 0.000064 0.043 0.000058 0.032 0.000052 0.054 0.000061

2. Dataset1

70

a. Sequential writing

Table 7 Throughput (Th) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Th. Stdv Th. Stdv Th. Stdv Th. Stdv Th. Stdv

1node 16976.68 0.65 4799.31 0.75 22395.15 0.72 34522.88 0.83 10033.11 0.63

2nodes 23414.21 0.68 6426.20 0.68 22395.15 0.72 34522.88 0.83 10051.77 0.63

3nodes 35255.01 0.73 8919.24 0.61 22395.15 0.72 34522.88 0.83 10033.11 0.63

4nodes 47707.11 0.69 15081.17 0.53 22395.15 0.72 34522.88 0.83 10033.11 0.63

Table 8. Latency (Lat.) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv

1node 0.046 0.000049 0.053 0.000059 0.049 0.000072 0.039 0.000078 0.057 0.000082

2nodes 0.046 0.000064 0.052 0.000061 0.049 0.000072 0.039 0.000078 0.057 0.000082

3nodes 0.047 0.000061 0.054 0.000065 0.049 0.000072 0.039 0.000078 0.057 0.000082

4nodes 0.047 0.000050 0.054 0.000062 0.049 0.000072 0.039 0.000078 0.057 0.000082

b. Random writing

Table 9. Throughput (Th) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Th. Stdv Th. Stdv Th. Stdv Th. Stdv Th. Stdv

1node 13241.81 0.76 3263.53 0.83 16796.36 0.81 23820.78 0.64 5518.21 0.71

71

2nodes 18263.09 0.73 4369.81 0.82 16796.36 0.81 23820.78 0.64 5528.47 0.71

3nodes 27498.91 0.62 6065.08 0.85 16796.36 0.81 23820.78 0.64 5518.21 0.71

4nodes 37211.55 0.69 10255.19 0.73 16796.36 0.81 23820.78 0.64 5518.21 0.71

Table 10. Latency (Lat.) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv

1node 0.0463 0.000051 0.054 0.000061 0.0483 0.000065 0.0455 0.000075 0.0573 0.000063

2nodes 0.0467 0.000054 0.053 0.000055 0.0483 0.000065 0.0455 0.000075 0.0573 0.000063

3nodes 0.0467 0.000063 0.055 0.000071 0.0483 0.000065 0.0455 0.000075 0.0573 0.000063

4nodes 0.0467 0.000058 0.055 0.000062 0.0483 0.000065 0.0455 0.000075 0.0573 0.000063

II. Reading Throughput (operations per second) and latency in milliseconds

1. Dataset0

A. Distance Query

a. Sequential Reading

Table 11. Throughput (Th) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Th. Stdv Th. Stdv Th. Stdv Th. Stdv Th. Stdv

1node 3791460.81 0.76 1581316.58 0.67 3087332.38 0.65 1800943.88 0.86 2315499.28 0.68

72

2nodes 4265393.42 0.73 1852399.42 0.82 3601887.77 0.76 3241699 0.85 2818868.69 0.74

3nodes 4874735.33 0.62 2091418.70 0.81 4052123.75 0.89 4052123.75 0.73 3087332.38 0.66

4nodes 5358180.16 0.69 2493614.61 0.75 4987229.23 0.68 5186718.4 0.91 4052123.75 0.83

Table 12. Latency (Lat.) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv

1node 0.032 0.000042 0.042 0.000051 0.033 0.000062 0.031 0.000074 0.041 0.000062

2nodes 0.033 0.000063 0.041 0.000062 0.031 0.000054 0.034 0.000065 0.039 0.000074

3nodes 0.035 0.000061 0.043 0.000058 0.031 0.000045 0.034 0.000056 0.041 0.000062

4nodes 0.036 0.000068 0.045 0.000079 0.031 0.000063 0.034 0.000058 0.042 0.000067

b. Random Reading

Table 13. Throughput (Th) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Th. Stdv Th. Stdv Th. Stdv Th. Stdv Th. Stdv

1node 3033168.65 0.67 1233426.93 0.79 2346372.60 0.76 1332698.47 0.76 1713469.47 0.73

2nodes 3412314.73 0.89 1444871.55 0.75 2737434.71 0.83 2398857.26 0.83 2085962.83 0.82

3nodes 3899788.27 0.74 1631306.59 0.72 3079614.05 0.71 2998571.57 0.82 2284625.96 0.59

4nodes 4286544.13 0.79 1945019.4 0.86 3790294.21 0.59 3838171.61 0.82 2998571.57 0.81

Table 14. Latency (Lat.) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv

73

1node 0.043 0.000053 0.058 0.000068 0.043 0.000072 0.042 0.000072 0.0515 0.000078

2nodes 0.048 0.000056 0.060 0.000068 0.045 0.000054 0.047 0.000073 0.052 0.000076

3nodes 0.048 0.000052 0.061 0.000061 0.045 0.000049 0.0475 0.000046 0.054 0.000064

4nodes 0.0482 0.000059 0.064 0.000062 0.045 0.000060 0.0475 0.000069 0.056 0.000072

B. K-nearest Query

a. Sequential Reading

Table 15. Throughput (Th) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Th. Stdv Th. Stdv Th. Stdv Th. Stdv Th. Stdv

1node 3813763.52 0.79 2091418.70 0.84 3412314.73 0.75 2593359.2 0.63 2701415.83 0.71

2nodes 4630998.57 0.78 2493614.61 0.82 3813763.52 0.73 2818868.69 0.74 3087332.38 0.82

3nodes 5271055.28 0.83 2818868.69 0.91 4502359.72 0.75 3412314.73 0.66 3601887.77 0.64

4nodes 5737520.35 0.89 3412314.73 0.77 5105037.79 0.78 4322265.33 0.84 4052123.75 0.74

Table 16. Latency (Lat.) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv

1node 0.031 0.000061 0.039 0.000072 0.031 0.000065 0.033 0.000076 0.037 0.000079

2nodes 0.032 0.000065 0.040 0.000056 0.032 0.000081 0.035 0.000091 0.038 0.000083

3nodes 0.034 0.000063 0.042 0.000057 0.032 0.000067 0.035 0.000077 0.041 0.000082

4nodes 0.037 0.000067 0.044 0.000077 0.032 0.000078 0.036 0.000079 0.043 0.000066

74

b. Random Reading

Table 17. Throughput (Th) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Th. Stdv Th. Stdv Th. Stdv Th. Stdv Th. Stdv

1node 3089148.45 0.87 1652220.78 0.75 2661605.49 0.91 1996886.58 0.68 2026061.87 0.75

2nodes 3751108.84 0.86 1969955.54 0.72 2974735.55 0.83 2170528.89 0.76 2315499.28 0.72

3nodes 4269554.78 0.77 2226906.26 0.73 3511840.58 0.84 2627482.34 0.69 2701415.83 0.69

4nodes 4647391.48 0.75 2695728.64 0.76 3981929.48 0.85 3328144.30 0.81 3039092.81 0.82

Table 18. Latency (Lat.) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv

1node 0.042 0.000071 0.044 0.000081 0.042 0.000076 0.043 0.000084 0.042 0.000095

2nodes 0.044 0.000067 0.0460 0.000074 0.0435 0.000074 0.044 0.000083 0.044 0.000072

3nodes 0.045 0.000087 0.0465 0.000081 0.0438 0.000081 0.044 0.000097 0.0455 0.000086

4nodes 0.045 0.000076 0.047 0.000067 0.0438 0.000067 0.044 0.000078 0.046 0.000069

C. Range Query

a. Sequential Reading

Table 19. Throughput (Th) and its standard deviation (Stdv)

75

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Th. Stdv Th. Stdv Th. Stdv Th. Stdv Th. Stdv

1node 4026955.27 0.91 2593359.2 0.94 3704798.85 0.87 3601887.77 0.91 3241699 0.93

2nodes 4874735.33 0.93 2946999.09 0.82 4502359.72 0.85 4322265.33 0.97 3769417.44 0.86

3nodes 5402831.66 0.71 3241699 0.84 4987229.23 0.79 4987229.23 0.84 4052123.75 0.79

4nodes 6483398 0.83 3813763.52 0.92 5402831.66 0.78 5893998.18 0.95 4987229.23 0.83

Table 20. Latency (Lat.) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv

1node 0.029 0.000053 0.035 0.000061 0.0297 0.000059 0.030 0.000071 0.032 0.000072

2nodes 0.032 0.000071 0.034 0.000057 0.031 0.000057 0.030 0.000059 0.033 0.000057

3nodes 0.033 0.000056 0.037 0.000077 0.031 0.000058 0.032 0.000067 ,0.034 0.000065

4nodes 0.033 0.000065 0.038 0.000065 0.031 0.000058 0.032 0.000066 0.035 0.000063

b. Random Reading

Table 21. Throughput (Th) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Th. Stdv Th. Stdv Th. Stdv Th. Stdv Th. Stdv

1node 3181294.67 0.81 2022820.17 0.73 2815647.13 0.87 2665396.95 0.76 2334023.28 0.79

2nodes 3851040.91 0.83 2298659.29 0.71 3421793.38 0.86 3198476.34 0.79 2713980.55 0.65

3nodes 4268237.01 0.91 2528525.22 0.84 3790294.21 0.86 3690549.63 0.91 2917529.1 0.75

4nodes 5121884.42 0.93 2974735.55 0.85 4106152.06 0.75 4361558.65 0.69 3590805.04 0.78

76

Table 22. Latency (Lat.) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv

1node 0.041 0.000063 0.045 0.000075 0.040 0.000065 0.042 0.000063 0.042 0.000071

2nodes 0.042 0.000068 0.0445 0.000056 0.041 0.000059 0.0425 0.000069 0.043 0.000063

3nodes 0.043 0.000064 0.046 0.000055 0.041 0.000057 0.0425 0.000067 0.044 0.000063

4nodes 0.043 0.000061 0.047 0.000067 0.041 0.000064 0.0425 0.000065 0.045 0.000054

D. Region Query

a. Sequential Reading

Table 23. Throughput (Th) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Th. Stdv Th. Stdv Th. Stdv Th. Stdv Th. Stdv

1node 3813763.52 0.89 831204.87 0.93 2401258.51 0.85 1706157.36 0.79 1157749.64 0.98

2nodes 4322265.33 0.91 1137438.24 0.85 2946999.09 0.79 2401258.51 0.84 1271254.50 0.94

3nodes 4987229.23 0.79 1350707.91 0.88 3241699 0.87 3412314.73 0.78 1706157.36 0.87

4nodes 5637737.39 0.84 1800943.88 0.85 4052123.75 0.81 4322265.33 0.82 2235654.48 0.89

Table 24. Latency (Lat.) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv

1node 0.030 0.000054 0.032 0.000061 0.029 0.000056 0.030 0.000062 0.031 0.000053

2nodes 0.031 0.000049 0.034 0.000062 0.030 0.000054 0.031 0.000053 0.033 0.000061

3nodes 0.031 0.000057 0.036 0.000054 0.030 0.000061 0.032 0.000058 0.034 0.000059

77

4nodes 0.031 0.000059 0.037 0.000056 0.030 0.000054 0.032 0.000062 0.036 0.000057

b. Random Reading

Table 25. Throughput (Th) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Th. Stdv Th. Stdv Th. Stdv Th. Stdv Th. Stdv

1node 2974735.55 0.82 631715.70 0.76 1800943.88 0.78 1279618.02 0.81 856734.73 0.91

2nodes 3371366.96 0.83 864453.06 0.78 2210249.31 0.79 1800943.88 0.74 940728.33 0.87

3nodes 3890038.8 0.69 1026538.01 0.82 2431274.25 0.89 2559236.05 0.83 1262556.45 0.67

4nodes 4397435.16 0.78 1368717.35 0.67 3039092.81 0.81 3241699 0.76 1654384.31 0.71

 Table 26. Latency (Lat.) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv

1node 0.040 0.000049 0.044 0.000051 0.039 0.000045 0.039 0.000053 0.042 0.000054

2nodes 0.042 0.000061 0.0445 0.000054 0.0395 0.000057 0.0395 0.000062 0.043 0.000053

3nodes 0.042 0.000056 0.046 0.000061 0.039 0.000063 0.043 0.000053 0.045 0.000064

4nodes 0.042 0.000052 0.0475 0.000058 0.039 0.000059 0.043 0.000056 0.046 0.000061

2. Dataset1

A. Distance Query

a. Sequential Reading

78

Table 27. Throughput (Th) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Th. Stdv Th. Stdv Th. Stdv Th. Stdv Th. Stdv

1node 3033168.65 0.76 1249240.10 0.82 2408119.25 0.89 1386726.79 0.92 1759779.45 0.78

2nodes 3412314.73 0.87 1463395.54 0.89 2809472.46 0.83 2496108.23 0.95 2142340.20 0.81

3nodes 3899788.27 0.78 1652220.78 0.91 3160656.525 0.88 3120135.28 0.89 2346372.60 0.92

4nodes 4286544.13 0.67 1969955.54 0.77 3890038.8 0.85 3993773.16 0.76 3079614.05 0.71

Table 28. Latency (Lat.) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv

1node 0.041 0.000065 0.052 0.000055 0.043 0.000058 0.038 0.000064 0.049 0.000058

2nodes 0.042 0.000059 0.051 0.000058 0.040 0.000061 0.041 0.000056 0.048 0.000062

3nodes 0.043 0.000061 0.053 0.000053 0.040 0.000059 0.041 0.000061 0.049 0.000056

4nodes 0.045 0.000057 0.055 0.000051 0.040 0.000062 0.041 0.000051 0.050 0.000054

b. Random Reading

Table 29. Throughput (Th) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Th. Stdv Th. Stdv Th. Stdv Th. Stdv Th. Stdv

1node 2365871.55 0.84 949738.74 0.84 1783243.18 0.79 999523.85 0.86 1267967.40 0.91

2nodes 2661605.49 0.76 1112551.09 0.76 2080450.38 0.81 1799142.94 0.75 1543612.49 0.92

3nodes 3041834.85 0.73 1256106.07 0.73 2340506.67 0.76 2248928.68 0.79 1690623.21 0.87

79

4nodes 3343504.42 0.71 1497664.93 0.71 2880623.60 0.82 2878628.71 0.84 2218942.96 0.89

Table 30. Latency (Lat.) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv

1node 0.054 0.000053 0.069 0.000055 0.0535 0.000057 0.053 0.000065 0.0615 0.000051

2nodes 0.059 0.000068 0.071 0.000059 0.057 0.000069 0.056 0.000064 0.063 0.000055

3nodes 0.061 0.000052 0.073 0.000051 0.057 0.000056 0.0582 0.000061 0.064 0.000054

4nodes 0.0632 0.000065 0.075 0.000049 0.057 0.000052 0.0583 0.000057 0.067 0.000062

B. K-nearest Query

a. Sequential Reading

Table 31. Throughput (Th) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Th. Stdv Th. Stdv Th. Stdv Th. Stdv Th. Stdv

1node 2898460.28 0.91 1610392.40 0.87 2661605.49 0.96 2048753.76 0.65 2161132.66 0.77

2nodes 3519558.91 0.87 1920083.25 0.75 2974735.55 0.84 2226906.26 0.69 2469865.90 0.78

3nodes 4006002.01 0.83 2170528.89 0.76 3511840.58 0.87 2695728.64 0.73 2881510.22 0.85

4nodes 4360515.46 0.76 2627482.34 0.68 3981929.48 0.89 3414589.61 0.67 3241699 0.73

Table 32. Latency (Lat.) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

80

Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv

1node 0.041 0.000054 0.049 0.000059 0.041 0.000063 0.043 0.000051 0.047 0.000056

2nodes 0.042 0.000061 0.050 0.000067 0.042 0.000058 0.045 0.000065 0.048 0.000068

3nodes 0.044 0.000059 0.052 0.000053 0.042 0.000062 0.045 0.000062 0.049 0.000053

4nodes 0.047 0.000057 0.054 0.000066 0.042 0.000056 0.046 0.000055 0.051 0.000052

b. Random Reading

Table 33. Throughput (Th) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Th. Stdv Th. Stdv Th. Stdv Th. Stdv Th. Stdv

1node 2285969.85 0.86 1239165.58 0.77 2022820.176 0.73 1537602.66 0.83 1580328.26 0.86

2nodes 2775820.54 0.76 1477466.65 0.85 2260799.02 0.85 1671307.24 0.75 1806089.44 0.85

3nodes 3159470.53 0.72 1670179.70 0.83 2668998.84 0.87 2023161.40 0.83 2107104.35 0.76

4nodes 3439069.70 0.75 2021796.48 0.86 3026266.40 0.85 2562671.11 0.82 2370492.39 0.75

Table 34. Latency (Lat.) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv

1node 0.053 0.000051 0.057 0.000063 0.051 0.000053 0.052 0.000054 0.052 0.000052

2nodes 0.055 0.000049 0.0580 0.000062 0.054 0.000071 0.055 0.000064 0.056 0.000051

3nodes 0.057 0.000061 0.060 0.000054 0.054 0.000059 0.055 0.000069 0.059 0.000068

4nodes 0.057 0.000053 0.062 0.000052 0.054 0.000067 0.055 0.000058 0.060 0.000058

C. Range Query

81

a. Sequential Reading

Table 35. Throughput (Th) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Th. Stdv Th. Stdv Th. Stdv Th. Stdv Th. Stdv

1node 3221564.22 0.78 2048753.76 0.81 2889743.10 0.84 2773453.58 0.79 2463691.24 0.86

2nodes 3899788.27 0.87 2328129.28 0.76 3511840.58 0.75 3328144.30 0.74 2864757.25 0.82

3nodes 4322265.33 0.75 2560942.21 0.69 3890038.8 0.70 3840166.50 0.73 3079614.05 0.79

4nodes 5186718.4 0.75 3012873.18 0.71 4214208.7 0.82 4538378.6 0.85 3790294.21 0.76

Table 36. Latency (Lat.) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv

1node 0.039 0.000059 0.045 0.000052 0.039 0.000054 0.040 0.000051 0.042 0.000056

2nodes 0.042 0.000052 0.044 0.000065 0.041 0.000053 0.040 0.000061 0.043 0.000059

3nodes 0.043 0.000057 0.047 0.000051 0.041 0.000061 0.042 0.000054 0.044 0.000065

4nodes 0.043 0.000048 0.048 0.000055 0.041 0.000053 0.042 0.000071 0.045 0.000062

b. Random Reading

Table 37. Throughput (Th) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Th. Stdv Th. Stdv Th. Stdv Th. Stdv Th. Stdv

1node 2481409.84 0.79 1496886.93 0.74 2139891.81 0.76 1999047.71 0.74 1727177.22 0.76

2nodes 3003811.91 0.69 1701007.87 0.82 2600562.97 0.69 2398857.26 0.83 2008345.61 0.82

82

3nodes 3329224.87 0.72 1871108.66 0.65 2880623.60 0.81 2767912.22 0.85 2158971.53 0.72

4nodes 3995069.84 0.81 2201304.30 0.59 3120675.57 0.66 3271168.99 0.92 2657195.73 0.87

Table 38. Latency (Lat.) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv

1node 0.050 0.000056 0.055 0.000056 0.049 0.000054 0.052 0.000049 0.051 0.000051

2nodes 0.052 0.000062 0.0545 0.000062 0.051 0.000063 0.053 0.000056 0.054 0.000062

3nodes 0.054 0.000053 0.056 0.000059 0.051 0.000067 0.053 0.000059 0.055 0.000064

4nodes 0.054 0.000049 0.057 0.000063 0.051 0.000054 0.053 0.000062 0.056 0.000054

D. Region Query

a. Sequential Reading

Table 39. Throughput (Th) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Th. Stdv Th. Stdv Th. Stdv Th. Stdv Th. Stdv

1node 2898460.28 0.86 640027.75 0.85 1872981.64 0.77 1347864.32 0.56 926199.71 0.88

2nodes 3284921.65 0.59 875827.44 0.73 2298659.29 0.86 1896994.22 0.74 1017003.60 0.79

3nodes 3790294.21 0.73 1040045.09 0.77 2528525.22 0.73 2695728.64 0.77 1364925.89 0.83

4nodes 4284680.41 0.69 1386726.79 0.64 3160656.52 0.75 3414589.61 0.88 1788523.58 0.75

Table 40. Latency (Lat.) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv

83

1node 0.041 0.000046 0.043 0.000063 0.04 0.000056 0.041 0.000062 0.042 0.000064

2nodes 0.042 0.000051 0.045 0.000052 0.041 0.000057 0.042 0.000052 0.044 0.000059

3nodes 0.042 0.000063 0.047 0.000054 0.041 0.000063 0.043 0.000056 0.045 0.000061

4nodes 0.042 0.000059 0.048 0.000062 0.041 0.000051 0.043 0.000059 0.047 0.000047

b. Random Reading

Table 41. Throughput (Th) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Th. Stdv Th. Stdv Th. Stdv Th. Stdv Th. Stdv

1node 2320293.73 0.75 486421.09 0.86 1368717.35 0.75 959713.51 0.59 633983.70 0.96

2nodes 2629666.22 0.69 665628.86 0.45 1679789.48 0.67 1350707.91 0.69 696138.96 0.84

3nodes 3034230.26 0.67 790434.27 0.84 1847768.43 0.73 1919427.03 0.87 934291.77 0.95

4nodes 3429999.42 0.78 1053912.36 0.76 2309710.53 0.72 2431274.25 0.83 1224244.39 0.81

 Table 42. Latency (Lat.) and its standard deviation (Stdv)

Nodes Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv Lat. Stdv

1node 0.052 0.000053 0.054 0.000056 0.051 0.000063 0.051 0.000055 0.053 0.000056

2nodes 0.053 0.000061 0.0545 0.000054 0.052 0.000053 0.051 0.000047 0.054 0.000064

3nodes 0.053 0.000054 0.056 0.000049 0.052 0.000058 0.054 0.000051 0.055 0.000057

4nodes 0.053 0.000051 0.0575 0.000063 0.052 0.000053 0.054 0.000056 0.056 0.000046

84

Chapter Three

Section 1

Published as C. Niyizamwiyitira, L. Lundberg, and M. Svahnberg, “Evaluation of

Voice-driven Web Application Architecture,” in Signal Image Technology and

Internet Based Systems (SITIS), 2012 Eighth International Conference on, 2012, pp.

555–562.

85

Evaluation of Voice-driven Web

Application Architecture

Abstract

This paper quantifies the implications and trade-offs of three different

architectures for voice driven web application, architectures are implemented

as prototypes. The prototypes differ from each other by either using recording,

or Text To Speech (TTS) as server based, or TTS as client based to process

output speech. A typical application used in this paper, is the most dynamic

weather information source which is presented as web feeds or Really Simple

Syndication (RSS) feeds. The evaluated quality attributes are performance,

maintainability, and development effort. The empirical results show that, each

system's architecture has a different quality profile, for instance, one

architecture has the lowest development time but the highest maintainability

cost, and another has the lowest bandwidth requirements but the highest

development cost. Finally, suggestions about optimal choice of system

architecture according to the quality requirements of the final system are

drawn.

Keywords

 Voice based web, IVR application, Web voice quality attributes, Voice

driven web evaluation, voice driven architecture.

86

3.1.1 Introduction

In the last decade, there has been a rapid development in Voice-over-IP and

extensible mark-up language (XML) technologies to provide voice based

services. These sophisticated technologies lead the Interactive Voice Response

(IVR) to become increasingly a common IT solution in successful enterprises

[1]. People with low computer literacy or who have no internet accessibility

can use their mobile phones to access information. In fact, approximately 23

percent of the world population only, have access to WWW [2]; voice driven

web such as IVR applications and worldwide telecom web (WWTW) were

developed to fill a gap of the rest 77 percent that most of them have access to

a telephone.

The main deployment architecture of voice driven web is composed of three

main parts; the first part is the core part which is voice application server, it

holds the voice applications. The second part is the speech engine server that

hosts text to speech (TTS) and automatic speech recognition (ASR). The third

is the voice gateway or voice browser that performs communication tasks

between the user and voice server over session initiative protocol (SIP) or

telephone [3–5].

In voice driven web architecture, play recordings instead of using text to

speech is more preferable, because of the quality of the voice that is natural

when using recording. However, it can be extremely expensive and require a

great deal of effort to record and appropriately concatenate audio files to play

whenever this information is required [6]. In this paper, we evaluate the

performance, maintainability, and development effort quality attributes with

regard to different architectures according to the processing of output speech.

In the first architecture, information recorded is played back to the user.

In the second, TTS processed on the server side, reads the information prompt

and then audio is sent to the user, and in the third, the information is transmitted

as text based that will be read by TTS on the end user. This evaluation is

conducted through experiment with respect to 3 prototypes that represent

above mentioned architectures. All three prototypes provide the weather

information for Blekinge cities in Sweden.

The rest of this paper is organized as follows;

87

The second section presents background, problem, motivations, implications

of solving the problem, and research question. The third section shows how

the research has been done and clarifies the research methodology. The fourth

section presents results and analysis based on the refined research questions.

The fifth Section discusses results and their contributions, and threats validity.

The sixth section draws conclusion and recommendations.

3.1.2 Background

3.1.2.1 Voice driven web

Voice driven web is a Voice XML based application that provides automated

interaction condition for callers to retrieve information from web through

telephone keypad or speech recognition [1]. It controls and responds to callers

by utilizing speech technologies. In fact, impressive growth of the World Wide

Web and new special customers’ needs to access information on the web,

required new services and fast development, hence, voice driven web

applications have been risen [6].

Currently, we are familiar with WWW and many people worldwide frequently

utilize various services provided over the internet. However, there is a large

number of people mostly in developing country who do not have access to the

internet and hence do not benefit from web services [1].

To cope with the above mentioned, alternatives are; IVR that provide

automatic and interactive call, spoken web known as World Wide Telecom

Web is one of the newest voice driven web technology (from 2005) that was

introduced by IBM. It aims to make accessible voice driven web services for

untouched population whom most of them have access to a landline or cell

phone. In addition, the spoken web is different from others IVR existing

approaches, in the sense that it simplifies voice application development to the

extent of becoming usable by non IT savvy [2]. In voice driven web, speech to

text plays an important role to render information into speech, additionally, the

implementation of rendering speech impacts on bandwidth consumption for

voice driven web. Therefore, this paper presents the evaluation of voice driven

web on architectural level with focus on three different ways of rendering

speech, either using recordings or TTS on the server side or TTS implemented

on the end user device.

88

3.1.2.2 Software Quality attributes and their evaluation techniques

Nowadays, one of the major issues in information system development is the

quality attributes. Rather than designing and implementing the correct

functionality in products, the main challenge is to satisfy the quality

requirements; such as performance, maintainability, reliability, flexibility and

usability [7]. The main aim of utilizing voice driven web is to provide

favorable condition for users to access the information from web in an easy

way through voice medium. In this paper, quality attributes are evaluated on

the level of the system architecture. In [8], system architecture is defined as a

part of the software development process that delineates the quality attributes

of a system and the environment.

The most relevant quality attributes in the context of this paper are

performance, maintainability, and development effort.

The research question that guides this paper is as follows;

How do architectures impact on the voice driven web quality with regards to

performance, maintainability, and development effort quality attributes?

This paper introduces a comparative study between three different

architectures with regards to speech rendering techniques. Specifically, we

consider 3 major quality attributes that are performance, maintainability, and

development effort. To reach this goal, it is necessary to use proper

measurements function as explained below;

 Performance is the degree to which a system or component accomplishes its

designated functions within given constraints, such as speed, accuracy, and

cost [9], [10].

In this paper, the performance is measured with focus on the cost per call based

on the payload size because we believe that the price paid to get voice service

is a highly considerable resource.

Maintainability is the ease with which a software or component can be

modified to correct faults, improve performance or other attributes, or adapt to

change environment [11]. IEEE and ISO/IEC 14764 added that in a common

view, maintenance is all about fixing bugs, they also proposed software

correction through analyze system fault, information and conduct root cause

analysis. Maintainability attribute has been found to be a critical attribute to

meet, as this averagely comprises 60 percent of software total cost [12].

89

Architecture based maintenance prediction method is a method to predict

software system maintainability in the early stage of development based on its

architecture [7]. The method defines a maintenance profile which is a set of

change scenarios representing perfective and adaptive maintenance tasks.

Perfective is enhancements to software which provide additional functionality

or enhance existing functionality whereas, adaptive is adapting the software to

changes in the environment, and changing the software to support future

maintenance or operation [13].

Using this method, other maintenance categories such as corrective are left

behind because they are too abstract to be relevant at architectural design stage

[14]. This method differs from other scenario based methods such as Scenario-

Based Architecture Analysis (SAAM), in that, it does not involve all

stakeholders, hence require less resource and time, instead it provides an

instrument to the software architects that allows them to repeatedly evaluate

architecture design. As all stakeholders are not involved in the assessment at

the stage of this work, we use architecture based maintenance prediction

method.

The development effort is used for a number of purposes; such as tradeoff and

risk analysis, software improvement, investment analysis, and time in hours

that has been taken for development. Originally developed by Howard Rubin

in the late 1970s as Quest (Quick Estimation System), it was subsequently

integrated into the Management and Computer Services (MACS) line of

products as ESTIMACS [Rubin 1983]. This method has about 5 sub estimation

methods; among those we choose system development effort estimation, this

model estimates development effort as total effort hours [15]. We choose to

estimate development effort in terms of hours like how much time can you

spend to complete a given task, because it is a format that can be used in agile

projects and by clients, and which leads to more optimistic effort estimates

compared with the traditional request that is like how much effort will it take

to complete a given task[16].

In this paper, we focus on time that the development has taken as the total

effort while assuming that the developer is familiar with the system

development.

90

3.1.2.3 Related Work

Bernhard Suhm in [17], conducted IVR usability engineering using guidelines

and analyses of end to end calls, the author only considered the usability

quality attribute. In [18], Akhil Mittal proposes different ideas that can be

followed to do manual testing and quality monitoring of IVR. The author gives

idea of what to consider while choosing between Manual Testing and

Automation Testing to test IVR applications, why automation is difficult in

testing IVR applications and use of automation tools in monitoring IVR

applications. In [19] and [20], authors also worked on usability assessment of

IVR. In [21], Hyeong et al worked on design and implementation of real time

news services using RSS and voiceXML, thereafter they evaluated users’

satisfaction by comparing typical RSS service scenario and voiceXML service

scenario. M bargein et al. studied architecture for voice enabled interface over

local wireless networks[22], where they propose a distributed architecture that

split TTS and ASR into two parts each of both. They propose that Natural

Language Processing (NLP) and grammar generator of TTS and ASR

respectively to be implemented on the server, whereas the speech synthesis

and speech recognition could be processed in the terminal. In this paper, we

measure 3 different quality attributes of voice driven web application at

architectural level; those are performance in terms of cost per call,

maintainability, and development effort.

3.1.3 Methodology

Experiment method is used to conduct this research; it is defined as research

method that is based on observed and measured phenomena. Experiments are

usually performed in development, evaluation, and problem solving research

[23].

The author continues to explain that, experiments are referred to as research-

in-the-small, since they are concerned with a limited scope and most often are

run in a laboratory setting. They are often highly controlled and hence also

occasionally referred to as controlled experiment. An example of a controlled

experiment in software engineering is, to compare different methods for

inspections. Montgomery, Siegel, Castellan, Robson (as cited by Wohlin et al.)

in their publication, said that for this type of study, methods for statistical

91

inference areapplied with the purpose of showing with statistical significance,

that one method is better than the other [17]. Hence, as we are evaluating three

different architectures, experiment method fits in to get the empirical

comparative results.

Three different architectures that are implemented as prototypes, are

subsequently detailed; the platform that is used is Voxeo Prophecy [24] for

experiment purpose, this platform offers free documented version that most

IVR and voice driven web application do not offer. We use the platform on

premises or locally hosted, additionally, we host the voice application on

voxeo developer portal from where we assign a local telephone number to our

voice driven application. In the end, we let users try the system; Figure 1 shows

the system use case for providing weather information; the user calls in, the

system replies with a greeting message and options to get the specific region

weather information. User has two input options to select the location;

either input digits on the phone keypad or saying the city name and then the

system replies accordingly.

3.1.3.1 Prototype 1

Prototype 1 is shown on Figure 2; it represents the architecture that uses

prerecording to render the information, the output is the recording that is

played back. ASR and DTMF tone recognizer, help for speech recognition of

the input.

The weather information is recorded in the following format (PCM, Mono, and

8 KHz) using audacity 2.0.1, the standard audio format for telephone. The

recordings are stored in audio repository, when a call comes in; it is received

by voice browser that transfers the request to vxml document that acts as voice

user interface which retrieve the recording from audio repository.

3.1.3.2 Prototype 2

Prototype 2, as shown on Figure3 is the architecture that consists of TTS as

well as automatic speech recognition (ASR) implemented on the server side.

When a call comes in, the request is recognized either by ASR or DTMF

according to the input options respectively. The request is received by voice

browser that transfers the request to vxml document1 that acts as voice user

1

 Vxml document term is used interchangeably with voice user interface as well as voice application.

92

interface which retrieves the correct weather information web feeds2 page with

the help of DOM parser, this is a JavaScript RSS parser. The vxml document

interacts with the web without the intervention of logic side server. The web

feeds are transferred to vxml documents as prompts and then they are read by

TTS. Hence the output audio is sent to end user.

3.1.3.3 Prototype 3

Prototype 3, as shown on Figure4, is the architecture that consists of TTS as

well as automatic speech recognition (ASR). However, TTS is installed on the

end user device instead of server side, as it is in the prototype 2. As it is shown

on the Figure4, Media Resource Control Protocol (MRCP) is embedded in the

body of Session Initiation Protocol (SIP) for the purpose of controlling Text

to Speech [25] that is held in the terminal. The weather information is

presented as text prompt from web feeds as the same process in prototype 2,

thereafter the prompts are sent in the form of text format that will be read by

TTS on end user device; hence only text data will be sent over network.

Figure 1. System Functionalities.

2

 Web feeds term is used interchangeably with RSS feeds.

93

Figure 2. Architecture where playing record is used.

Figure 3. Architecture where TTS/ASR implemented on the server side.

Figure 4. Architecture where TTS implemented on the user side.

In all 3 different prototypes, user inputs either voice or dual tone multi

frequency (DTMF) tone on the telephone keypad. Session Initiative Protocol

(SIP) is used to setup the session between user and the voice browser. Real

Time Transfer Protocol (RTP) is used to exchange input and output audio

stream between the end user and ASR/ TTS server. Media Resource Control

Protocol (MRCP) controls the transmission between the voice browser and

speech server.

94

3.1.3.4 Performance Evaluation

 The performance is evaluated in terms of the cost per call it is calculated in

(1).

 𝑐𝑜𝑠𝑡 =
𝑑𝑎𝑡𝑎

𝑝𝑎𝑦𝑙𝑜𝑎𝑑
∗

𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦

𝑡𝑖𝑚𝑒
=

𝑘𝑏
𝑘𝑏

𝑚𝑖𝑛⁄
∗

$

𝑚𝑖𝑛
 (1)

Where data is the amount of total data to be transmitted, to average this data;

for prototype 1 we measure the size of the recordings. For prototype 2, we take

the text prompt that would be spoken, and then we use the TTS to read it,

thereafter the output size of audio is the data to be transmitted. Whereas,

prototype 3, we consider the size of data in the text format, to be transmitted.

Payload is the amount of data traffic per unit of time; 64 kbps is the bandwidth

payload when using G 711. PCM codec [26], [27] the standard for telephone

codec that has the highest mean opinion score (MOS).

$/min, is the currency over time or the unit price per min.

Kb is data unit, simply kilobit unit.

3.1.3.5 Maintainability Evaluation

To evaluate the maintainability as mentioned in the section 2, prediction

method based on the architecture is used. Using the maintenance profile, the

architecture is evaluated using so-called scenario scripting and the expected

maintenance effort for each change scenario is also evaluated. Based on this

data, the required maintenance effort for a software system can be estimated

[7]. Table 1 shows the scenario changes. As prototype 1 plays the prerecorded

audio, we consider also the time taken to record the update as the additional

maintainability effort. To estimate this time, we assume that the reader has the

average speech reading of 125 words per minute as indicated in [28], that is

the average speed for a comprehensive speech.

http://www.yr.no/place/Sweden/Blekinge/Karlskrona/hour_by_hour_detailed

.html is one of the cases of the source webpages for a single city, updates of

web feeds or RSS of next 48 hours are done every hour with every hour that

consists of 27 words, and it means 27*48 that equals to 1296 words to be

recorded every hour. The estimated time of recording every hour is 1296/125

that equals to 10.3 minutes; if we consider three cities used in our case, this

time will be 31 minutes needed for every hour.

http://www.yr.no/place/Sweden/Blekinge/Karlskrona/hour_by_hour_detailed.html
http://www.yr.no/place/Sweden/Blekinge/Karlskrona/hour_by_hour_detailed.html

95

If we consider a period of one year of 8765 hours, the updating time is given

by K in (2);

𝑘 =
8765 ℎ𝑟𝑠

60 𝑚𝑖𝑛
∗ 31 𝑚𝑖𝑛 = 4529ℎ𝑟𝑠 (2)

Table 1 shows the maintenance profile i.e. a set of change scenarios

representing perfective and adaptive maintenance tasks, description and its

category. It also shows the weight of each scenario; the weight is assigned by

domain expert or by software architect and it represents the occurring

probability of the corresponding scenario. The total weight probability of all

scenarios equals to one.

Table 1. Maintenance Scenario Profile

Scenario Category Scenario description Weight

1 Usability

friendliness

Input modalities (change

from DTMF to speech).

0.25

2 Location forecast Add new city. 0.45

3 Information

Source

Change information

Source, i.e. form one

website to another.

(Connection between

voice user interface and

www).

0.10

4 Forecast period Change forecast period

from 5 day to 2 day or to

1 weather forecast.

0.20

Total 1.0

Table 2. Estimated Component Size

Component Size (LOC)

DTMF Grammar 15 LOC

ASR Grammar 15 LOC

Voice application 150 LOC

RSS feed Parser 20 LOC

96

Table 3. Impact Analysis per Scenario

Scenario #

=>affected

prototype#

Dirty Component Volume (LOC)

S1 =>P1,2,3 DTMF grammar (100%) + ASR Grammar

(100%)

(15+15)=30

S2=>P1 Voice application (5%) +DTMF Grammar

(100%) + ASR Grammar (100%)

(150*0.05)+15+

15=37.5

S2 =>P2,3 Voice application (5%)+DTMF Grammar +

ASR Grammar +RSS feed Parser

(150*0.05)+15+

15+20 =57.5

S3 =>P1 Voice application (20 %) 150*0.2=30

S3 =>P2,3 Voice application (5 %) + RSS feed Parser

(100%)

(150*0.05)+20

=27.5

S4 =>P1 Voice application (20 %) 150*0.2=30

S4 =>P2,3 RSS feed Parser (100%) 20

Table 2 shows estimated system component size, the size given is only for

three cities used; system components size is measured in lines of code (LOC)

and it is said to be estimated because it is a prototype, i.e. incomplete version

of the system. The prototypes are coded by one person using Extensible

Markup Language (XML 1.0) for grammar and for encoding documents in a

format that is both human and machine readable, Voice Extensible Markup

Language (VXML 2.1) for specifying interactive voice dialogues between a

human and a computer, and JavaScript for grabbing data from web. The web

source is written in XML 1.0 with RSS 2.0, it can be found on;

http://www.yr.no/place/Sweden/Blekinge/Karlskrona/rss.xml.

Table 3 presents the scenario scripting, i.e. change impact analysis; it is done

by investigating the required changes to the components of the application

architecture [29]. The percentage number indicates how much the component

is affected by a scenario. For example, scenario 3 (S3) affects prototypes 2 and

3 with change of about 5 % of the voice application volume and 100% of RSS

http://en.wikipedia.org/wiki/Human-readable_medium
http://en.wikipedia.org/wiki/Machine-readable_data

97

feed parser volume. Finally, the average maintenance is calculated in (3) using

the results obtained from Table 1, 2, and 3.

() (,) .
1 1

k kcs
M P P S V S Ce n n n m

m

(3)

Where P Sn is the probability weight of a scenario n

s
k : Number of scenarios

n : Scenario number

kc : Number of components in architecture

 , V S Cn m : Volume of affected component m in scenario n

M Pe n : Maintainability effort for prototype Pn

3.1.3.6 Development effort Evaluation

In this paper, we focus on development effort in terms of time that the

development has taken. The time has been measured using a time tracker tool

called baralga 1.7, this tool allows to keep track of the time spent working on

different prototypes. It has the option of setting different tasks that compose a

prototype; using the above mentioned tool, we recorded the time while

working on each part, specifically design, coding, and testing of prototype

development.

3.1.4 Results and Analysis

3.1.4.1 Performance

Using (1), we only calculate the cost for the outbound data, inbound data which

is about information request; is same for all prototypes hence it does not make

any difference between all prototypes. Let’s consider the cost of one single call

case for each of the prototypes. Suppose that the price is 0.22$ per minute per

data transfer in real time, either voice data or text data as it is usually for VoIP

charges. With G.711 that takes 3840 kb/min, prototypes 1, 2, 3 outbound data

size equals to 10813 kb, 6904 kb, and 5.8 kb respectively for a single call as

explained in section 3.1.3.4 above.

98

Prototype 1:

𝑐𝑜𝑠𝑡 =
10813.44 𝑘𝑏
3840 𝑘𝑏

𝑚𝑖𝑛⁄
∗

0.22$

𝑚𝑖𝑛
= 0.62$ (4)

Prototype2:

𝑐𝑜𝑠𝑡 =
6904 𝑘𝑏

3840 𝑘𝑏
𝑚𝑖𝑛⁄

∗
0.22$

𝑚𝑖𝑛
= 0.395$ (5)

Prototype 3:

𝑐𝑜𝑠𝑡 =
5.8 𝑘𝑏

3840 𝑘𝑏
𝑚𝑖𝑛⁄

∗
0.22$

𝑚𝑖𝑛
= 0.00033$ (6)

3.1.4.2 Maintainability

The predicted maintainability effort is calculated using the (3), we assume that

the maintenance has a perfective median productivity, and this is when the

latter is reported as 1.7 LOC/day [13] as cited by different authors [7], [30–

32]. 1.7 LOC/ day are equivalent to 0.2 LOC per hour assuming that we work

8 hours per day. Maintenance equation for prototype 1 is given below in (7);

𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒1 = (0.25 ∗ 30) + (0.45 ∗ 37.5) + (0.10 ∗ 30) + (0.20 ∗ 30)

 = 33.375 𝐿𝑂𝐶 𝑝𝑒𝑟 𝑐ℎ𝑎𝑛𝑔𝑒 (7)

Suppose we have 10 maintenance tasks for a predicted period of one year;

𝑀 = 33.375 𝐿𝑂𝐶 ∗ 10 = 333.75𝐿𝑂𝐶 (8)

M in (8) is the total lines of code to be maintained for one year period.

Finally, the maintainability of prototype 1 in terms of time for one year period

is equivalent to T as given in (9);

𝑇 =
333.75 𝐿𝑂𝐶
0.2𝐿𝑂𝐶

ℎ𝑟⁄
= 1669ℎ𝑟𝑠 (9)

Additionally as mentioned in (2), the recording time will be an added

maintaining time.

99

The maintainability effort for prototype 2 is similar to prototype 3 and as given

in (10).

𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒 2 𝑎𝑛𝑑 3 = (0.25 ∗ 30) + (0.45 ∗ 57.5) + (0.10 ∗ 27.5) + (0.20 ∗ 20)

 = 40.125 𝐿𝑂𝐶 𝑝𝑒𝑟 𝑐ℎ𝑎𝑛𝑔𝑒 (10)

Suppose we have 10 maintenance tasks for a predicted period of one year, 10

changes are given by M below;

𝑀 = 40.125 𝐿𝑂𝐶 ∗ 10 = 401.25 𝐿𝑂𝐶 (11)

And the final maintainability effort in terms of time T is;

𝑇 =
401.25 𝐿𝑂𝐶
0.2 𝐿𝑂𝐶

ℎ𝑟⁄
= 2006.25 ℎ𝑟𝑠 (12)

3.1.5 Development Effort

100

Figure 5. Development Time Comparison.

Table 4. Results Summary

Quality Factor Prototype 1 Prototype 2 Prototype 3

Performance (in terms

of cost)

0.62$ 0. 395$ 0.00033$

Maintainability 1669 hrs. [Extra

recording time:

4526 hrs.]

2006 hrs. 2004 hrs.

Development Time 29 hrs. 88hrs 108 hrs.

Table 4 shows the results summary of the evaluation; the results are based on

the architecture, i.e. these results will have the same trends on different

applications that use similar architecture. Moreover, the values in the table 4

will increasingly or decreasingly change according to how big the application

is; and if the same architecture is used, the ratio of quality factor values will

hold as the example we have explained in this paper e.g. the application could

be weather information, football news, etc.

101

3.1.5 Discussions

In terms of cost effectiveness, the performance attribute results as shown on

Table 4, is evaluated for 3 different prototypes. The cost for inbound data is

same for all prototypes, to mean that only outbound can make the difference.

Prototype 3 is the cheapest due to transmit text data which is always of small

size comparing to voice data. Though prototype 2 transmits voice data as well

as prototype 1, prototype 2 outperforms prototype 1 because TTS audio output

is faster than the recordings due to nature of human voice, prerecorded speech

are bigger in size.

The costs given are just for one case; they may go higher or lower according

to the data size, but always with the same proportional trends as the above

explained case.

The maintainability effort prediction as shown on Table 4 shows the adaptive

and perfective of the prototypes. Prototype 1 has the lowest coding time,

nevertheless, it is the hardest to adapt, because recordings must be done at

each update; that is very hard and maybe impossible for very dynamic and

live system such as RSS that gets updated very frequently, hence effective for

static information system. In our case, the updates are done every hour hence,

we get additional time for adaptive weather forecast system as show in (2);

prototype 1 approximately requires three times effort needed for prototypes 2

or 3.

In the same perspective of lines of code (LOC);

Prototypes 2 and 3 have the same effort because both, they gets updated

information from http://www.yr.no/place/Sweden/Blekinge. For testing,

prototype 2 is accessed on + 46 455 68 06 05 where hosted on voxeo server.

Prototype 1 is also accessed on + 46 455 68 06 02.

The development time as plotted on Figure 5 and summarized in Table 4

shows that, prototype 1has the least time for development, this is due to coding

time that is shorter comparing to other two prototypes. Whereas for prototype

2 and 3, extra coding time is spent on coding the speech recognition grammar,

text to speech prompt, DOM parser and voice user interface which is more

complex in prototype 2 and 3 than prototype 1.

To accurately use proper measurements of quality attributes; we use the

measurements that have been recommended or used by a wide range of

researchers with similar or approximately same results. The development time

http://www.yr.no/place/Sweden/Blekinge

102

given on Figure 5 shows only the time that design, coding and testing have

taken. In this paper, the prototype 3 that implements TTS on the end user

device, is limited to end user device that support SIP, RTP and MRCP

protocols, it means computer, smart client such as PDA, smart phone, in our

case we used computer as the end user device. Moreover, to avoid speaking

speed and accuracy issue, prerecording was done by an English native speaker

person.

3.1.6 Conclusions

This paper presented the evaluation of voice driven web on the level of its

architecture and with regards to performance, maintainability, and

development effort quality attributes. The results show that the output speech

rendering impact on the above quality attributes differently. Depending on the

requirements of the system, prototype 1 can be used for example, in a system

that does not need to get updated very often and requires a natural human

voice, however, the cost per call is higher than the other prototypes. When

the system requires cheap cost but limited to smart end users' device then

prototype 3 is the right choice. And when the system requires to operating on

all types of telephone; prototype 2 is preferred.

The optimal choice of system architecture will depend on the quality

requirements of the final system. Our study quantified the implications and

trade-offs of three different architectures for a voice driven web application;

hence the later can help the system architects when developing voice driven

applications. To enhance this research, the coming work is to apply voice

driven web in different field as we are heading ubiquitous network society.

Additionally, improve prototype 3 by reducing the needs of speech

technologies such as power consumption and memory constraints which are

critical in mobile telephone. Moreover, usability attribute will be evaluated in

future work. The drawbacks of maintainability evaluation method used in this

paper, is to get accurate maintenance profile, to alleviate this, scenario should

be given likelihood weight by different stakeholders. Development effort

estimation method also may be influenced by the skills of the developer as

well as the resources such as equipment, etc. In order to get a much closer

result to reality, many developers would code the same work in parallel while

tracking the time used by each and at the end, the average time will be

103

calculated. This method will be very costly; however, the results could be

more accurate.

References

[1] D. Amyot and R. Simoes, “Combining VoiceXML with CCXML - A

comparative study,” in 2007 4th Annual IEEE Consumer Communications and

Networking Conference, CCNC 2007, January 11, 2007 - January 13, 2007,

2007, pp. 342–346.

[2] A. Kumar, S. K. Agarwal, and P. Manwani, “The spoken web application

framework - User generated content and service creation through low-end

mobiles,” in International Cross Disciplinary Conference on Web

Accessibility, W4A 2010, April 26, 2010 - April 27, 2010, 2010, p. ACM’s

Special Interest Group on Accessible Computing; The Mozilla Foundation;

Zakon Group; Microsoft; IBM.

[3] S. K. Agarwal, A. Jain, A. Kumar, and N. Rajput, “The World Wide Telecom

Web browser,” in 1st ACM Symposium on Computing for Development, DEV

2010, December 17, 2010 - December 18, 2010, 2010.

[4] D. Prylipko, D. Schnelle-Walka, S. Lord, and A. Wendemuth, “Zanzibar

OpenIVR: An open-source framework for development of spoken dialog

systems,” in 14th International Conference on Text, Speech and Dialogue, TSD

2011, September 1, 2011 - September 5, 2011, 2011, vol. 6836 LNAI, pp. 372–

379.

[5] A. A. Atayero, C. K. Ayo, I.-O. Nicholas, and A. Ambrose, “Implementation

of ‘ASR4CRM’: An automated speech-enabled customer care service system,”

in IEEE EUROCON 2009, EUROCON 2009, May 18, 2009 - May 23, 2009,

2009, pp. 1712–1715.

[6] J. R. Lewis, P. M. Commarford, and C. Kotan, “Web-based comparison of two

styles of auditory presentation: All tts versus rapidly mixed tts and recordings,”

in 50th Annual Meeting of the Human Factors and Ergonomics Society, HFES

2006, October 16, 2006 - October 20, 2006, 2006, pp. 723–727.

[7] P. Bengtsson and J. Bosch, “Architecture level prediction of software

maintenance,” in Software Maintenance and Reengineering, 1999. Proceedings

of the Third European Conference on, 1999, pp. 139–147.

[8] L. Bass, P. Clements, and R. Kazman, Software architecture in practice.

Addison-Wesley Professional, 2003.

104

[9] A. Neely, M. Gregory, and K. Platts, “Performance measurement system

design: a literature review and research agenda,” International Journal of

Operations & Production Management, vol. 15, no. 4, pp. 80–116, 1995.

[10] H. Y. Zhang, J. Homer, G. Einicke, K. Kubik, and others, “Performance

comparison and analysis of voice communication over ad hoc network,” in

Proceedings of the 1st Australian Conference on Wireless Broadband and Ultra

Wideband Communications (AusWireless 06), 2006.

[11] J. Radatz, A. Geraci, and F. Katki, “IEEE standard glossary of software

engineering terminology,” IEEE Std, vol. 610121990, p. 121990, 1990.

[12] R. L. Glass, “Frequently forgotten fundamental facts about software

engineering,” Software, IEEE, vol. 18, no. 3, pp. 112–111, 2001.

[13] J. E. Henry and J. P. Cain, “A quantitative comparison of perfective and

corrective software maintenance,” Journal of Software Maintenance: Research

and Practice, vol. 9, no. 5, pp. 281–97, Oct. 1997.

[14] S. Anwar, M. Ramzan, A. Rauf, M. A. Jaffar, and A. A. Shahid, “A novel

approach for architecture based software maintenance prediction,”

International Journal of Innovative Computing, Information & Control, vol. 7,

no. 6, pp. 3193–208, Jun. 2011.

[15] B. Boehm, C. Abts, and S. Chulani, “Software development cost estimation

approaches - a survey,” Annals of Software Engineering, vol. 10, pp. 177–205,

2000.

[16] M. Jørgensen and S. Grimstad, “Software Development Effort Estimation—

Demystifying and Improving Expert Estimation,” Simula Research

Laboratory, pp. 381–403, 2010.

[17] B. Suhm, “IVR Usability Engineering using Guidelines and Analyses of end-

to-end calls,” Human factors and voice interactive systems, pp. 1–41, 2008.

[18] A. Mittal, “Manual Testing and Quality Monitoring of Interactive Voice

Response (IVR) applications,” International Journal of Computer Applications,

vol. 4, no. 6, pp. 30–36, Jul. 2010.

[19] T. Ndwe, E. Barnard, R. Koen, and B. McAlister, “Efficiency measurements

in IVR systems for oral users: consequences of differences in educational

levels,” in Proceedings of the South African Institute of Computer Scientists

and Information Technologists Conference on Knowledge, Innovation and

Leadership in a Diverse, Multidisciplinary Environment, 2011, pp. 171–176.

[20] M. Greeff, L. Coetzee, and M. Pistorius, “Usability evaluation of the South

African National Accessibility Portal interactive voice response system,” in

105

Proceedings of the 2008 annual research conference of the South African

Institute of Computer Scientists and Information Technologists on IT research

in developing countries: riding the wave of technology, 2008, pp. 76–85.

[21] H. J. Kwon, J. H. Shin, and K. S. Hong, “Design and implementation of

enhanced real time news service using RSS and VoiceXML,” Human Interface

and the Management of Information. Methods, Techniques and Tools in

Information Design, pp. 677–686, 2007.

[22] M. Bagein, O. Pietquin, C. Ris, and G. Wilfart, “An Architecture for Voice-

Enabled Interfaces over Local Wireless Networks,” in Proceedings of the 7th

World Multiconference on Systemics, Cybernetics and Informatics (SCI 2003),

Orlando,(USA, FL), 2003.

[23] C. Wohlin, P. Runeson, M. Host, C. Ohlsson, B. Regnell, and A. Wesslén,

“Experimentation in software engineering: an introduction,” 2000.

[24] “VoiceXML and CCXML Developer Site.”, www.evolution.voxeo.com.

[25] D. R. <drb@relay.prime.com>, “Using Media Resource Control Protocol

over SIP.” [Online]. Available: http://tools.ietf.org/html/draft-robinson-mrcp-

sip-00. [Accessed: 16-Oct-2012].

[26] J. Walker and J. Hicks, “Planning for VoIP,” NetIQ Corporation white paper,

December, 2002.

[27] A. H. Rabassa, “Simulation Platform for the Planning and Design of Networks

Carrying VoIP Traffic,” Carleton University, 2010.

[28] D. C. Rubin, “51 properties of 125 words: A unit analysis of verbal behavior,”

Journal of Verbal Learning and Verbal Behavior, vol. 19, no. 6, pp. 736–755,

1980.

[29] K. H. Bennett and V. T. Rajlich, “Software maintenance and evolution: a

roadmap,” in Proceedings of the Conference on the Future of Software

Engineering, 2000, pp. 73–87.

[30] J. Li, T. St\aalhane, J. M. W. Kristiansen, and R. Conradi, “Cost drivers of

software corrective maintenance: An empirical study in two companies,” in

Software Maintenance (ICSM), 2010 IEEE International Conference on, 2010,

pp. 1–8.

[31] T. Imai, Y. Kataoka, and T. Fukaya, “Evaluating software maintenance cost

using functional redundancy metrics,” in Computer Software and Applications

Conference, 2002. COMPSAC 2002. Proceedings. 26th Annual International,

2002, pp. 299–306.

106

[32] B. Roy and T. C. N. Graham, “Methods for evaluating software architecture:

A survey,” School of Computing TR, vol. 545, p. 82, 2008.

107

Chapter Three

Section 2
Published as C. Niyizamwiyitira and L. Lundberg, “Performance evaluation

and prediction of open source speech engine on multicore processors,” in

Proceedings of the Fifth International Conference on Management of

Emergent Digital EcoSystems, 2013, pp. 345–352.

108

Performance evaluation and prediction of

open source speech engine on multicore

processors

Abstract

This paper quantifies the performance of the core part of voice driven web

using free and open source speech engine; the speech engine which is very

high computation demanding, it consists of Automatic Speech Recognition

(ASR) and Text To Speech (TTS). Two open source programs, Sphinx-4 and

FreeTTS-1.2.2 are used for ASR and TTS respectively. These two programs

are executed on 2 different hardware multicore processors with 4

hyperthreaded cores, and 8 cores respectively. The response time with respect

to the load variance and the number of cores is measured and predicted using

a linear regression model.

The results show that, the response time is linear with respect to the input

length, this property can be used to directly predict the response for any input

length. Moreover, though the response time and the speed up increases as the

number of cores increases, the regression coefficients and number of threads

reveal that ASR benefits from multicore. The speedup factor for ASR is 1.56

for 8 cores. However for FreeTTS, though being sequential the speed up from

the program itself is insignificant, there is about 1. 43 speedup for 8 cores,

that comes from the system’s contribution. Our findings show that the

generalization of the results for multicore processor does not apply to

hyperthreading. This paper presents the investigation that is useful for

educators, researchers, and applications’ developer in voice based

applications ‘domain.

Keywords— Speech recognition, Text to speech, Voice driven web,

Multicore performance, Performance prediction, linear regression, Open

Source.

109

3.2.1 Introduction

Nowadays voice based-application are emerging very fast, there exists many

voice-based application from different vendors that are not open to

researchers. Therefore it becomes difficult to know what is behind scene. For

that reason, we investigate free and open source voice engines in order to

better understand voice application’s phenomenon. Generally, there are three

main architectures for Voice driven web; the first architecture uses

prerecording to render the information, and the server plays back the

recordings. The interaction between server and terminal is done through Dual

Tone Multi Frequency (DTMF) and/or ASR (Automatic Speech

Recognition). This is a user friendly approach since one uses recordings from

humans. However, this architecture is not suitable when the information is

updated frequently due to almost impossible and tedious recording work [1].

The second architecture consists of ASR as well as TTS (Text To Speech) that

are implemented on the server side. Where, the server performs all speech

processing; this server-based processing permits fast processing and

consequently fast response time. This architecture is scalable because it

simplifies the introduction of new components such as hardware resources,

adding new services, and applying load balancing thus putting fewer

requirements on the terminals

The third architecture performs all of the ASR and TTS processing on the

terminal instead of server side and the traffic between the server and the

terminal are only text messages over the network instead of voice as it is for

the previous architectures. This architecture is limited to smart phones that

can handle ASR and TTS, and it requires installations of ASR and TTS on the

terminal. ASR and TTS are by nature computational demanding; hence when

they are implemented on the handheld device the performance decreases due

to limited computational capability of the latter. The architecture tradeoffs

show that the architecture that implements ASR and TTS on the server side

has better performance [2].

Voice driven web should provide real-time communication and handle many

client requests simultaneously. Therefore, it requires huge processing

resources. For this reason, the second architecture which is server-based

speech processing has been found promising if it is implemented in an

110

appropriate server environment.

The speech engine is highly computational demanding, and multicore

processors are necessary. As far as this paper is concerned, the performance

of speech engine is studied where ASR and TTS are executed on multicore

processors with shared memory. In this paper, the performance metric is the

response time of ASR and TTS. We will measure the response time on two

different multicore processors. Based on these measurements we will build a

performance prediction model. The predicted response time as a function of

the input load length is derived according to linear regression model; the

response time as a function of the number of cores is also investigated. Voice

driven web like any other voice application can be developed using open

source ASR and TTS. In this paper, we use free and open source, Sphinx-4

and FreeTTS-1.2.2. The rest of the paper is structured as follows; the second

section presents background, motivations, implications of this study, and

related work. The third section clarifies the research methodology. The fourth

section presents results. The fifth section discusses results and their

contributions; and study validity. The sixth section draws conclusion and

provides recommendations.

3.2.2 Background

3.2.2.1 Concept Overview

Voice driven web is a Voice XML based application that provides automated

interaction condition for callers to retrieve information from web through

telephone keypad or speech recognition. The architecture of voice driven web

has three main parts; (1) a voice browser that interact directly with the

terminal, (2) a speech technology server, i.e., ASR that recognize the input

speech from the end-user and TTS that reads the content of the web in

response to the end-user request, and (3) the back end which is composed of

a web proxy and the World Wide Web (www). ASR and TTS are the most

computationally demanding parts in voice driven web. Hence, implementing

this part on powerful processing hardware would improve the overall response

time which is a crucial factor for the quality of voice driven web systems.

In 2008, there existed two and four cores machines, some experts believe that

by 2017 embedded processors could support 4,096 cores, server CPUs might

111

have 512 cores and desktop chips could use 128 cores [5].To select the

appropriate hardware architecture, performance evaluation of different

candidates is vital. In this paper, the performance of ASR/TTS on multicore

processor architectures is evaluated. We also attempt to predict the

performance for a large number of cores. The performance is evaluated as the

response time. The response time for ASR is the time taken to recognize a

certain audio input until we get the text output, whereas for TTS, it is the time

taken to get audio output from a certain text input.

In voice driven web, the response time is influenced by network/

communication delays, and speech processing delays. In this paper, we focus

on evaluating speech processing. If we assume that the network is good

enough to carry the voice, the response time of the voice driven web can be

estimated based on the ASR and TTS response times. We use open source

speech recognition named Sphinx-4 [6]. It is a state-of-the-art continuous-

speech, and speaker-independent systems based on hidden Markov (HMM)

decoded using the frame synchronous Viterbi algorithm [7]. It has also N-

gram language models. Sphinx-4 is distributed under an academic BSD-style

license. The code and binaries are free for commercial and non-commercial

use. We also use open source text to speech named FreeTTS. It is based on

CMU’s Flite, which is derived from the Festival and the FestVox project, from

Carnegie Mellon University [3]. FreeTTS is also released under a BSD

license. The ideas behind choosing Sphinx-4 and FreeTTS to conduct this

study are; (1) portability because they are portable entirely written in Java and

are flexible, adjustable to the extent that they can be edited and configured to

fit the user requirements, (2) the software is free and easily available. The

investigation of the speech engine as open source on multicore processor helps

the researchers and developers to adapt to new hardware technology.

3.2.2.2 Related work

In [8], the authors studied fine-grained application concurrency in a HMM-

based inference engine for large vocabulary continuous speech recognition

(LVCSR). They measured the performance based on Intel core i-7 and

GTX280 NVIDIA processors. Sphinx-4 that also uses HMM and Viterbi

algorithm is studied.

In [9], Yoshizawa et al. proposed a scalable architecture for real-time speech

recognizers based on word hidden Markov models (HMMs). This architecture

architecture effectively uses parallel computations on the word HMM

112

structure.

A performance model for multicore environments has been studied in [10]

where Chen et al. presented an online technique for estimating the

performance and the power consumption of interacting processes in multi-

programmed and multicore environments. Willie et al. compared the

performance of FreeTTS which is implemented in Java, and C. They used a

dual core processor for their experimentation. The authors found that FreeTTS

that is developed in Java performs better than in C in terms of fast response

time and algorithm modifications becomes easier [11]. The same authors

studied the performance of Sphinx-4, they explained the framework and

properties of Sphinx-4, and they presented preliminary performance measures

on a dual core processor [6]. In [12], Adve came up with a simple

deterministic model for parallel program performance prediction, using

deterministic values to represent mean task times including communication.

This model can be used to quantify and understand program performance, and

to predict the impact of system and program changes. In [13], the authors

studied how to predict the performance of multicore on Solaris containers,

using linear regression. They come up with optimistic results where the

correlation between response time and the number of CPUs and number of

threads is linear in logarithmic space.

Across literature, the performance prediction of ASR and TTS for multicore

processor with high number of cores has not been studied. Sphinx-4 and

FreeTTS were particularly studied on dual core processor. Whereas in this

paper, we study the performance of those on dual quad core and Intel core i-

7. We provide performance evaluation of the speech engine, i.e., ASR and

TTS. We measure the response time, the speedup, the CPU utilization, and

number of threads. The measurement is conducted on different number of

cores are done on different hardware. Moreover, the response time as a

function of input load is measured and prediction is derived based on linear

regression.

3.2.3 Methodology

3.2.3.1 Experiment setup

In the experiment, we use CMU Sphinx-4 automatic speech recognition,

which is an open source speech recognizer developed by Carnegie Melon

113

University (CMU) [14]. Sphinx-4 has two packages, the bin which is enough

for creating application, and the source which is modifiable and containing

the test part to fix bugs after modifying the code. The packages are

downloadable under sourceforge repository, statistics shows that 3285

downloads are done until 23rd of August 2013.

We also use FreeTTS 1.2.2 which is also an open source text to speech which

is built on CMU’s flite, FreeTTS has three downloadable packages which are

bin, source and test [4] [12]. The bin package is sufficient for creating

application, but if you like to modify code then source is the correct package

to use. If it happens to make change to code, test package will help to fix bugs

and regression that might introduced during changes. Downloads under

source forge repository show that 438 downloads have been done until 26th

April, 2013. The statistics for both FreeTTS and Sphinx-4 show how much

these open sources are popular in the speech application domain.

The following equipment is used in this experiment: (1) Intel Core i-7-2620M

/ 2.7 GHz, 8GB RAM, dual-core with hyperthreading of two threads per core,

i.e., 4 logical cores. It runs the Ubuntu operating system 12.10 LTS, 32 bits.

(2) Intel(R) Xeon(R) E5335 @ 2.00GHz dual quad core, 16 GB RAM, with 8

cores without hyperthreading, which runs Ubuntu 12.10 LTS, 64 bits.

We isolated the ASR/TTS servers and measured the response time for

different loads. The CPU utilization and the number of threads are also

measured. In this experiment, the input to the ASR is a continuous audio file

with fifteen spoken digits during 8 seconds; the utterances are separated by

silences [15]. This audio has similar characteristics as a typical speech from a

user; this audio is recorded in a native speaker voice. The text that is used in

this experiment, is the first five chapters of Alice's Adventures in Wonderland

by Lewis Carroll [16]. It is a text of 70 minutes. We have chosen this text,

because it was first used by the pioneer of FreeTTS for testing.

The initial length for FreeTTS is the first five chapters of Alice Adventure, it

is about 10900 words. For a matter of varying the length of input load, we

linearly concatenated up to 9 times the initial. The highest load is 10900*9=

98100 words.

The initial audio load for ASR is 80 seconds audio length. We vary the load

by concatenating initial load until 9 times, i.e., the highest load is 80*9= 720

seconds. At every increase of load we run it 100 times in order to measure the

114

average response time.

We use the Jvisualvm profiling tool for examining CPUs utilization, memory

consumption and thread of the application [17].

3.2.3.2 ASR and TTS architecture

Figure 1 shows ASR recognition that is used in the experiment.

ASR main parts are feature extractor, hidden Markov and Viterbi decoding.

Viterbi decoding is the most computation demanding part. The decoding uses

the frame synchronous Viterbi algorithm, which is described in Figure 2. An

example of this decoding is described in Figure 3, where the word “one” is

decoded.

In Figure 3, for each state with more than one connection, Viterbi scores the

state with the probability of the most probable connection. Then it keeps a

backpointer to which state it is connected to. For example at time t=3, 0.06 is

selected as the maximum probability the rest is pruned away. The pruning

process follow beamwidth threshold, and the garbage collector helps in that,

i.e., the pruner removes the terminal token and identifies the token and any

unshared tokens that are unused. Then the garbage collector reclaims the

associated memory [6]. Threads are used to score each state probability at

each time frame. Each core executes a thread. The size of the thread pool for

scoring states is set dynamically according to the number of available cores.

The processing of TTS is done in sequence with the following main steps; text

normalization, linguistic analysis, lexical analysis, prosody generation,

speech synthesis [11].

115

Figure 1. Architecture of Speech recognition processing steps.

Figure 2. Connected word Viterbi Search.

116

Figure 3. Example of Frame synchronous Viterbi decoding for a word

“One”.

3.2.3.3 Linear regression Performance Modeling

As described in the previous section, the maximum number of cores

considered in the experiment is 8 cores. Based on the experimental results, we

want to predict the performance of ASR/TTS for higher input load and higher

number of cores. To do that, we have to apply a fitting function to the

experimental results and extend the pattern for further input value. The linear

regression is a well-known simple fitting function [18]. Therefore we use

linear regression to extrapolate the experimental results. Linear regression fits

a straight line through data to determine the slope and intercept with the y-

axis. Using the linear regression method we get the least square regression line

(LSRL) that is given in Equation 1 [19]. In the context of this paper, LSRL

helps us to predict the response time with respect to input length.

()f x a b xi i i (1)

117

In this case, f(x) is a dependent variable that represents the response time that

is predicted based on the independent variable x which represents the input

length; a is a regression constant and b is the regression coefficient and it is

also the average change in the dependent variable for a unit change in the

independent variable. The index i represents the number of cores.

 Let ˆ()f x y , then Equation 1 becomes Equation 2.

ŷ a b xi i (2)

[()()]

2
[()]

x x y yi iai
x xi

 (3)

(*)b y a xi i (4)

Here, yi is the measured response time on i cores.

After finding the regression equation, the coefficient of determination that

helps to check how well this equation fits the data is given in Equation 5. The

coefficient of determination R2 ranges from 0 to 1; as its value increases as the

dependent variable can be better predictable from the independent variable.

R2 = 1 represents perfect correlation between the variables in question, while

R2 = 0 represents no correlation [19].
2 21{() * [()()] / (*)}R x x y yn x yi i (5)

Besides R2, the Mean Squared Error (MSE) is also used to measure the

precision between measured and predicted values based on regression method.

When the measured and predicted values are more strongly correlated, MSE

tends to approach zero.
1 2

ˆ()
1

n
MSE y yi i

in

 (6)

Where n is the number of cores, ŷ is the predicted response time.

118

Figure 4. Performance prediction model.

3.2.4 Results

Figure 4 (i) shows an overview of the model; the inputs are different load

length, number of cores, and the ASR/TTS case, the output from the model is

the predicted response time. Equation 2 represents the output; and it is

composed of two components a and bx that contribute to the response time

and the speed. The response time is predicted in two dimensions. Figure 4 (ii)

shows a matrix which would contain the response time in two dimensions;

vertically, we have the response time as a function of the input length, and

horizontally we have the response time as a function of the number of cores.

Scenario 1 is the experiment on Intel xeon dual quadcore. Tables 1 and 2 show

the regression parameters values for ASR and TTS respectively. Figures 5(i,

ii) show the response time for ASR and TTS, it is the time that it takes to get

the audio output from a text. The response time for ASR, is the time that it

takes to get the text as output of an audio file. The figures show also the linear

regression fitting line with respect to measured data; these lines are the

predicted response times. Scenario 2 uses the same procedure as Scenario 1

on Intel core i-7. Tables 3 and 4 show the regression parameters’ values.

Figures 5(iii, iv) show the response time and the linear regression fitting line

for ASR and TTS respectively. The regressions parameters’ values are shown

in Tables 1, 2, 3, and 4.

119

Table 1. Regression parameter’s values for ASR on 8 CPU

 1C 2C 3C 4C 5C 6C 7C 8C

A 7.77 5.56 4.93 4.80 4.71 4.68 4.50 4.50

B 1.28 1.18 1.10 0.97 1.06 1.08 0.92 0.83

R2 0.98 0.99 0.98 0.99 0.98 0.98 0.99 0.99

MSE 0.10 0.02 0.02 0.01 0.10 0.10 0.11 0.10

Table 2. Regression parameter’s values for TTS on 8 CPU

 1C 2C 3C 4C 5C 6C 7C 8C

A 4.29 2.48 1.68 1.68 1.49 1.38 1.42 1.33

B 4.54 3.62 3.47 3.47 3.39 3.40 3.38 3.33

R2 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

MSE 0.14 0.17 0.09 0.11 0.09 0.17 0.19 0.17

Table 3. Regression of TTS on the 4 cores CPU

 1C 2C 3C 4C

A 3.37 1.14 1.76 1.16

B 3.53 2.82 2.81 2.80

R2 0.99 0.99 0.99 0.99

MSE 0.14 0.11 0.32 0.21

Table 4. Regression on ASR on the 4 cores CPU

 1C 2C 3C 4C

A 3.65 3.62 2.35 2.35

B 0.63 0.71 1.76 1.66

R2 0.96 0.98 0.95 0.95

MSE 0.07 0.02 0.01 0.01

Figure 6 and 7 are the results from JvisualVM for the ASR and TTS

120

respectively. Figure 6 shows an example of typical ASR parallel scoring

threads when 4 cores are enabled. We can see that the self-time of the

concurrent method, i.e., java concurrent .Future Task which is composed of 4

parallel ThreadedAcousticScorer threads consume 100% of the CPU time that

is used to complete the total work. Figure 7 shows a TTS example of threads’

repartition according to CPU time consumption. The main thread handles all

the work in a sequential manner. Under hot spot method, we see that, the

IdentityHashMap method takes the highest percentage of CPU time.

Initially, when we run on a single core, we have 11 threads in TTS, 10 of those

are for java virtual machine (JVM) functionality, i.e., they are not part of TTS

program. Attach Listener, Thread-1 for audio output, Service Thread, C2

CompilerThread1, C2 CompilerThread0, Signal Dispatcher, Finalizer,

Reference Handler, VM thread, VM periodic thread. Those threads do not

consume significant CPU time. Another thread is the main thread and it is the

actual thread of TTS.

It sequentially executes the program code. As the number of cores increase,

we get additional threads that run in parallel; those are garbage collectors

which are inherently parallel. Garbage collector contributes very little to the

speed up of the program. The total threads number follows the Equation 7.

(#)1x x cpusi i (7)

Where x is the total number of thread and i is CPUs number

Initially, ASR runs on a single core with 9 threads for java virtual machine

(JVM) functionality; Attach Listener, Service Thread , C2 CompilerThread1,

C2 CompilerThread0, Signal Dispatcher, Finalizer, Reference Handler, VM

thread, VM periodic thread. and the main thread that execute the whole

functions of ASR. The main thread executes sequentially for a single core.

However, as the number of cores increases; the total number of threads

increases according to Equation 8. There is one scoring thread increase and

one thread garbage collector increase per one core increase. For example; on

4 cores we have 10+8=18 threads. Whereas on 8 cores we have 10+16=26.

2(#)
1

x x cpusi i

 (8)

Where x is total number of thread and i is number of CPUs.

Figure 6 shows an example of typical parallel scoring threads when 4 cores

121

are enabled, how many times the threads have been invoked during the

runtime. If we take a look in table 3 and 4, the “b” values, the relative speed

up of the response time on Intel core i-7 is not following any trends, hence not

easy to predict with respect to number of cores.

Figure 5. Measured and predicted response time for ASR and TTS.

Therefore we consider the relative speed up measured on Intel Xeon dual quad

core where some conclusions can be drawn. The speed up measurements

shows trends that could be predicted. In Table 6 and 7, at every input length,

the relative speed up is normalized in a sense that the response time for one

enabled core is said to be 1. This response time is divided by the response

time for each more enabled cores. Values in Table 6 and 7 are given by

equation 9. The response time for one core is expected to be the highest and

the one for the 8 cores is expected to the smallest.

(Li,1C)

(, iC)Li
 (9)

iC is number of enabled cores; Li is input length. Table 5 shows the number of

threads for ASR and TTS with respect to number of cores. The CPU utilization

122

on Intel-xeon is given in Figure 8. As a matter of representation, the CPU

utilization shown in Figure 8 is for the smallest and for the biggest input length.

For both ASR and TTS, the CPU utilization does not change significantly for

different input load length on the same number of cores. Instead it decreases

as the number cores increases (see Figure 8).

Figure 6. ASR threads.

Figure 7. TTS threads.

Table 5. Number of Threads
#cores= > 1 2 3 4 5 6 7 8

ASR 10 14 16 18 20 22 24 26

TTS 11 13 14 15 16 17 18 19

3.2.5 Discussions

In ASR, the scoring of Viterbi algorithm is done in parallel, where at each

time frame each HMM state is scored by a thread. The threads are generated

with respect to the number of enabled cores (see Table 5). Moreover, the

123

garbage collector which is important during pruning where it reclaims the

memory at each path pruned out is also processed in parallel with all available

cores. In TTS, all steps are processed in sequence. However, the garbage

collector that helps to manage the memory is processed in parallel with all

available cores. This garbage collector contributes almost 2 % to the total

work. Figures 5 (i, ii, iii, iv) show that the response time for both ASR and

TTS is linear as a function of the input length.

Table 6. ASR Normalized speedup

 1C 2C 3C 4C 5C 6C 7C 8C

L1 1.00 1.26 1.39 1.50 1.48 1.49 1.54 1.60

L2 1.00 1.30 1.44 1.58 1.54 1.53 1.58 1.66

L3 1.00 1.27 1.47 1.54 1.53 1.50 1.55 1.63

L4 1.00 1.24 1.46 1.48 1.44 1.45 1.52 1.57

L5 1.00 1.17 1.32 1.47 1.40 1.43 1.49 1.57

L6 1.00 1.16 1.37 1.43 1.40 1.34 1.51 1.50

L7 1.00 1.14 1.29 1.42 1.38 1.36 1.43 1.50

L8 1.00 1.13 1.31 1.43 1.37 1.37 1.44 1.52

L9 1.00 1.14 1.29 1.43 1.33 1.33 1.41 1.50

Table 7. TTS Normalized speedup

 1C 2C 3C 4C 5C 6C 7C 8C

L1 1.00 1.43 1.65 1.70 1.72 1.73 1.73 1.74

L2 1.00 1.34 1.57 1.61 1.64 1.64 1.65 1.68

L3 1.00 1.37 1.52 1.54 1.55 1.58 1.59 1.64

L4 1.00 1.33 1.47 1.53 1.53 1.53 1.51 1.54

L5 1.00 1.34 1.43 1.47 1.47 1.49 1.49 1.51

L6 1.00 1.30 1.36 1.42 1.44 1.43 1.44 1.46

L7 1.00 1.28 1.34 1.38 1.39 1.38 1.41 1.46

L8 1.00 1.26 1.41 1.43 1.44 1.44 1.45 1.46

124

L9 1.00 1.31 1.38 1.38 1.41 1.41 1.41 1.43

Figure 8. CPU utilization for ASR and TTS.

The experiment conducted on Intel core i-7 processor shows that when we

enable 2 cores from different physical cores the execution time significantly

decreases compare to enabling two hyperthreads on the same core. Keeping

in mind that we have two physical cores and 2 hyper threads per each, this

makes 4 logical cores on this processor. However, when we enable two cores

that belong to same physical core, the execution time is similar as if only one

core is enabled. Consequently, when three cores and four cores are enabled,

we get the same execution time as if only 2 physical cores are enabled. In the

worst case as observed in Figure 5 (i), when three and four cores are enabled,

this adds overhead; hence introduce more delay to the response time. We

observe that the execution time for ASR on 4 cores is higher that even on a

single core. This is due to contention of shared resources when the parallel

part tries to execute on separate logical cores in parallel. It is seen that

hyperthreads share resources, for Intel core i-7, L1 cache and L2 cache are

shared by hyperthreads that belong to the same physical core.

Furthermore, hyperthreads that belong to different physical cores share L3

cache. The speed up as shown by the slope value “b” in Table 4, decreases for

almost a half from one core to four cores. The hyperthreading does not affect

TTS because TTS executes sequentially, the execution time seems to be

almost the same no matter how many cores or hyperthread are enabled. The

125

value of “b” in Table 3, shows that the average speedup is about 26 %, i.e.,

for 3.37 seconds on one logical core to 2.80 seconds for four logical cores.

This is Amdahl’s law, whereby the speed up of a program depends on how

much parallel it is [20]. The part that increases threads is the garbage collector

and this count almost 1.7 % to 2 percent of the whole work to be done. In this

paper, neither ASR, though it has some parallel part, nor TTS benefits from

hyperthreading. The main performance bottleneck is the access to the

memory, whereby two virtual cores, i.e. hyperthreads contend to share L1

cache of 32 KB. Therefore this prevents taking advantage of enabling

hyperthreading for these particular applications.

The results of ASR from Intel-xeon dual quadcore, shows that the number of

threads that are generated, follows the number of enabled cores. This is shown

in Table 5. The slope of the response time is shown in Table 1 and in Figure

5(ii). The slope (b value) shows the average speed up, it is about 1.54, from

1.28 to 0.83 for one and eight enabled cores respectively. Table 6 shows the

normalized speed up, where we have the average of 1.56 for eight enabled

cores. Both results from regression model and normalization tell us that the

speedup is generally about 1.55, if we average both results. Consider the

number of threads for ASR in Table 5 and the slope “b” in Table 1. At one

core increase we see two threads increase, the garbage collector that counts

for 2 to 3 percentage of the total work. The Scoring threads contribute to the

speed up significantly. However, the speedup does not grow that fast as

expected instead it slowly increases but gradually. There is about 7 % speed

up at each core increase.

Though we cannot give strict conclusion based on CPU utilization only. It

can help us to investigate and understand more the behavior of our programs.

The CPU utilization in Figure 8 decreases from 100 % to 31% from 1 core to

8 cores shows that ASR consumes for example 31 % of 8 available cores.

Additionally, the average speed up is from both regression and normalization

is about 1.55 for 8 cores. Therefore, we can generalize our performance model

to more cores; i.e., the right part of the matrix in Figure 4(ii). Increasing one

core corresponds to 7 % speed up increase.

Moreover, based on the fitting line it is straightforward to predict the response

time on the basis of exclusively multicore processors with hyperthreading

disable or without it at all. This can be done for any input length for ASR

when the number of cores varies from 1 up to 8. This corresponds to the lower

126

left part of the matrix under the shaded part in Figure 4 (ii).

About TTS, the speed up as the slope “b” shows in Table 2 is averagely 1. 36,

from 4.54 to 3.33 for one and eight enabled cores respectively. Table 7 shows

the normalized relative speed up that stays constant as the number of cores

increases. The relative normalized speed up is about 1.50. The speed up from

regression and from normalization is averaged to 1.43. The CPU utilization

that goes from 100% for one core to 17% for 8 cores, i.e., cores are not

exploited as much as ASR does because ASR has a parallel part. However

like ASR, as Figures 5(iii, iv) shows, the execution time for TTS increases

linearly as the input length increases.

Comparing ASR and TTS, even though ASR has a parallel part, the speed up

is slow. Obviously, as expected the speed up is better than for TTS. However,

TTS also has a small speed up increase, i.e., OS, java virtual machine threads

and the garbage collector contribute to that speed up. To validate the study,

the precision measures R2 and MSE are used. In our case; the R2 is almost

one and MSE is close to zero. This shows a strong correlation between the

measured results and the predicted results. (See Tables 1 to 4). Furthermore,

for the sake of time synchronization, during response time measurement, we

used the time obtained from time command in Linux; as well as real wall clock

time. In order to explore more the behavior of ASR and TTS on multicore

processor, the CPU utilization (see Figure 8), the normalized relative speed

up and the number of threads with respect to enabled cores are also measured.

The relation between results of measured and predicted is observed from

analysis of variance regression output that shows a good fit between measured

and predicted results. Moreover, the prism value computed at 95% level of

confidence is far less than 0.05 which value rejects the standard null

hypothesis that says that there is no correlation between studied variables.

To further validate our study; we used the most common performance metric

for voice based application. It is the response time that is measured during the

experiment. The same metric is used in predicting model. That model is the

linear regression; it is common for predicting model. For the sake of variety,

2 types of multicore processors with different numbers of cores are used in

the experiments.

To generalize the performance model, the response time as a function of input

length, can be predicted for further length than the experiment range, this is

127

shown by the straight line that indicates the linear increase of the response

time as input length grows. Therefore, the linearity of the response time with

respect to input length is general for any input length. This generalization is

applied on multicore processor that does not apply hyperthreading. E.g., Intel-

xeon dual quad core. However, the multicore processor with hyperthreading

enabled is not generalizable. As we observed when running experiment on

Intel core i-7. To extrapolate the response time for further number of cores,

we base our analysis on the number of threads. Generally, the speed up of

ASR increases of 7 % at each increase of a core, i.e., one thread for scoring

and another for garbage collection. For TTS has found to be sequential, it

means that there is no expected speed up for higher number of cores.

However, there are some systems ‘parts such as java virtual machine and the

garbage collector that benefit from cores increase, therefore the total speed up

increases.

3.2.6 Conclusions

This paper presents a performance evaluation of open source speech

recognition and text to speech, i.e., Sphinx-4 and FreeTTS-1.2.2 when these

are implemented on multicore processors. The hardware used are, Intel core

i-7 quad cores, and Intel-xeon dual quadcore.

In order to use the multicore processor economically, ASR and TTS should

be investigated and redesigned. Free and open source help in this. The

experiment results on Intel core i-7 cannot be generalized because of the

hyperthreading which does not add up to the ASR parallel part neither to TTS.

In this paper, the generalization can only be done on multicore with no

hyperthreading. The measured average response time is studied as a function

of the input length and the number of cores. The number of threads, the

relative speed up, and CPU utilization are also measured in order to

investigate the performance in detail. The results from the performance model

when varying the load length reveals that both ASR and TTS have a linearity

property of the response time with respect to the input length; this property

tells us that it is relatively easy to generalize the performance model to any

input length.

The response time from one number of cores to another is described by the

changes of the regression equation coefficient, i.e., the slope of the speedup

increase. Both ASR and TTS apply garbage collector which is inherently

128

parallel. It counts for almost 2 % of the total work. Moreover, ASR has

acoustic scoring part that runs in parallel; the number of threads is always

updated dynamically with the number of cores respectively. The speed up is

about 7% per one core increase. And this could be used to extrapolate in order

to predict for further than experiment range of cores. The speed up increase

from the program itself is trivial because the latter is sequential. However,

some system’s part like OS, java virtual machine thread and garbage collector

benefits from the core increase, hence the TTS total response time get a little

increase of about 5% at each core increase. In this paper, the generalization

is application specific, i.e., Sphinx-4 and FreeTTS -1.2.2. To open source

development community, based on the findings, it is important to always

update the source code in order to accommodate current technology.

References

[1] J. R. Lewis, P. M. Commarford, and C. Kotan, ‘Web-Based Comparison of Two

Styles of Auditory Presentation: All TTS versus Rapidly Mixed Tts and

Recordings’, in Proceedings of the Human Factors and Ergonomics Society

Annual Meeting, 2006, vol. 50, pp. 723–727.

[2] C. Niyizamwiyitira, L. Lundberg, and M. Svahnberg, ‘Evaluation of Voice-

driven Web Application Architecture’, in 2012 Eighth International Conference

on Signal Image Technology and Internet Based Systems (SITIS), 2012, pp. 555

–562.

[3] ‘FreeTTS 1.2 - A speech synthesizer written entirely in the Java(TM)

programming language’. [Online].

 Available: http://freetts.sourceforge.net/docs/index.php. [Accessed: 10-May-

2013].

[4] ‘Sphinx-4 - A speech recognizer written entirely in the Java(TM) programming

language’. [Online].

Available:http://cmusphinx.sourceforge.net/sphinx4/#source. [Accessed:08-Jul-

2013].

[5] B. Schauer, ‘Multicore processors–A necessity’, ProQuest Discovery Guides1–

14, 2008.

[6] W. Walker, P. Lamere, P. Kwok, B. Raj, R. Singh, E. Gouvea, P. Wolf, and J.

Woelfel, ‘Sphinx-4: a flexible open source framework for speech recognition’,

Sun Microsystems, Inc., Mountain View, CA, USA, 2004.

[7] H.-L. Lou, ‘Implementing the Viterbi algorithm’, Signal Processing Magazine,

IEEE, vol. 12, no. 5, pp. 42–52, 1995.

129

[8] K. You, J. Chong, Y. Yi, E. Gonina, C. J. Hughes, Y.-K. Chen, W. Sung, and K.

Keutzer, ‘Parallel scalability in speech recognition’, IEEE Signal Processing

Magazine, vol. 26, no. 6, pp. 124–135, 2009.

[9] S. Yoshizawa, N. Wada, N. Hayasaka, and Y. Miyanaga, ‘Scalable architecture

for word HMM-based speech recognition and VLSI implementation in complete

system’, IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 53,

no. 1, pp. 70–77, 2006.

[10] X. Chen, C. Xu, R. P. Dick, and Z. M. Mao, ‘Performance and power modeling

in a multi-programmed multi-core environment’, in Proceedings of the 47th

Design Automation Conference, 2010, pp. 813–818.

[11] W. Walker, P. Lamere, and P. Kwok, ‘FreeTTS: a performance case study’, Sun

Microsystems, Inc., Mountain View, CA, USA, 2002.

[12] V. S. Adve, Analyzing the behavior and performance of parallel programs, vol.

1201. Citeseer, 1993.

[13] A. S. Namin, M. Sridharan, and P. Tomar, ‘Predicting Multi-Core Performance:

A Case Study Using Solaris Containers’, in Proceedings of the 3rd International

Workshop on Multicore Software Engineering, ser. IWMSE, 2010, vol. 10, pp.

18–25.

[14] P. Lamere, P. Kwok, E. Gouvea, B. Raj, R. Singh, W. Walker, M. Warmuth, and

P. Wolf, ‘The CMU SPHINX-4 speech recognition system’, in IEEE Intl. Conf.

on Acoustics, Speech and Signal Processing (ICASSP 2003), Hong Kong, 2003,

pp. 2–5.

[15] ‘Sphinx-4 Transcriber Demo’. [Online]. Available:

http://cmusphinx.sourceforge.net/sphinx4/src/apps/edu/cmu/sphinx/demo/trans

criber/README.html. [Accessed: 10-May-2013].

[16] ‘Alice’s Adventures in Wonderland (Project Gutenberg)’. [Online]. Available:

http://www.cs.cmu.edu/~rgs/alice-table.html. [Accessed: 10-May-2013].

[17] ‘Home—Project Kenai’. [Online]. Available: http://visualvm.java.net/.

[Accessed: 08-Jul-2013].

[18] J. O. Rawlings, S. G. Pantula, and D. A. Dickey, Applied regression analysis: a

research tool. Springer, 1998.

[19] J. Miles and M. Shevlin, Applying regression and correlation: A guide for

students and researchers. SAGE Publications Limited, 2001.

[20] M. D. Hill and M. R. Marty, ‘Amdahl’s law in the multicore era’, Computer, vol.

41, no. 7, pp. 33–38, 2008.

130

Chapter Four

Section 1
Published as C. Niyizamwiyitira and L. Lundberg, “Real-time scheduling of

multiple virtual machines,” International journal of Computers and their

applications (IJCA), Vol. 24, No. 3, pp.91-109, Sept. 2017

131

Real-time scheduling of multiple virtual

machines

Abstract

The use of virtualized systems is growing, and one would like to benefit from

this kind of systems also for real-time applications with hard deadlines. There

are two levels of scheduling in real-time applications executing in a

virtualized environment: traditional real-time scheduling of the tasks in the

real-time application inside a Virtual Machine (VM), and scheduling of

different VMs on the hypervisor level. Traditional real-time scheduling uses

methods based on periods, deadlines and worst-case execution times of the

real-time tasks. In order to apply the existing theory also to virtualized

environments we must obtain periods and (worst-case) execution times for

VMs containing real-time applications. In this paper, we describe a technique

for calculating periods and execution times and utilization for VMs containing

real-time applications with hard deadlines. We show that when we look all

VMs that share a physical processor we are able to use longer (better) periods.

Alternatively, if the periods are the same, we are able to use a smaller amount

of the processor resource for the VMs and more tasks become schedulable

compared to when we look each VM in isolation. We also introduce an

overhead model that makes it possible to find VM periods that minimize the

processor utilization.

Keywords

Real-time Virtual Machine; Real-time scheduling; Hard deadlines; VM

overhead; VM period

132

4.1.1 Introduction

There is a strong trend towards virtualization of computer systems, and one

would like to also run real-time systems in virtualized environments.

However, moving a real-time system with hard deadlines to a virtualized

environment where a number of Virtual Machines (VMs) share the same

physical computer is a challenging task. The original real-time application

was designed such that all tasks were guaranteed to meet their deadlines

provided that the physical computer was fast enough. In a system with faster

processors, and more cores, one would like to put several VMs on the same

physical hardware and some or all of these VMs may contain real-time tasks

with hard deadlines. In order to take full advantage of the hardware, more than

one VM may share a processor core. This is the scenario that we consider in

this study, i.e. k VMs share the same processor core, and each VM contains a

real-time application. We assume that for each core, the identities of the VMs

that share that core are known. We also assume that these VMs are scheduled

to the physical processor core using static priorities. In such a system there

will be scheduling on two levels [1], [2]. The first level is traditional real-time

scheduling of the tasks within a VM. The second level is scheduling of VMs

by the hypervisor; the hypervisor controls several VMs on the same physical

hardware.

Two classic real-time scheduling algorithms are Rate Monotonic Scheduling

(RMS) where tasks are assigned static priorities based on deadlines, and

Earliest Deadline First (EDF) where task priorities are dynamic. These kind

of scheduling algorithms enable to guarantee certain real-time properties in

non-virtualized systems. These scheduling algorithms are based on the

periodic behavior of the real-time tasks, i.e. each task has a period T and a

worst-case execution time C. This means that a task may in the worst-case

need to use the processor for C time units during each period, the length of

133

the period is T time units. In order to use existing real-time scheduling theory

also on the hypervisor level, i.e. when scheduling different VMs on the

physical hardware, we need to calculate a period 𝑇𝑉𝑀 and a worst-case

execution time 𝐶𝑉𝑀 for each VM such that all real-time tasks in the VMs will

meet their deadlines.

Previous work [3] has found a method for calculating an execution time 𝐶𝑉𝑀

and a period 𝑇𝑉𝑀 for a VM such that all real-time tasks in the VM will meet

their deadlines. That study considered each VM in isolation, i.e. without

knowledge about the other VMs sharing the processor. The contribution in

this paper is that we define an improved execution time 𝐶𝑉𝑀𝑖
 and period 𝑇𝑉𝑀𝑖

,

by considering a holistic perspective, i.e. we consider the whole work-load of

all VMs that share a processor core.

The holistic approach gives more information about the work-load and does

not require to be overly pessimistic, and as a result more real-time programs

become schedulable. We also define 𝐶𝑉𝑀𝑖
 and 𝑇𝑉𝑀𝑖

 in the presence of

overhead for context switches between VMs.

4.1.2 Background and Related Work

Real-time scheduling theory (or non-virtualized systems shows that the

minimum processor utilization for which a periodic real-time system can miss

a deadline, using fixed priority scheduling, i.e. using RMS, decreases as the

number of processors increases. E.g. 69.3% for one processor systems [4],

and 53.2% for two processor systems and then down to as little as 37.5% for

systems with infinitely many processors [5]. Consequently, compared to

multiprocessor systems, the processor utilization is in general higher for

systems with one processor. This is one reason why we have assumed that

each core of a multi-core processor contains a number of VMs and each VM

that contains a real-time application has only one virtual processor. Also, most

existing real-time applications are developed for systems with one processor.

An additional advantage of just having one virtual core in each VM is that one

can bind each VM to a physical core, thus minimizing unpredictable dynamic

cache effects, i.e. the processor cache will be cold (empty) when a VM is

migrated from one core to another. Such effects become problematic in real-

time systems since applications with hard deadlines need to control the worst-

case behavior. We, therefore, expect that one future way of using

virtualization will be that a VM containing a real-time application will be

134

bound to a processor core on modern multi-core hardware server. In order to

provide high hardware utilization we expect that many VMs may share the

same processor core.

Very few studies have explicitly focused on hard real-time scheduling in

virtualized systems. Some results on real-time tasks with soft deadlines have

been studied with focus on real-time hypervisor scheduling framework for

Xen [6], [7]. There are a number of results concerning so called proportional-

share schedulers [8]–[10]. These results looked at a real-time application that

runs inside an operating system process. The proportional-share schedulers

divides the processor resource in predefined proportions to different

processes. However, none of these results explicitly address hard real-time

issues such as worst-case scenarios, periods/deadlines and worst-case

execution times. In [11], the authors looked at a model for deciding which

real-time tasks to discard when the cloud system’s resources cannot satisfy

the needs of all tasks. That model does, however, not address the problems

associated with hard deadlines. The VSched system, which runs on top of

Linux, provides soft real-time scheduling of VMs on physical servers [12].

However, the problems with hard deadlines are not addressed in that system.

In the area of hierarchical scheduling, there have been plenty of studies. In

[13], authors proposed a hierarchical real-time virtual resource model that

permits resource partitioning to be extended to multiple levels (similar to the

two-level scheduling situation in virtualized systems). In [14], [15] the authors

proposed a resource model for hierarchical schedulers to characterize a

periodic resource allocation and present exact schedulability conditions under

RMS and EDF algorithms. This method derives timing requirements of a

parent scheduler from the timing requirements of its child scheduler in a

compositional manner such that the timing requirement of the parent

scheduler is satisfied if and only if the child schedule is satisfied. Later on,

they proposed a compositional real-time scheduling framework with a

periodic model that enables a group of real-time applications to be a single

real-time resource requirement to the upper level scheduler. These scheduling

schemes help to schedule large complex systems by breaking them down into

subsystems.

In [16], [17] the authors studied a two-level hierarchical architecture to

schedule many applications on a single processor. Each application is

associated with a server and each server is assigned a portion of the processor

[16]. There is a global scheduler that determines which application, i.e. which

135

server, should be allocated to the processor at any given time and a local

scheduler that determines which of the chosen application’s tasks should

actually execute. Both schedulers use fixed priority pre-emptive scheduling

policy. All of the hierarchical scheduling results mentioned above consider

each VM in isolation, i.e. no study takes a holistic approach where the entire

set of VMs are considered. Previous results on age-constraint real-time tasks

(in a uni-processor environment) show that one can guarantee the

schedulability for more cases when the entire work-load is taken into

consideration [18].

In [19] the authors studied a reservation-based algorithm, i.e. a constant

bandwidth server (CBS) on top of EDF for scheduling real-time tasks with

hard deadlines on VMs. A reservation-based scheduler allocates a

computation budget for every reservation period to each VM. The execution

of a VM does not depend on the other VMs running on the same hardware

(temporal isolation), rather it depends only on task’s period and execution

time. The results show that VM technology and scheduling algorithm can

affect the real-time application performance. They propose to use less

pessimistic analysis to dimension the VM scheduling parameters if one uses

CBS algorithm. Interaction between VMs is not considered whereas in this

paper, we consider also the interaction between VMs therefore VMs priority

is set accordingly.

In [20] the authors developed a Compositional Scheduling Architecture

(CSA) that is built on the Xen virtualization platform. The architecture allows

timing isolation among virtual machines and supports timing guarantees for

real-time tasks running on each virtual machine. The study uses pessimistic

approach where every VMs is treated in isolation, whereas in this paper every

VM is treated with respect to other VMs that they share resources. In [21] the

authors present a model that include the cache related in hierarchical

scheduling while keeping temporal isolation between applications that share

a single processor, yet interaction between VMs is not considered.

In [22] the authors propose a mechanism to schedule soft real-time systems,

which provide a temporal isolation between VMs that share a CPU. In this

paper we consider even when a VM is affected by the work-load from other

VMs that they share resources, hard real-time system with strict deadline is

considered.

In [23], [24] the authors present a model that accounts for the overhead, in

compositional hierarchical scheduling for uniprocessor however, the entire

136

work-load was not considered. In [25] compositional scheduling theory was

also applied for multi-core VM scheduler for Xen real-time virtualization

platform. However, task’s migration across processor/core in the same VM

which causes significant overhead was neglected.

In connection with hard deadlines systems, the utilization has been studied for

real-time systems that respond to external environment within a specific

deadline that is called age constraint. This age constraint is the time between

the beginning of the execution of a task in one period and the end of the task

in the next period [18]. In this paper we use the idea from the age constraint

approach for scheduling real-time tasks in the VMs.

In [3] the authors addressed the problem of scheduling hard real-time

applications in a VM. The authors proposed a technique such that real-time

applications could meet their deadlines when they are scheduled on a single

VM. In this paper we improve this technique by proposing a method that

schedules many VMs as whole instead of looking each VM in isolation. We

should not ignore the overhead brought by VMs, a case that considers this is

also presented herein. The method described in this paper saves the resource

utilization while scheduling many VMs.

4.1.3 Problem Definition

 We consider the case when k VMs share the same processor core (see Figure

1(i)); all VMs have one virtual processor. We assume that for each core the

identities of the VMs that share a processor core are known. We also assume

that these VMs are scheduled to the physical core using static priorities. Each

𝑉𝑀𝑖 (1 ≤ 𝑖 ≤ 𝑘) runs a real-time program that consists of 𝑛𝑖 tasks 𝜏𝑖,𝑗 (1 ≤

 𝑗 ≤ 𝑛𝑖), i.e. 𝜏𝑖,𝑗 denotes task j in 𝑉𝑀𝑖. A task 𝜏𝑖,𝑗 is defined by its worst-case

execution time 𝐶𝑖,𝑗 and period 𝑇𝑖,𝑗 [26]. Since we assume that the priority

follows rate monotonic scheduling (RMS), the tasks are ordered such that

𝑇𝑖,𝑗 ≤ 𝑇𝑖,𝑗+1 . This means that inside 𝑉𝑀𝑖, task 𝜏𝑖,1 has the highest priority,

i.e. it is never interrupted by any other task.

 We assume that each task is independent and does not interact with other

tasks. We also assume that the first invocation of a task is unrelated to the first

invocation of any other task, i.e. we make no assumptions regarding the

phasing of tasks with equal or harmonic periods. Since we assume that the

deadline 𝐷𝑖,𝑗 is equal to the period 𝑇𝑖,𝑗, we only need two parameters for each

137

task: 𝑇𝑖,𝑗 and 𝐶𝑖,𝑗 [26].

Figure 1. (i) A Physical processor with m cores, and (ii) three Virtual

Machines on a processor core.

For each VM that share a physical core, we need to calculate a period 𝑇𝑉𝑀𝑖

and an execution time 𝐶𝑉𝑀𝑖
 such that all tasks 𝜏𝑖,𝑗 will meet their deadlines

when VMi executes at least 𝐶𝑉𝑀𝑖
 time units every 𝑇𝑉𝑀𝑖

 period.

In [3] the authors found a method for calculating an execution time 𝐶𝑉𝑀 and

a period 𝑇𝑉𝑀 when one looks at a VM in isolation. A main contribution in this

paper is to use information about the entire set of VMs sharing a core to reduce

the resource utilization 𝐶𝑉𝑀 𝑇𝑉𝑀⁄ compared to considering each VM in

isolation (we will also extend the previous result by introducing an overhead

model).

We also assume that we use static priorities on the hypervisor level. 𝑉𝑀1 has

the highest priority and cannot be interrupted by any other VM, and 𝑉𝑀2 has

the second highest priority. Figure 1(ii) shows a processor core that runs

𝑉𝑀1, 𝑉𝑀2 and 𝑉𝑀3. 𝑉𝑀1 has three tasks 𝜏1,1, 𝜏1,2, 𝜏1,3. 𝑉𝑀2 has also three

tasks 𝜏2,1, 𝜏2,2, 𝜏2,3, and 𝑉𝑀3 has four tasks 𝜏3,1, 𝜏3,2, 𝜏3,3, 𝜏3,4 . A real-time

138

task may miss its deadline if the VM containing the task is not scheduled for

execution by the hypervisor during a certain period of time. We would like to

assign long periods (i.e., 𝑇𝑉𝑀1
, 𝑇𝑉𝑀2

, 𝑇𝑉𝑀3
) to each VM, since this will

minimize the overhead for switching VMs. However, if the VM periods are

too long, the real-time tasks in the VM may miss their deadlines. Previous

results show that there is a trade-off between the length of 𝑇𝑉𝑀𝑖
 and the

utilization 𝐶𝑉𝑀𝑖
 𝑇𝑉𝑀𝑖

⁄ that a VM needs to guarantee that all tasks meet their

deadlines [3]. We would like to find combinations of periods 𝑇𝑉𝑀𝑖
 and

execution times 𝐶𝑉𝑀𝑖
 that strike a good compromise between a limited number

of context switches between VMs (i.e., long 𝑇𝑉𝑀𝑖
) and a low utilization

 𝐶𝑉𝑀𝑖
 𝑇𝑉𝑀𝑖

⁄ for all VMs.

In a traditional real-time application a task 𝜏𝑖,𝑗 will voluntarily release the

processor when it has finished its execution in a cycle, and 𝐶𝑖,𝑗 denotes the

maximum time it may execute before it releases the processor. In our case the

hypervisor will make sure that 𝑉𝑀𝑖 releases the processor after executing for

 𝐶𝑉𝑀𝑖
 time units in a period 𝑇𝑉𝑀𝑖

.

For each VM that share a physical core, we need to calculate a period 𝑇𝑉𝑀𝑖

and an execution time 𝐶𝑉𝑀𝑖
 such that all tasks 𝜏𝑖,𝑗 will meet their deadlines

when VMi executes at least 𝐶𝑉𝑀𝑖
 time units every 𝑇𝑉𝑀𝑖

 period.

In [3] the authors found a method for calculating an execution time 𝐶𝑉𝑀 and

a period 𝑇𝑉𝑀 when one looks at a VM in isolation. A main contribution in this

paper is to use information about the entire set of VMs sharing a core to reduce

the resource utilization 𝐶𝑉𝑀 𝑇𝑉𝑀⁄ compared to considering each VM in

isolation (we will also extend the previous result by introducing an overhead

model).

We also assume that we use static priorities on the hypervisor level. 𝑉𝑀1 has

the highest priority and cannot be interrupted by any other VM, and 𝑉𝑀2 has

the second highest priority. Figure 1(ii) shows a processor core that runs

𝑉𝑀1, 𝑉𝑀2 and 𝑉𝑀3. 𝑉𝑀1 has three tasks 𝜏1,1, 𝜏1,2, 𝜏1,3. 𝑉𝑀2 has also three

tasks 𝜏2,1, 𝜏2,2, 𝜏2,3, and 𝑉𝑀3 has four tasks 𝜏3,1, 𝜏3,2, 𝜏3,3, 𝜏3,4 . A real-time

task may miss its deadline if the VM containing the task is not scheduled for

execution by the hypervisor during a certain period of time. We would like to

assign long periods (i.e. 𝑇𝑉𝑀1
, 𝑇𝑉𝑀2

, 𝑇𝑉𝑀3
) to each VM, since this will

139

minimize the overhead for switching VMs. However, if the VM periods are

too long, the real-time tasks in the VM may miss their deadlines. Previous

results show that there is a trade-off between the length of 𝑇𝑉𝑀𝑖
 and the

utilization 𝐶𝑉𝑀𝑖
 𝑇𝑉𝑀𝑖

⁄ that a VM needs to guarantee that all tasks meet their

deadlines [3]. We would like to find combinations of periods 𝑇𝑉𝑀𝑖
 and

execution times 𝐶𝑉𝑀𝑖
 that strike a good compromise between a limited number

of context switches between VMs (i.e. long 𝑇𝑉𝑀𝑖
) and a low utilization

 𝐶𝑉𝑀𝑖
 𝑇𝑉𝑀𝑖

⁄ for all VMs.

In a traditional real-time application a task 𝜏𝑖,𝑗 will voluntarily release the

processor when it has finished its execution in a cycle, and 𝐶𝑖,𝑗 denotes the

maximum time it may execute before it releases the processor. In our case the

hypervisor will make sure that 𝑉𝑀𝑖 releases the processor after executing for

 𝐶𝑉𝑀𝑖
 time units in a period 𝑇𝑉𝑀𝑖

.

140

4.1.4 Defining 𝑻𝑽𝑴𝒊
 and 𝑪𝑽𝑴𝒊

Let 𝑅𝑖,𝑗 denotes the maximum response time for task 𝜏𝑖,𝑗. Using traditional

RMS scheduling, the worst- case response time 𝑅𝑖,𝑗 for task 𝜏𝑖,𝑗 is given by

Equation 1.

 𝑅𝑖,𝑗 = 𝐶𝑖,𝑗+∑ ⌈
𝑅𝑖,𝑗

𝑇𝑖,𝑚
⌉

𝑗−1
𝑚=1 𝐶𝑖,𝑚 (1)

In order to obtain 𝑅𝑖,𝑗 from Equation 1, we need to use iterative numeric

methods [26]. In Figure 2, we look at one VM in isolation [3]. The main result

in [3] is a method of finding 𝑇𝑉𝑀 and 𝐶𝑉𝑀 such that all tasks will meet their

deadlines. The most important part of the method is a function

 𝑓−1(𝑡, 𝑇𝑉𝑀 , 𝐶𝑉𝑀) that maps virtual time to real (wall clock) time. Before we

present the main results of this paper, we will give a short overview of the

previous results that considered each VM in isolation.

Figure 2. The worst-case scenario for an isolated VM

Consider a time period of length t. Equation 2 denotes the number of complete

141

periods of length 𝑇𝑉𝑀 that are covered by t for the worst-case scenario; each

complete period 𝑇𝑉𝑀 has execution 𝐶𝑉𝑀 (see Figure 2).

⌊
𝑡−2(𝑇𝑉𝑀−𝐶𝑉𝑀)

𝑇𝑉𝑀
⌋ (2)

Let t’ denotes the minimum amount of time that the VM is running during time

period t. Previous results show that t’ is obtained in the following way:

𝑡′ = 𝑚𝑎𝑥 (0, ⌊
𝑡−2(𝑇𝑉𝑀−𝐶𝑉𝑀)

𝑇𝑉𝑀
⌋ 𝐶𝑉𝑀 + 𝑚𝑖𝑛 (𝑡 − 2(𝑇𝑉𝑀 − 𝐶𝑉𝑀) −

⌊
𝑡−2(𝑇𝑉𝑀−𝐶𝑉𝑀)

𝑇𝑉𝑀
⌋ 𝑇𝑉𝑀, 𝐶𝑉𝑀)) (3)

This means that t´ is a function of three parameters, i.e. 𝑡′ = 𝑓(𝑡, 𝑇𝑉𝑀, 𝐶𝑉𝑀).

For fixed 𝑇𝑉𝑀 and 𝐶𝑉𝑀, 𝑡′ = 𝑓(𝑡, 𝑇𝑉𝑀, 𝐶𝑉𝑀) is a continuously increasing

function in t, consisting of straight line segments from ((2 + 𝑛)𝑇𝑉𝑀 −

2𝐶𝑉𝑀), 𝑛𝐶𝑉𝑀) to((2 + 𝑛)𝑇𝑉𝑀 − 𝐶𝑉𝑀), (𝑛 + 1)𝐶𝑉𝑀) for any n = 0, 1, 2…,

(see Figure 2). As a result,

𝑓(𝑡, 𝑇𝑉𝑀, 𝐶𝑉𝑀) = ⌊
𝑡−2(𝑇𝑉𝑀−𝐶𝑉𝑀)

𝑇𝑉𝑀
⌋ 𝐶𝑉𝑀 + 𝑚𝑖𝑛 ((𝑡 − 2(𝑇𝑉𝑀 − 𝐶𝑉𝑀) −

⌊
𝑡−2(𝑇𝑉𝑀−𝐶𝑉𝑀)

𝑇𝑉𝑀
⌋ 𝑇𝑉𝑀) , 𝐶𝑉𝑀) (4)

The horizontal line that connects two consecutive segments represents the end

of previous execution in a period and the beginning of the next execution in

the next period.

We now consider the inverse function, 𝑓−1(𝑡, 𝑇𝑉𝑀, 𝐶𝑉𝑀), i.e. 𝑡 =
𝑓−1(𝑓(𝑡, 𝑇𝑉𝑀, 𝐶𝑉𝑀), 𝑇𝑉𝑀, 𝐶𝑉𝑀); by looking at Figure 3, we see that

 𝑓−1(𝑡, 𝑇𝑉𝑀 , 𝐶𝑉𝑀) is undefined during the time intervals when 𝑓(𝑡, 𝑇𝑉𝑀, 𝐶𝑉𝑀)

is flat. In [27] the authors define the inverse of a function with flat intervals;

they call it a pseudo-inverse since a function with flat intervals is not

invertible. In order to handle this problem in our case we take a safe (worst-

case) approach, and for all values of t in a flat interval we define

 𝑓−1(𝑡, 𝑇𝑉𝑀 , 𝐶𝑉𝑀) as the inverse of the maximum t value in that interval, thus

142

making the inverse defined for all parameters 𝑡, 𝑇𝑉𝑀, and 𝐶𝑉𝑀.

Figure 3. The (pseudo-)inverse function for an isolated VM (i.e., the

pessimistic case).

Using the definition above, the (pseudo-)inverse of 𝑓(𝑡, 𝑇𝑉𝑀, 𝐶𝑉𝑀) is

 𝑓−1(𝑡, 𝑇𝑉𝑀 , 𝐶𝑉𝑀) = 2(𝑇𝑉𝑀 − 𝐶𝑉𝑀) + 𝑡 + (⌈
𝑡

𝐶𝑉𝑀
⌉ − 1) (𝑇𝑉𝑀 − 𝐶𝑉𝑀) (5)

From the response time 𝑅𝑗 (see Equation 1) and the definition of the 𝑓−1, we

get the worst-case response time 𝑟𝑗 for task 𝜏𝑗 :

 𝑟𝑗 = 𝑓−1(𝑅𝑗 , 𝑇𝑉𝑀, 𝐶𝑉𝑀) (6)

To meet all deadlines for all tasks 𝜏𝑗 , we need to select 𝑇𝑉𝑀 and 𝐶𝑉𝑀 such that

𝑟𝑗 = 𝑓−1(𝑅𝑗 , 𝑇𝑉𝑀, 𝐶𝑉𝑀) ≤ 𝑇𝑗 (1 ≤ 𝑗 ≤ 𝑛𝑖) (7)

In this paper, instead of considering each VM in isolation, we take a holistic

view since we know the whole work-load on the physical core. The only way

that the execution can happen in the end of periods (see Figure 2) is when the

core is busy, i.e. when at least one of the other VMs has higher priority. The

part indicated by “a” in Figure 2 is the difference between the pessimistic

(considering each VM in isolation) and the optimistic (holistic) cases.

143

In the pessimistic case we have the same function 𝑓−1(𝑡, 𝑇𝑉𝑀𝑖
, 𝐶𝑉𝑀𝑖

) for all

VMs; each VM can of course have their own period (𝑇𝑉𝑀𝑖
) and execution time

(𝐶𝑉𝑀𝑖
). In the optimistic (holistic) case we have a function

𝑓−1(𝑡, 𝑇𝑉𝑀𝑖
, 𝐶𝑉𝑀𝑖

, 𝑅𝑉𝑀𝑖
), with 𝑅𝑉𝑀𝑖

 representing the worst-case response time

for 𝑉𝑀𝑖.

VMs are ordered such that 𝑉𝑀𝑖 has higher priority than 𝑉𝑀𝑗 if 𝑖 < 𝑗. In the

worst-case scenario, all VMs are released at the same time; first of all we

consider 𝑉𝑀1 and take a time period of length t which may extend over several

periods (see Figure 4).

In the worst-case scenario period t starts right after a period of 𝐶𝑉𝑀1
 execution

that occurred at the start of a period 𝑇𝑉𝑀1
. Since 𝑉𝑀1 has the highest priority,

the maximum time that 𝑉𝑀1 has to wait for, is 𝑇𝑉𝑀1
− 𝐶𝑉𝑀1

Figure 4. The worst-case scenario for 𝑉𝑀1.

before it executes its first 𝐶𝑉𝑀1
. The number of whole periods of length 𝑇𝑉𝑀1

that is covered by t for the worst-case scenario is given in Equation 8.

144

⌊
𝑡−(𝑇𝑉𝑀1−𝐶𝑉𝑀1)

𝑇𝑉𝑀1

⌋ (8)

Let t’ denotes the minimum amount of time that VM1 is running during a time

period of length t.

𝑡′ = 𝑚𝑎𝑥 (0, ⌊
𝑡−(𝑇𝑉𝑀1−𝐶𝑉𝑀1)

𝑇𝑉𝑀1

⌋ 𝐶𝑉𝑀1
+ 𝑚𝑖𝑛 ((𝑡 − (𝑇𝑉𝑀1

− 𝐶𝑉𝑀1
) −

⌊
𝑡−(𝑇𝑉𝑀1−𝐶𝑉𝑀1)

𝑇𝑉𝑀1

⌋ 𝑇𝑉𝑀1
) , 𝐶𝑉𝑀1

)) (9)

For fixed 𝑇𝑉𝑀1
 and 𝐶𝑉𝑀1

, Figure 4 shows that 𝑡′ = 𝑓(𝑡, 𝑇𝑉𝑀1
, 𝐶𝑉𝑀1

, 𝐶𝑉𝑀1
)

consists of straight line segments from

(((𝑛 + 1)𝑇𝑉𝑀1
− 𝐶𝑉𝑀1

) , 𝑛𝐶𝑉𝑀1
) to ((𝑛 + 1)𝑇𝑉𝑀1

, (𝑛 + 1)𝐶𝑉𝑀1
) for n =

0, 1, 2,…. As a result,

𝑓(𝑡, 𝑇𝑉𝑀1
, 𝐶𝑉𝑀1

) = ⌊
𝑡 − (𝑇𝑉𝑀1

− 𝐶𝑉𝑀1
)

𝑇𝑉𝑀1

⌋ 𝐶𝑉𝑀1
+

 𝑚𝑖𝑛 ((𝑡 − (𝑇𝑉𝑀1
− 𝐶𝑉𝑀1

) −

⌊
𝑡−(𝑇𝑉𝑀1−𝐶𝑉𝑀1)

𝑇𝑉𝑀1

⌋ 𝑇𝑉𝑀1
) , 𝐶𝑉𝑀1

) (10)

With 𝑅𝑉𝑀1
= 𝐶𝑉𝑀1

, since 𝑉𝑀1 has the highest, Figure 5 shows that the

(pseudo-)inverse function for 𝑉𝑀1 is,

145

Figure 5. The (pseudo-)inverse function for VM1.

𝑓−1(𝑡, 𝑇𝑉𝑀1
, 𝐶𝑉𝑀1

) = (𝑇𝑉𝑀1
− 𝐶𝑉𝑀1

) + 𝑡 + (⌈
𝑡

𝐶𝑉𝑀1

⌉ − 1) (𝑇𝑉𝑀1
− 𝐶𝑉𝑀1

)

(11)

When comparing function in Equation 11 with function in Equation 5, i.e. the

pessimistic case, we see that the only difference is that 2(𝑇𝑉𝑀 − 𝐶𝑉𝑀) in (5)

is replaced by (𝑇𝑉𝑀1
− 𝐶𝑉𝑀1

) in (11). The reason for this is that in Equation

11 we know that 𝑉𝑀1 has the highest priority and cannot be blocked by other

VMs.

The worst-case response time for task 𝜏1,𝑗 is 𝑟1,𝑗 = 𝑓−1(𝑅1,𝑗, 𝑇𝑉𝑀1
, 𝐶𝑉𝑀1

)

In order to meet all deadlines for all tasks 𝜏𝑖,𝑗 , we need to select 𝑇𝑉𝑀1
 and

𝐶𝑉𝑀1
 such that

𝑟1,𝑗 = 𝑓−1(𝑅1,𝑗, 𝑇𝑉𝑀1
, 𝐶𝑉𝑀1

) ≤ 𝑇1,𝑗 .

𝑉𝑀2 has the second highest priority and will suffer interference only from

𝑉𝑀1 (see Figure 6). The worst-case response time of 𝑉𝑀2 is given in Equation

12.

146

𝑅𝑉𝑀2
= 𝐶𝑉𝑀2

+ ⌈
𝑅𝑉𝑀2

𝑇𝑉𝑀1

⌉ 𝐶𝑉𝑀1
 (12)

In the worst-case 𝑉𝑀2 will wait for (𝑇𝑉𝑀2
− 2𝐶𝑉𝑀2

+ 𝑅𝑉𝑀2
) before it can start

its first execution.

 The number of whole periods of length 𝑇𝑉𝑀2
 that is covered by t for the worst-

case scenario with each period 𝑇𝑉𝑀2
contains a total execution 𝐶𝑉𝑀2

 is

⌊
𝑡−(𝑇𝑉𝑀2−2𝐶𝑉𝑀2+𝑅𝑉𝑀2)

𝑇𝑉𝑀2

⌋ .

Let t’ denotes the minimum amount of time that the VM is running during a

time period of length t. Then we have

𝑡′ = 𝑚𝑎𝑥 (0, ⌊
𝑡−(𝑇𝑉𝑀2−2𝐶𝑉𝑀2+𝑅𝑉𝑀2)

𝑇𝑉𝑀2

⌋ 𝐶𝑉𝑀2
+ 𝑚𝑖𝑛 (𝑡 − (𝑇𝑉𝑀2

− 2𝐶𝑉𝑀2
+

𝑅𝑉𝑀2
) − ⌊

𝑡−(𝑇𝑉𝑀2−2𝐶𝑉𝑀2+𝑅𝑉𝑀2)

𝑇𝑉𝑀2

⌋ 𝑇𝑉𝑀2
, 𝐶𝑉𝑀2

)) (13)

For fixed 𝑇𝑉𝑀2
, 𝐶𝑉𝑀2

 and 𝑅𝑉𝑀2
, Figure 6 shows that 𝑡′ =

𝑓(𝑡, 𝑇𝑉𝑀2
, 𝐶𝑉𝑀2

, 𝑅𝑉𝑀2
) is an increasing function that consists of straight line

segments from(((𝑛 + 1)𝑇𝑉𝑀2
− 2𝐶𝑉𝑀2

+ 𝑅𝑉𝑀2
), 𝑛𝐶𝑉𝑀2

) to (((𝑛 +

147

1)𝑇𝑉𝑀2
− 𝐶𝑉𝑀2

+ 𝑅𝑉𝑀2
), (𝑛 + 1)𝐶𝑉𝑀2

) for n = 0, 1, 2….

Figure 6. The worst-case scenario for 𝑉𝑀2.

As a result,

𝑓(𝑡, 𝑇𝑉𝑀2
, 𝐶𝑉𝑀2

, 𝑅𝑉𝑀2
) = ⌊

𝑡 − (𝑇𝑉𝑀2
+ 𝑅𝑉𝑀2

− 2𝐶𝑉𝑀2
)

𝑇𝑉𝑀2

⌋ 𝐶𝑉𝑀2
+

 𝑚𝑖𝑛 ((𝑡 − (𝑇𝑉𝑀2
+ 𝑅𝑉𝑀2

− 2𝐶𝑉𝑀2
) −

⌊
𝑡−(𝑇𝑉𝑀2+𝑅𝑉𝑀2−2𝐶𝑉𝑀2)

𝑇𝑉𝑀2

⌋ 𝑇𝑉𝑀2
) , 𝐶𝑉𝑀2

) (14)

Figure 7 shows the corresponding (pseudo-)inverse function that is also

defined in Equation 15.

𝑓−1(𝑡, 𝑇𝑉𝑀2
, 𝐶𝑉𝑀2

, 𝑅𝑉𝑀2
) = (𝑇𝑉𝑀2

− 2𝐶𝑉𝑀2
+ 𝑅𝑉𝑀2

) + 𝑡 + (⌈
𝑡

𝐶𝑉𝑀2

⌉ −

148

1) (𝑇𝑉𝑀2
− 𝐶𝑉𝑀2

) (15)

The worst-case response time for task 𝜏2,𝑗 is

𝑟2,𝑗 = 𝑓−1(𝑅2,𝑗, 𝑇𝑉𝑀2
, 𝐶𝑉𝑀2

, 𝑅𝑉𝑀2
) (16)

In order to meet all deadlines for all tasks 𝜏𝑖,𝑗 we must select 𝑇𝑉𝑀2
 and

𝐶𝑉𝑀2
 such that

 𝑟2,𝑗 = 𝑓−1(𝑅2,𝑗, 𝑇𝑉𝑀2
, 𝐶𝑉𝑀2

, 𝑅𝑉𝑀2
) ≤ 𝑇2,𝑗 (17)

Figure 7. The (pseudo-)inverse function for 𝑉𝑀2

Figure 8 shows that in general for the worst-case scenario, t starts with a

𝑇𝑉𝑀𝑖
+ 𝑅𝑉𝑀𝑖

− 2𝐶𝑉𝑀𝑖
 period before 𝑉𝑀𝑖 can start its execution (𝑅𝑉𝑀𝑖

 is the

worst case response time of 𝑉𝑀𝑖).

The number of complete periods of length 𝑇𝑉𝑀𝑖
, with execution 𝐶𝑉𝑀𝑖

, that are

covered by t for the worst-case scenario is given by Equation 18.

⌊
𝑡−(𝑇𝑉𝑀𝑖

−2𝐶𝑉𝑀𝑖
+𝑅𝑉𝑀𝑖

)

𝑇𝑉𝑀𝑖

⌋ (18)

149

Figure 8. The worst-case scenario for 𝑉𝑀𝑖.

Let t’ denotes the minimum time that the 𝑉𝑀 is running during a time period

of length t. Then we have

 𝑡′ = 𝑚𝑎𝑥 (0, ⌊
𝑡−(𝑇𝑉𝑀𝑖

−2𝐶𝑉𝑀𝑖
+𝑅𝑉𝑀𝑖

)

𝑇𝑉𝑀𝑖

⌋ 𝐶𝑉𝑀𝑖
+ 𝑚𝑖𝑛 ((𝑡 − (𝑇𝑉𝑀𝑖

− 2𝐶𝑉𝑀𝑖
+

𝑅𝑉𝑀𝑖
) − ⌊

𝑡−(𝑇𝑉𝑀𝑖
−2𝐶𝑉𝑀𝑖

+𝑅𝑉𝑀𝑖
)

𝑇𝑉𝑀𝑖

⌋ 𝑇𝑉𝑀𝑖
) , 𝐶𝑉𝑀𝑖

)) (19)

For fixed 𝑇𝑉𝑀𝑖
, 𝐶𝑉𝑀𝑖

 and 𝑅𝑉𝑀𝑖
, Figure 8 shows that 𝑡′ =

𝑓(𝑡, 𝑇𝑉𝑀2
, 𝐶𝑉𝑀2

, 𝑅𝑉𝑀2
) is an increasing function that consists of straight line

segments from(((𝑛 + 1)𝑇𝑉𝑀i
− 2𝐶𝑉𝑀i

+ 𝑅𝑉𝑀i
), 𝑛𝐶𝑉𝑀i

) to (((𝑛 + 1)𝑇𝑉𝑀i
−

150

𝐶𝑉𝑀i
+ 𝑅𝑉𝑀i

), (𝑛 + 1)𝐶𝑉𝑀i
) for n = 0, 1, 2…., As a result,

𝑓(𝑡, 𝑇𝑉𝑀i
, 𝐶𝑉𝑀i

, 𝑅𝑉𝑀𝑖
) = ⌊

𝑡 − (𝑇𝑉𝑀𝑖
+ 𝑅𝑉𝑀𝑖

− 2𝐶𝑉𝑀𝑖
)

𝑇𝑉𝑀i

⌋ 𝐶𝑉𝑀i
+

 𝑚𝑖𝑛 ((𝑡 − (𝑇𝑉𝑀𝑖
+ 𝑅𝑉𝑀𝑖

− 2𝐶𝑉𝑀𝑖
)) −

 ⌊
𝑡−(𝑇𝑉𝑀𝑖

+𝑅𝑉𝑀𝑖
−2𝐶𝑉𝑀𝑖

)

𝑇𝑉𝑀i

⌋ 𝑇𝑉𝑀i
), 𝐶𝑉𝑀i

) (20)

The number of complete periods of length 𝑇𝑉𝑀𝑖
, with execution 𝐶𝑉𝑀𝑖

, that are

covered by t for the worst-case scenario is shown in Figure 9, and Equation

21 shows the general inverse function that maps virtual time to the worst-case

real-time for 𝑉𝑀𝑖.

𝑓−1(𝑡, 𝑇𝑉𝑀𝑖
, 𝐶𝑉𝑀𝑖

, 𝑅𝑉𝑀𝑖
) = (𝑇𝑉𝑀𝑖

− 2𝐶𝑉𝑀𝑖
+ 𝑅𝑉𝑀𝑖

) + 𝑡 + (⌈
𝑡

𝐶𝑉𝑀𝑖

⌉ −

1) (𝑇𝑉𝑀𝑖
− 𝐶𝑉𝑀𝑖

) (21)

 with 0 ≤ 𝑖 ≤ 𝑘 and 𝑅𝑉𝑀𝑖
= 𝐶𝑉𝑀𝑖

+ ∑ ⌈
𝑅𝑉𝑀𝑖

𝑇𝑉𝑀𝑚

⌉ 𝐶𝑉𝑀𝑚

𝑖−1
𝑚=1

The worst-case response time 𝑟𝑖,𝑗 for task 𝜏𝑖,𝑗 is (𝑅𝑖,𝑗 is defined in Equation 1)

𝑟𝑖,𝑗 = 𝑓−1(𝑅𝑖,𝑗 , 𝑇𝑉𝑀𝑖
, 𝐶𝑉𝑀𝑖

, 𝑅𝑉𝑀𝑖
).

The function in Equation 21 becomes equal to the pessimistic case when

𝑅𝑉𝑀𝑖
= 𝑇𝑉𝑀𝑖

.

151

Figure 9. The (pseudo-) inverse function for 𝑉𝑀𝑖.

4.1.5 Accounting for Overhead

Whenever a preemption takes place, different sources of overhead should be

taken into account. Previous studies have considered overhead in

compositional real-time systems [23], [24]. There are two important

differences between these studies and our study:

First, in the previous studies the authors did not assume that we have

information about the entire work-load i.e. they assumed the pessimistic

approach.

Second, in compositional real-time systems the components are abstractions

and do not correspond to any execution time entity such as a VM. In our

approach we inflate the execution time of each VM to compensate for context

152

switching overhead between VMs (see Fig 10).

Figure 10. The worst-case scenario for 𝑉𝑀𝑖 with overhead.

Overhead due to context switching between tasks inside a VM is orthogonal

to our approach and can be handled in the same way as in non-virtualized

systems, e.g. by inflating the execution times of the real-time tasks.

In every execution cycle, the VM worst-case execution time is inflated by an

𝑋 which is an accumulation of cache overhead, release overhead, and some

other overheads that are part of a context switch. The maximum number of

preemptions suffered by a given VM is bounded by the number of releases of

higher priority VMs within its response time 𝑅𝑉𝑀. E.g. in Figure 10, 𝑉𝑀𝑖 with

153

𝑖 = 3, has 4𝑋 overhead, 1𝑋 is the initial startup overhead of the 𝑉𝑀3, 2𝑋

preemptions from 𝑉𝑀1 and 1𝑋 from 𝑉𝑀2 in the worst-case scenario. Figure11

shows the pseudo-inverse function for VM𝑖 with overhead. The inflated

execution time is given by Equation 22

𝐶𝑉𝑀𝑖

′ = 𝐶𝑉𝑀𝑖
+ 𝑋 + ∑ (⌈

𝑅𝑉𝑀𝑖
′

𝑇𝑉𝑀𝑘

⌉ 𝑋)𝑖−1
𝑘=1 (22)

And the inflated response time is given by Equation 23

𝑅𝑉𝑀𝑖

′ = 𝐶𝑉𝑀𝑖

′ + ∑ (⌈
𝑅𝑉𝑀𝑖

′

𝑇𝑉𝑀𝑗

⌉ 𝐶𝑉𝑀𝑗

′)𝑖−1
𝑗=1 (23)

154

Figure 11. The (pseudo-)inverse function for VM𝑖 with overhead.

Figure 12. The algorithm flow chart to find 𝐶𝑉𝑀𝑖

′ and 𝑅𝑉𝑀𝑖

′ .

Equation 22 and 23 are solved using numeric iterative method, Figure12

describes this algorithm, below is the description of Figure12.

1. Inflated execution time is initialized, i.e. 𝐶𝑉𝑀𝑖

′ = 𝐶𝑉𝑀𝑖
+ 𝑖𝑋

2. Inflated response time 𝑅𝑉𝑀𝑖

′ is calculated using initial inflated

execution time.

155

3. Inflated execution time 𝐶𝑉𝑀𝑖

′ is calculated, this 𝐶𝑉𝑀𝑖

′ is again used to

calculate 𝑅𝑉𝑀𝑖

′ , this step iterates until 𝑅𝑉𝑀𝑖

′ value does not change

anymore.

4. If 𝑅𝑉𝑀𝑖

′ value does not change anymore, then we get the value for

𝑅𝑉𝑀𝑖

′ , and for 𝐶𝑉𝑀𝑖

′ .

E.g. in Figure10, if i = 3, 𝐶𝑉𝑀1
= 1, 𝐶𝑉𝑀2

= 1, 𝐶𝑉𝑀3
= 1, 𝑇𝑉𝑀1

= 6, 𝑇𝑉𝑀2
=

12, 𝑇𝑉𝑀3
= 14, and X = 1,

𝐶𝑉𝑀1

′ = 𝐶𝑉𝑀1
+ 𝑋 = 2, since 𝑉𝑀1 has the highest priority, 𝑅𝑉𝑀1

′ = 2.

For 𝑉𝑀2 we have,

𝐶𝑉𝑀2

′ = 𝐶𝑉𝑀2
+ 2𝑋 = 3, 𝑅𝑉𝑀2

′ = 3 + ⌈
3

6
⌉ 2 = 5, 𝐶𝑉𝑀2

′ = 2 + ⌈
5

6
⌉ 1 = 3,

𝑅𝑉𝑀2

′ = 3 + ⌈
5

6
⌉ 2 = 5,

 Therefore 𝑅𝑉𝑀2

′ = 5, 𝐶𝑉𝑀2

′ = 3

For 𝑉𝑀3 we have,

 𝐶𝑉𝑀3

′ = 𝐶𝑉𝑀3
+ 3𝑋 = 4, 𝑅𝑉𝑀3

′ = 4 + ⌈
4

6
⌉ 2 + ⌈

4

12
⌉ 3 = 9, 𝐶𝑉𝑀3

′ = 2 +

⌈
9

6
⌉ 1 + ⌈

9

12
⌉ 1 = 5

𝑅𝑉𝑀3

′ = 5 + ⌈
9

6
⌉ 2 + ⌈

9

12
⌉ 3 = 12, 𝐶𝑉𝑀3

′ = 2 + ⌈
12

6
⌉ 1 + ⌈

12

12
⌉ 1 = 5, 𝑅𝑉𝑀3

′ =

5 + ⌈
12

6
⌉ 2 + ⌈

12

12
⌉ 3 = 12

Therefore 𝑅𝑉𝑀3

′ = 12, 𝐶𝑉𝑀3

′ = 5

In the optimistic case, while considering the overhead, the pseudo-inverse

function to calculate the worst case response time is given by Equation 24

𝑓−1(𝑡, 𝑇𝑉𝑀𝑖
, 𝐶𝑉𝑀𝑖

, 𝑅𝑉𝑀𝑖

′) = (𝑇𝑉𝑀𝑖
− 2𝐶𝑉𝑀𝑖

+ 𝑅𝑉𝑀𝑖

′) + 𝑡 + (⌈
𝑡

𝐶𝑉𝑀𝑖

⌉ −

156

1) (𝑇𝑉𝑀𝑖
− 𝐶𝑉𝑀𝑖

) (24)

Let 𝐶𝑉𝑀𝑗

′ denotes the inflated worst-case execution time for 𝑉𝑀𝑗. In that case

we make pessimistic but safe assumption by accumulating all the overhead at

the beginning of every execution cycle. This gives a straight forward way of

estimating the maximum overhead that a VM will face in every period. E.g. if

𝑉𝑀𝑖 is released there is an overhead represented by one X, and it is preempted

2 times by 𝑉𝑀2 and 2 times by 𝑉𝑀1, in Figure 10, all X values will be added

up, hence the total overhead is 5X.

Figure 11 shows the minimum time t that 𝑉𝑀𝑖 can run. The worst-case is when

t starts right after 𝑉𝑀𝑖 has finished an execution period that started directly

after a release of 𝑉𝑀𝑖. The worst-case execution time 𝐶𝑉𝑀 of higher priority

VMs becomes 𝐶𝑉𝑀
′ after overhead inflation. In order to find the worst-case

response time of 𝑉𝑀𝑖 during time t we consider a case when all VMs are

released at the same time.

4.1.6 Example when overhead is omitted

Tables 1 and 2 contain details about two programs: program one is executed in virtual

machine one (𝑉𝑀1) and program two is executed in virtual machine two (𝑉𝑀2);

each program has 3 tasks.

Table 1. Program one with 3 tasks executing in 𝑉𝑀1

Task Period (Ti,j) Worst-case execution time (Ci,j) Utilization (Ui,j)

τ1,1 16 2 2/16 = 0.125

τ1,2 24 1 1/24 = 0.042

τ1,3 36 4 4/36 = 0.111

Total Utilization 0.278

157

Table 2. Program two with 3 tasks executing in 𝑉𝑀2
Task Period (Ti,j) Worst-case execution time

(Ci,j)

Utilization (Ui,j)

τ2,1 28 1 1/28 = 0.035

τ2,2 34 1 1/34 = 0.029

τ2,3 38 2 2/38 = 0.052

Total Utilization 0.116

 First, we use the pessimistic method where we look at each VM in isolation.

Let us assume that 𝑉𝑀1 uses 40%, and VM2 uses 30%, of the CPU, i.e.

CVM1
TVM1

⁄ = 0.4 and CVM1
TVM1

⁄ = 0.3.

When 𝐶𝑉𝑀1
𝑇𝑉𝑀1

⁄ = 0.4, we can replace 𝐶𝑉𝑀1
 by 0.4 𝑇𝑉𝑀1

 in Equation 5, thus

obtaining the function 𝑓−1(𝑡, 𝑇𝑉𝑀1
, 0.4𝑇𝑉𝑀1

) = 1.2𝑇𝑉𝑀1
+ 𝑡 + (⌈

𝑡

0.4𝑇𝑉𝑀1

⌉ −

1) 0.6𝑇𝑉𝑀1

We start by looking at 𝑉𝑀1 and task 𝜏1,1 . We want to find the maximum 𝑇𝑉𝑀1

such that;

𝑟1,1 = 𝑓−1(𝑅1,1, 𝑇𝑉𝑀1
, 0.4𝑇𝑉𝑀1

) ≤ 𝑇1,1

𝑅1,1 = 𝐶1,1 , since τ1,1 has the highest priority in Program one. Therefore, we

get the equation

 1.2 𝑇𝑉𝑀1
+ 2 + (⌈

2

0.4𝑇𝑉𝑀1

⌉ − 1) 0.6𝑇𝑉𝑀1
= 16,

which gives 𝑇𝑉𝑀1
= 11.7 and 𝐶𝑉𝑀1

= 0.4 ∗ 11.7 = 4.68.

The first execution period will, in the worst-case, start at time 2(𝑇𝑉𝑀1
−

𝐶𝑉𝑀1
) = 1.2𝑇𝑉𝑀1

= 14. Since 𝑇1,1 = 16 and 𝐶1,1 = 2 we see that 𝜏1,1 will

execute two times back-to-back in this interval, i.e. after the first execution of

158

𝜏1,1 it will be released again at time 16. Consequently, 𝜏1,2 cannot start

executing until time 18. The first execution period of 𝑉𝑀1 will end at 2𝑇𝑉𝑀1
−

𝐶𝑉𝑀1
= 1.6 𝑇𝑉𝑀1

= 1.6 ∗ 11.7 = 18.7. Since 𝐶1,2 = 1, it cannot complete

during the first period of 𝑉𝑀1. The second period of 𝑉𝑀1 starts at 3𝑇𝑉𝑀1
−

2𝐶𝑉𝑀1
= 2.2 𝑇𝑉𝑀1

= 2.2 ∗ 11.7 = 25.7 which is after the deadline of τ1,2

(𝑇1,2 = 24). Task τ1,3 will also miss its deadline. In [3] the authors looked at

this task set and found that 10.8 is the largest period that τ1,2 can tolerate and

that 10 is the largest period that τ1,3 can tolerate, when 𝐶𝑉𝑀1
𝑇𝑉𝑀1

⁄ = 0.4.

This means that the maximum period 𝑇𝑉𝑀1
 that will guarantee that all three

tasks will meet their deadlines is 10 when 𝐶𝑉𝑀1
𝑇𝑉𝑀1

⁄ = 0.4 .

 For 𝑉𝑀2, with 𝐶𝑉𝑀2
= 0.3𝑇𝑉𝑀2

, the inverse function in Equation 5 becomes

𝑓−1(𝑡, 𝑇𝑉𝑀2
, 0.3𝑇𝑉𝑀2

) = 1.4𝑇𝑉𝑀2
+ 𝑡 + (⌈

𝑡

0.3𝑇𝑉𝑀2

⌉ − 1) 0.7𝑇𝑉𝑀2

By using the method above we get 𝑇𝑉𝑀2
= 19.28, and thus 𝐶𝑉𝑀2

= 0.3 ∗

19.28 = 5.78 which makes all tasks in 𝑉𝑀2 meet their deadline when

𝐶𝑉𝑀1
𝑇𝑉𝑀1

⁄ = 0.3.

We now use our method where we consider all VMs. We are again using

fixed priorities, and the examples in tables 1 and 2. Program one is

scheduled on 𝑉𝑀1, and we now know that 𝑉𝑀1 has the highest priority.

Therefore, we use the inverse function in Equation 11 to calculate the

maximum 𝑇𝑉𝑀1
 such that we know that task τ1,1 meets its deadline.

 𝑓−1(𝑡, 𝑇𝑉𝑀1
, 0.4𝑇𝑉𝑀1

) = 0.6𝑇𝑉𝑀1
+ 𝑡 + (⌈

𝑡

0.4𝑇𝑉𝑀1

⌉ − 1) 0.6𝑇𝑉𝑀1

We want to find the maximal 𝑇𝑉𝑀1
 such that 𝑟1,1 =

𝑓−1(𝑅1,1, 𝑇𝑉𝑀1
, 0.4𝑇𝑉𝑀1

) ≤ 𝑇1,1

Note that 𝑅1,1 = 𝐶1,1 , since 𝜏1,1 has the highest priority in Program one.

From this we get 0.6𝑇𝑉𝑀1
+ 2 + (⌈

2

0.4𝑇𝑉𝑀1

⌉ − 1) 0.6𝑇𝑉𝑀1
= 16

 From this we get 𝑇𝑉𝑀1
= 23.33 . If we have a period of 23.33 we get 𝐶𝑉𝑀1

=

0.4 ∗ 23.33 = 9.33. The first execution period 𝐶𝑉𝑀1
 will in the worst-case

start at time at 𝑇𝑉𝑀1
− 𝐶𝑉𝑀1

= 14 and it will end at 𝑇𝑉𝑀1
= 23.33. Since

159

T1,1 = 16 and C1,1 = 2 we see that τ1,1 will execute two times back-to-back

in this interval, i.e. after the first execution of τ1,1 from 14 to 16, and task τ1,1

will be released again at time 16 and execute from 16 to 18. Since C1,2 = 1

and τ1,2 = 24, τ1,2 will execute from 18 to 19. It is clear that τ1,3 will also

execute in the first cycle from 19 to 23, since C1,3 = 4. It is thus clear that all

tasks in 𝑉𝑀2 will meet their deadlines for 𝑇𝑉𝑀1
= 23.33 when 𝐶𝑉𝑀1

𝑇𝑉𝑀1
⁄ =

0.4.

We now do the same thing for 𝑉𝑀2. 𝑉𝑀2 has the second highest priority, and

may be interrupted by 𝑉𝑀1. We use the inverse function in Equation 15, and

𝐶𝑉𝑀2
= 0.3𝑇𝑉𝑀2

. The worst-case response time (see Equation 17) 𝑟2,1 =

𝑓−1(𝑅2,1, 𝑇𝑉𝑀2
, 𝐶𝑉𝑀2

, 𝑅𝑉𝑀2
) ≤ 𝑇2,1 = 28 (N.B. 𝑅2,1= 𝐶2,1)

With 𝑅𝑉𝑀2
= 𝐶𝑉𝑀2

+ ⌈
𝑅𝑉𝑀2

𝑇𝑉𝑀1

⌉ 𝐶𝑉𝑀1
, and 𝐶𝑉𝑀2

= 0.3𝑇𝑉𝑀2
 we get 𝑅𝑉𝑀2

=

 0.3𝑇𝑉𝑀2
+ ⌈

𝑅𝑉𝑀2

23.33
⌉ 9.33. By using our formulas we see that 𝑟2,1 = 28 for 𝑇𝑉𝑀2

= 25.24, i.e. this is the maximum period for 𝑉𝑀2 that task τ2,1 can

tolerate, 𝐶𝑉𝑀2
= 7.57, and 𝑅𝑉𝑀2

= 16.9. The first execution period 𝐶𝑉𝑀2
 will

in the worst-case start at time at 𝑇𝑉𝑀2
− 2𝐶𝑉𝑀2

+ 𝑅𝑉𝑀2
= 27 and it will end

at 𝑇𝑉𝑀2
−𝐶𝑉𝑀2

+ 𝑅𝑉𝑀2
= 34.57 Since 𝑇2,1 = 28 and 𝐶2,1 = 1 we see that

τ2,1 will execute two times back-to-back in this interval, i.e. after the first

execution of τ2,1 from 27 to 28, it will be released again at time 28 and

executes from 28 to 29. Since 𝐶2,2 = 1 and 𝑇2,2 = 34, τ2,2 will execute from

29 to 30. It is clear that τ2,3 will also execute in the first cycle from 30 to 32

since 𝐶2,3 = 2 and 𝑇2,3 = 38. It is thus clear that all tasks in 𝑉𝑀2 will meet

their deadlines. As shown in the example, the method that looks at all VMs,

gives longer periods than the method that takes each VM individually. E.g.

𝑇𝑉𝑀1
increases from 10 to 23.33 and 𝑇𝑉𝑀2

 increases from 19.28 to 25.24.

Figures 13 (a), (b), (c) show the values that 𝑇𝑉𝑀 can take with respect to

different values of 𝐶𝑉𝑀𝑖
/𝑇𝑉𝑀𝑖

. Pessimistic means that we treat each VM in

isolation, whereas optimistic means that we considered all VMs. The detailed

example above is extended below; we calculate the maximal 𝑇𝑉𝑀𝑖
 for each of

the ni tasks in the program, such that 𝑟𝑖,𝑗 ≤ 𝑇𝑖,𝑗 for 𝐶𝑉𝑀𝑖
= 𝑢𝑇𝑉𝑀𝑖

 (u is the

𝐶𝑉𝑀𝑖
/𝑇𝑉𝑀𝑖

 value that we consider, i.e. the values on the x-axis) and then we

160

choose the shortest of these ni values on 𝑇𝑉𝑀𝑖
. We call this value the minimum

of the maximum (min max) 𝑇𝑉𝑀𝑖
. Figure 13 (a) shows (min max) 𝑇𝑉𝑀1

 as a

function of 𝐶𝑉𝑀1
𝑇𝑉𝑀1

⁄ , the detailed example above corresponds to the value

0.4 on the x-axis.

Figure 13. (a) 𝐶𝑉𝑀1
𝑇𝑉𝑀1

⁄ versus minimum of the max 𝑇𝑉𝑀1
, (b) 𝐶𝑉𝑀2

𝑇𝑉𝑀2
⁄

versus minimum of the max 𝑇𝑉𝑀2
 when 𝐶𝑉𝑀1

𝑇𝑉𝑀1
⁄ = 0.3, (c) 𝐶𝑉𝑀2

𝑇𝑉𝑀2
⁄

versus minimum of the max 𝑇𝑉𝑀2
 when 𝐶𝑉𝑀1

𝑇𝑉𝑀1
⁄ = 0.4

If we consider the case where we have knowledge about one VM only, we

have to make pessimistic assumption, we see that 𝑇𝑉𝑀1
 is shorter than the case

when we have knowledge of all VMs, i,e., the optimistic case.

Figures 13(b) and (c) plot 𝑇𝑉𝑀2
 versus 𝐶𝑉𝑀2

𝑇𝑉𝑀2
⁄ for 𝐶𝑉𝑀1

𝑇𝑉𝑀1
⁄ = 0.3 and

 𝐶𝑉𝑀1
𝑇𝑉𝑀1

⁄ = 0.4, respectively (the pessimistic values are not affected by

161

𝐶𝑉𝑀1
𝑇𝑉𝑀1

⁄ , and are thus the same in both Figures). The detailed example

above corresponds to the value 0.3 on the x-axis in Figure 13(c). The resource

allocated to 𝑉𝑀2 should be less or equal to 1 − 𝐶𝑉𝑀1
𝑇𝑉𝑀1

⁄ , since

(𝐶𝑉𝑀1
𝑇𝑉𝑀1

)⁄ + (𝐶𝑉𝑀2
𝑇𝑉𝑀2

)⁄ cannot exceed 1.

It may seem counter intuitive that the period 𝑇𝑉𝑀2
 of the optimistic case may

decrease when we increase 𝐶𝑉𝑀2
𝑇𝑉𝑀2

⁄ . The reason for this is that when we

increase 𝐶𝑉𝑀2
𝑇𝑉𝑀2

⁄ , then 𝐶𝑉𝑀2
 also increases, and this affects 𝑅𝑉𝑀2

. When

𝐶𝑉𝑀2
𝑇𝑉𝑀2

⁄ goes from 0.4 to 0.5, then 𝑅𝑉𝑀2
 will increase since 𝐶𝑉𝑀1

will

interfere two times since 𝑅𝑉𝑀2
≥ 𝑇𝑉𝑀1

 (remember 𝑅𝑉𝑀2
= 𝐶𝑉𝑀2

+

⌈
𝑅𝑉𝑀2

𝑇𝑉𝑀1

⌉ 𝐶𝑉𝑀1
).

In the optimistic case we use the (safe but actually somewhat pessimistic)

assumption that in the worst-case 𝑉𝑀2 may not start running until 𝑅𝑉𝑀2
– 𝐶𝑉𝑀2

time units after the release. To compensate for the double interference from

𝐶𝑉𝑀1
, 𝑇𝑉𝑀2

 decreases when 𝐶𝑉𝑀2
𝑇𝑉𝑀2

⁄ increases from 0.4 to 0.5 in Figure 13

(b). The drops of 𝑇𝑉𝑀2
 in Figure 13 (c) are due to the same effect.

4.1.7 Simulations

The scheduling of tasks inside each VM uses RMS. We consider 8 programs

that run in one VM each. Each program is a task set of 10 tasks. Tasks periods

are randomly generated with a uniform distribution. We assume that the

average task periods are not the same in all programs, and we generated

random periods for the intervals [200, 800], [300, 900], [400, 1000],…, [900,

1500] for tasks inside 𝑉𝑀1, 𝑉𝑀2,…, 𝑉𝑀8 respectively. We see that task

periods overlap and we sorted the VMs in increasing average period order.

Inspired by the well-known RMS algorithm, we decided to use the average

periods as the basis for assigning static priorities to VMs, i.e. 𝑉𝑀1 has the

highest priority and 𝑉𝑀8 has the lowest priority. We simulated four cases,

case 1 with one VM, case 2 with two VMs, case 3 with four VMs and case 4

with eight VMs.

Each case is simulated for different total utilizations U [0.1, 0.2,…, 0.8]; the

utilization is for the entire set of VMs in the simulation, and each VM has the

same utilization. For example if we have two VMs and a utilization of 0.6,

162

then VMs equally share this utilization, i.e. each VM has a total utilization of

0.3. When we have total utilization of a VM, we distribute this total utilization

to the 10 tasks inside that VM using the Uunifast algorithm [28]. Each task’s

execution 𝐶𝑖,𝑗 is then obtained by multiplying the utilization of the task with

the task’s period.

 Each VM will get a period that is half of the shortest period of any task in that

VM, which seems to be a reasonable heuristic. The hypervisor will assign a

priority to each VM based on the VM period length, the shorter the higher

priority. Thereafter, it will find a 𝐶𝑉𝑀 that makes the task set schedulable using

Equation 5 for the pessimistic case, and Equation 21 for the optimistic case,

or Equation 24 if overhead is included. The simulation is done for the

pessimistic and the optimistic methods. We repeated each unique case 20

times to be able to calculate average values and standard deviations. E.g. one

unique case is 4 VMs and a total utilization of 0.4, another one unique case is

4 VMs and a total utilization of 0.6. We used the Matlab scheduling toolbox

TORSCHE (Time Optimization of Resources, SCHEduling) in our

simulations [29], [30].

We repeated the simulation for different overhead values (X values) X=

[0,1,2,…,9] , zero means the absence of overhead and the results are presented

in Figure 15. Figures 14 (a), (b),(c),(d) show the 𝐶𝑉𝑀 𝑇𝑉𝑀⁄ versus total task

utilization and the standard deviation of 𝐶𝑉𝑀 𝑇𝑉𝑀⁄ . The figures show that total

𝐶𝑉𝑀 𝑇𝑉𝑀⁄ increases as the number of VMs increases. These figures also show

that the optimistic method performs better than the pessimistic method for all

cases. Figure 15 shows that the impact of overhead becomes larger when there

are more VMs, e.g. the slope in the overhead weight direction of the planes in

Figure 15 is larger for the cases with 4 and 8 VMs compared to the cases with

only 1 or 2 VMs. The reason for this is that low priority VMs will suffer from

more VM context switches compared to high priority VMs (see Figure 10).

163

Figure 14. (a) 𝐶𝑉𝑀 𝑇𝑉𝑀⁄ versus Total utilization for 1 VM, (b) 𝐶𝑉𝑀 𝑇𝑉𝑀⁄ versus

Total utilization for 2 VMs,

(c) 𝐶𝑉𝑀 𝑇𝑉𝑀⁄ versus Total utilization for 4 VMs, (d) 𝐶𝑉𝑀 𝑇𝑉𝑀⁄ versus Total

utilization for 8 VMs

164

Figure 15. 𝐶𝑉𝑀 𝑇𝑉𝑀⁄ versus Total utilization for optimistic case.

4.1.8 Conclusions

In this paper we have extended previous results on two-level (sometimes

called hierarchical) scheduling of virtual machines (VMs). Previous studies

have considered each VM in isolation. Our contribution is that we have taken

a holistic approach and included the entire work-load consisting of k VMs in

our method. A simulation study shows that our approach makes it possible to

guarantee real-time response requirements for more cases (higher loads)

compared to the previous approach (where each VM is analyzed in isolation).

Whether the overhead is accounted or ignored; we have defined a function

𝑓−1(𝑡, 𝑇𝑉𝑀𝑖
, 𝐶𝑉𝑀𝑖

, 𝑅𝑉𝑀𝑖
) that returns the maximum (worst-case) wall clock

time that is needed in order to guarantee that 𝑉𝑀𝑖 has executed at least t time

units. 𝑇𝑉𝑀𝑖
 is the period of 𝑉𝑀𝑖, 𝐶𝑉𝑀𝑖

 is the time 𝑉𝑀𝑖 has to execute each

period, and 𝑅𝑉𝑀𝑖
 denotes the worst-case response time of 𝑉𝑀𝑖, i.e. the

maximum time it may take until 𝑉𝑀𝑖 has executed 𝐶𝑉𝑀𝑖
 time units after a

release. Each 𝑉𝑀𝑖, (1 ≤ 𝑖 ≤ 𝑘) runs a real-time program that consists of 𝑛𝑖

165

tasks 𝜏𝑖,𝑗 (1 ≤ 𝑗 ≤ 𝑛𝑖), i.e. 𝜏𝑖,𝑗 denotes task j in 𝑉𝑀𝑖. Each task 𝜏𝑖,𝑗 is defined

by its worst-case execution time 𝐶𝑖,𝑗 and period 𝑇𝑖,𝑗. For a fixed 𝐶𝑉𝑀𝑖
𝑇𝑉𝑀𝑖

⁄

our function and the method described here make it possible to find a maximal

period 𝑇𝑉𝑀𝑖
 for 𝑉𝑀𝑖 such that tasks meet their deadlines. Furthermore, we can

also use our function and method for finding the minimum 𝐶𝑉𝑀𝑖
𝑇𝑉𝑀𝑖

⁄ given

a 𝑇𝑉𝑀𝑖
, such that all tasks meet their deadlines.

We have included a detailed example that explains the reasons why our

holistic method (called optimistic method in the paper) performs better than

the previous approach that considered each VM in isolation (called pessimistic

method in the paper). This quantifies how much optimistic method saves

resource than pessimistic method.

If we do not consider context switching overhead, the minimum resource

utilization is trivially obtained when the period of each VM is infinitely small.

Having infinitely small VM periods is of course not realistic, and to be able to

calculate the real optimal length of VM periods we have introduced an

overhead model. Simulations show (and quantify) that the context switching

overhead becomes more significant when many VMs share the same hardware

resource.

Acknowledgements
This work is part of the research project "Scalable resource-efficient systems

for big data analytics" funded by the Knowledge Foundation (grant:

20140032) in Sweden.

References

[1] H. Salimi, M. Najafzadeh, and M. Sharifi, “Advantages, Challenges and

Optimization of Virtual Machine Scheduling in Cloud Computing

Environments,” International Journal of Computer Theory and Engineering,

vol. 4, no. 2, pp. 189–193, 2012.

[2] L. Abeni and T. Cucinotta, “Efficient virtualisation of real-time activities,” in

Service-Oriented Computing and Applications (SOCA), 2011 IEEE

International Conference on, pp. 1–4, 2011.

166

[3] L. Lundberg and S. Shirinbab, “Real-time scheduling in cloud-based virtualized

software systems,” in Proceedings of the Second Nordic Symposium on Cloud

Computing & Internet Technologies, pp. 54–58, 2013.

[4] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in

a hard-real-time environment,” Journal of the ACM (JACM), vol. 20, no. 1, pp.

46–61, 1973.

[5] L. Lundberg, “Analyzing fixed-priority global multiprocessor scheduling,” in

Eighth IEEE Real-Time and Embedded Technology and Applications

Symposium, 2002. Proceedings, pp. 145–153, 2002.

[6] M. Lee, A. S. Krishnakumar, P. Krishnan, N. Singh, and S. Yajnik, “Supporting

soft real-time tasks in the xen hypervisor,” in Proceedings of the 6th ACM

SIGPLAN/SIGOPS international conference on Virtual execution

environments, New York, NY, USA, pp. 97–108, 2010.

[7] S. Xi, J. Wilson, C. Lu, and C. Gill, “RT-Xen: Towards real-time hypervisor

scheduling in Xen,” in 2011 Proceedings of the International Conference on

Embedded Software (EMSOFT), pp. 39–48, 2011.

[8] K. J. Duda and D. R. Cheriton, “Borrowed-virtual-time (BVT) scheduling:

supporting latency-sensitive threads in a general-purpose scheduler,” in ACM

SIGOPS Operating Systems Review, vol. 33, pp. 261–276, 1999.

[9] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. K. Baruah, J. E. Gehrke, and C. G.

Plaxton, “A proportional share resource allocation algorithm for real-time,

time-shared systems,” in Real-Time Systems Symposium, 1996., 17th IEEE,

pp. 288–299, 1996.

[10] J. Nieh and M. S. Lam, “A SMART scheduler for multimedia applications,”

ACM Transactions on Computer Systems (TOCS), vol. 21, no. 2, pp. 117–163,

2003.

[11] S. Liu, G. Quan, and S. Ren, “On-Line Scheduling of Real-Time Services for

Cloud Computing,” in 2010 6th World Congress on Services (SERVICES-1),

pp. 459–464, 2010.

[12] B. Lin and P. A. Dinda, “Vsched: Mixing batch and interactive virtual machines

using periodic real-time scheduling,” in Proceedings of the 2005 ACM/IEEE

conference on Supercomputing, pp. 8, 2005.

167

[13] X. Feng and A. K. Mok, “A model of hierarchical real-time virtual resources,”

in Real-Time Systems Symposium, 2002. RTSS 2002. 23rd IEEE, pp. 26–35,

2002.

[14] I. Shin and I. Lee, “Periodic resource model for compositional real-time

guarantees,” in Real-Time Systems Symposium, 2003. RTSS 2003. 24th IEEE,

pp. 2–13, 2003.

[15] I. Shin and I. Lee, “Compositional real-time scheduling framework with

periodic model,” ACM Transactions on Embedded Computing Systems

(TECS), vol. 7, no. 3, pp. 30, 2008.

[16] G. Lipari and E. Bini, “A methodology for designing hierarchical scheduling

systems,” Journal of Embedded Computing, vol. 1, no. 2, pp. 257–269, 2005.

[17] R. I. Davis and A. Burns, “Hierarchical fixed priority pre-emptive scheduling,”

in Real-Time Systems Symposium, 2005. RTSS 2005. 26th IEEE International,

p. 10–pp, 2005.

[18] L. Lundberg, “Utilization based schedulability bounds for age constraint

process sets in real-time systems,” Real-Time Systems, vol. 23, no. 3, pp. 273–

295, 2002.

[19] T. Cucinotta, G. Anastasi, and L. Abeni, “Respecting Temporal Constraints in

Virtualised Services,” in Computer Software and Applications Conference,

2009. COMPSAC ’09. 33rd Annual IEEE International, vol. 2, pp. 73–78,

2009.

[20] J. Lee, S. Xi, S. Chen, L. T. Phan, C. Gill, I. Lee, C. Lu, and O. Sokolsky,

“Realizing compositional scheduling through virtualization,” in Real-Time and

Embedded Technology and Applications Symposium (RTAS), 2012 IEEE

18th, pp. 13–22, 2012.

[21] W. Lunniss, S. Altmeyer, G. Lipari, and R. I. Davis, “Accounting for Cache

Related Pre-emption Delays in Hierarchical Scheduling,” University of York,

York, Technical Report YCS-2014-491 Available from http://www-users. cs.

york. ac. uk/∼ wlunniss, 2014.

[22] T. Cucinotta, D. Giani, D. Faggioli, and F. Checconi, “Providing performance

guarantees to virtual machines using real-time scheduling,” in Euro-Par 2010

Parallel Processing Workshops, pp. 657–664, 2011.

168

[23] S. Chen, L. T. Phan, J. Lee, I. Lee, and O. Sokolsky, “Removing abstraction

overhead in the composition of hierarchical real-time systems,” in Real-Time

and Embedded Technology and Applications Symposium (RTAS), 2011 17th

IEEE, pp. 81–90, 2011.

[24] L. T. Phan, M. Xu, J. Lee, I. Lee, and O. Sokolsky, “Overhead-aware

compositional analysis of real-time systems,” in Real-Time and Embedded

Technology and Applications Symposium (RTAS), 2013 IEEE 19th, pp. 237–

246, 2013.

[25] M. Xu, L. T. Phan, I. Lee, O. Sokolsky, S. Xi, C. Lu, and C. Gill, “Cache-aware

compositional analysis of real-time multicore virtualization platforms,” in

Real-Time Systems Symposium (RTSS), 2013 IEEE 34th, pp. 1–10, 2013.

[26] A. Burns and A. Wellings, Real-Time Systems and Programming Languages:

Ada, Real-Time Java and C/Real-Time POSIX. Addison-Wesley Educational

Publishers Inc, 2009.

[27] E. Bini, T. H. C. Nguyen, P. Richard, and S. K. Baruah, “A Response-Time

Bound in Fixed-Priority Scheduling with Arbitrary Deadlines,” IEEE

Transactions on Computers, vol. 58, no. 2, pp. 279–286, Feb. 2009.

[28] E. Bini and G. C. Buttazzo, “Measuring the performance of schedulability

tests,” Real-Time Systems, vol. 30, no. 1–2, pp. 129–154, 2005.

[29] M. Kutil, P. Sucha, R. Capek, and Z. Hanzalek, “Optimization and scheduling

toolbox,” Matlab—Modelling, Programming and Simulations, pp. 239–260,

2010.

[30] P. Sucha, M. Kutil, M. Sojka, and Z. Hanzálek, “TORSCHE scheduling toolbox

for Matlab,” in Computer Aided Control System Design, 2006 IEEE

International Conference on Control Applications, 2006 IEEE International

Symposium on Intelligent Control, 2006 IEEE, pp. 1181–1186, 2006.

169

Chapter Four

Section 2
Published as C. Niyizamwiyitira and L. Lundberg, “Period assignment in

real-time scheduling of multiple virtual machines,” in Proceedings of the 7th

International Conference on Management of computational and collective

intElligence in Digital EcoSystems, 2015, pp. 180–187.

170

Period assignment in real-time scheduling

of multiple virtual machines

Abstract
There are two levels of scheduling in real-time applications executing in a

virtualized environment: traditional real-time scheduling of the tasks in the

real-time application inside a Virtual Machine (VM), and scheduling of

different VMs on the hypervisor level. In order to save more resources, we

propose to schedule VMs that contains hard real-time application in an

optimistic manner by considering VMs as a whole instead of being isolated.

Based on the properties of the real-time applications inside the VMs, we

obtain (worst-case) execution times and periods for the VMs containing the

real-time applications. A VM’s period will be chosen according to the

requirement of the application that runs inside that VM. Through simulation,

we investigate the impact of the length of different VMs’ periods whether the

VM context switching overhead is present or not. The tradeoff between

resources consumption and period’s length is presented. The results show that

longer periods are better at handling higher overhead even with higher number

of VMs that share the same hardware.

Keywords

 Virtualization; Real-time scheduling; Hard- deadlines; Virtual Machine

scheduling; VM period assignment.

171

4.2.1 Introduction

As virtualization emerges, moving a real-time system with hard deadlines to

a virtualized environment where a number of Virtual Machines (VMs) share

the same physical computer becomes an important but also a challenging task.

The original real-time application was designed such that all tasks were

guaranteed to meet their deadlines provided that the physical computer was

fast enough. In a system with faster processors, and more cores, one would

like to put several VMs on the same physical hardware and some (or all) of

these VMs may contain real-time tasks with hard deadlines. A typical

application is the Infrastructure as a Service (IaaS) in cloud computing where

providers map virtual resources to physical resources in a scalable fashion,

i.e., a VM is allocated resources dynamically according to the workload, work

type, overhead, etc. This include real-time systems such as image and video

processing, navigation systems, voice and object recognition, etc.

 In order to take full advantage of the hardware, more than one VM may share

a processor core. This is the scenario that we consider in this study, i.e., k VMs

share the same processor core. Each VM contains a hard real-time application.

We assume that for each core, the identities of the VMs that share that core

are known and every VM is aware of its collocated VMs. We also assume that

these VMs are scheduled to the physical processor core using static priorities

and the server scheme is a periodic server. In such a system there will be

scheduling on two levels [1]. The first level is traditional real-time scheduling

of the tasks within a VM; two popular optimal algorithms are Rate Monotonic

Scheduling (RMS) where tasks are assigned static priorities based on

deadlines; and Earliest Deadline First (EDF) where task priorities are

dynamic. The second level is scheduling of VMs by the hypervisor; the

hypervisor is a VM monitor that controls several VMs on the same physical

hardware. In [2] the study looked at each VM in isolation, where the

hypervisor offers the resource to each individual VM assuming each VM is

isolated from the other; this could lead to excessive use of CPU resources (this

is referred as overprovisioning in Datacenter) and low network throughput

due to inter-VM communication overhead [3],[4]. In this paper we consider

172

that VMs will be aware of their co-resident VMs and run according to the

assigned priorities.

On one hand, when we use longer periods for the VMs, we must increase the

processor resources in order to make sure that all tasks will meet their

deadlines [2]. On the other hand, short periods cause significant switching

overhead between VMs. Therefore, we need to calculate a VM’s period TVM

that minimizes the VM computation resource consumption (CVM TVM⁄ , where

CVM is the time that VM must execute during each period TVM) and at the

same time reduce the number of context switches. The contribution of this

paper is to investigate how TVM affects the VM’s need for computation

resource (CVM TVM⁄), as a result, the tradeoff between CVM TVM⁄ and TVM is

presented. We use heuristic method to find TVM that makes the tasks inside a

VM to be schedulable. Previous studies assumed that TVM equals to a half of

the shortest task’s period [5]. The methodology to conduct this study is

simulation. The contribution of this paper is the investigation of VMs’ periods

length in the presence of context switch and scheduling overhead, this is

important since the period of a VM can be allocated in elastic manner. The

measurements show that the overhead is compensated by higher VM’s period

(TVM) especially for higher number of VMs that share the same computing

resource. The motivation of this paper is scheduling real-time applications

with hard deadline in cloud computing on level of IaaS, where VMs share the

same hardware can run real-time applications with hard deadline. In this case

VMs are allocated a period and execution time in such a way that the

application meets deadline.

The rest of this paper is as follows: Section 2 gives the background and related

work, Section 3 contains the problem definition, Section 4 explains the

simulation study, Section 5 presents the results and discussion, and Section 6

draws conclusions.

4.2.2 Background and Related Work

Real-time scheduling theory (for non-virtualized systems) shows that the

minimum processor utilization for which a periodic real-time system can miss

173

a deadline, using fixed priority scheduling, decreases as the number of

processors increases, e.g., 69.3% for one processor systems [6] (using RMS).

And 53.2% for two processors system and then down to as little as 37.5% for

systems with infinite number of processors [7]. Consequently, compared to

multiprocessor systems, the processor utilization is in general higher for

systems with one processor. This is one reason why we have assumed that

each core of a multi-core processor contains a number of VMs and each VM

that contains a real-time application has only one (virtual) processor. Also,

most existing real-time applications are developed for systems with one

processor. An additional advantage of just having one virtual core in each VM

is that one can bind each VM to a physical core, thus minimizing

unpredictable dynamic cache effects, i.e., the processor cache will be cold

(empty) when a VM is migrated from one core to another. Such effects

become problematic in real-time systems since applications with hard

deadlines need to control the worst-case behavior. We, therefore, expect that

one future way of using virtualization will be that a VM containing a real-time

application will be bound to a processor core on modern multi-core hardware

server. In order to provide high hardware utilization we expect that many VMs

may share the same processor core. In [3], [4], it has been proven that aware

co-residents VMs that share the memory consume lower resource than

isolated VMs. In [2] the authors addressed the problem of scheduling hard

real-time applications in a VM. The authors proposed a technique such that

real-time applications could meet their deadlines when VMs are treated in

isolation. In [5], authors improve this technique by proposing a method that

treats all VMs as a whole and provides period (TVM) and execution time (CVM)

to all VMs that share the same processor. That method assumes that the entire

workload, consisting of multiple task sets (one task set in each VM, is known

and TVM equals to a half of the shortest task’s period. In this paper, we

investigate the performance and implications of using different periods’

length when assigning periods to VMs.

Previous studies show that when we use longer periods for the VMs, we must

increase the processor resource in order to make sure that all tasks will meet

their deadlines. On the other hand, short periods cause significant switching

overhead between VMs [2]. Studies have been done in adjusting tasks period

in real-time systems; in [8]–[10] the authors proved that adjusting task’s

174

period improved the schedulability of taskset at the same time reducing the

computation resources requirement. We also want to adjust VMs period in

order to avoid using excessive CPU resources.

In [1], [11], the authors proposed a variant constant bandwidth server

algorithm to schedule multiple VMs when RM or EDF schedulers were used

for tasks inside the VM. Based on KVM they assign parameters to servers for

given real-time applications so that the application is schedulable. They came

up with a pair (Q, P) where Q is the maximum execution time and P is the

server period that can make the application inside a server to be schedulable.

Whereas this paper investigates how to assign periods to multiple VMs, given

the periods and computational times of the tasks that run inside the VM while

considering the interaction of all VMs that share the same processor core.

A periodic resource model was proposed for compositional scheduling theory

by grouping multiple tasks’ requirements into a single task requirement in a

hierarchical order [12]. The model is related to our study since we also use

hierarchical scheduling. By use of a periodic resource model, the authors

developed a Compositional Scheduling Architecture (CSA) that is built on the

Xen virtualization platform. The architecture allows timing isolation among

virtual machines and supports timing guarantees for real-time tasks running

on each virtual machine [13]. Compositional scheduling theory was also

applied for multi-core VM scheduler for Xen real-time virtualization

platform. However, task’s migration across processor/core in the same VM

causes additional overhead [14]. And, according to Lundberg [7], when using

fixed priority scheduling, the processor utilization decreases as the number

of processors increases. Multi-core VMs thus result in very low processor

utilization. In this paper, we assume that each VM is bound to a single

processor core.

4.2.3 Problem Definition

We consider the case when k VMs share the same processor core (see Figure

1(i)).

We assume that for each core the identities of the VMs that share a processor

core are known. We also assume that these VMs are scheduled to the physical

175

core using static priorities. Each 𝑉𝑀𝑖 (1 ≤ 𝑖 ≤ 𝑘) runs a real-time program

that consists of 𝑛𝑖 tasks 𝜏𝑖,𝑗 (1 ≤ 𝑗 ≤ 𝑛𝑖), i.e., 𝜏𝑖,𝑗 denotes task j in 𝑉𝑀𝑖 (see

Figure 1(ii)). A task 𝜏𝑖,𝑗 is defined by its worst-case execution time 𝐶𝑖,𝑗 and

period 𝑇𝑖,𝑗 [15]. Since we assume that the priority follows rate monotonic

scheduling (RMS), the tasks are ordered such that 𝑇𝑖,𝑗 ≤ 𝑇𝑖,𝑗+1. This means

that inside 𝑉𝑀𝑖, task 𝜏𝑖,1 has the highest priority, we assume that the deadline

𝐷𝑖,𝑗 equals to the period 𝑇𝑖,𝑗. We need to calculate a period 𝑇𝑉𝑀 and an

execution time 𝐶𝑉𝑀 for each VM that share a physical core, such that existing

real-time programs will be schedulable in the VMs when each VM executes

at least 𝐶𝑉𝑀 time units every 𝑇𝑉𝑀 period.

Figure 1. (i) A Physical processor with m cores, and (ii) three Virtual

Machines on a core.

176

Figure 8. The worst-case scenario for k VMs.

In this paper we consider a factor (that helps to scale 𝑇𝑉𝑀) that we multiply

with the shortest tasks’ period in order to get the 𝑇𝑉𝑀 for the VM. This factor

helps to tune the VM’s period, the so-called optimistic method looks at the

entire set of VMs that share the same processor core. Figure 2 shows the

runtime of k VMs, when they are scheduled using optimistic method. The

VMs are scheduled to the physical core using static priorities that are ordered

such that 𝑇𝑉𝑀𝑖
≤ 𝑇𝑉𝑀𝑖+1

. We consider a time period t which may extend over

several periods 𝑇𝑉𝑀. As Figure 2 shows, in the worst-case scenario t starts by

a period

(𝑇𝑉𝑀𝑖
− 2𝐶𝑉𝑀𝑖

+ 𝑅𝑉𝑀𝑖
) before the VM can start its execution (𝑅𝑉𝑀𝑖

 is the

worst-case response time of 𝑉𝑀𝑖). The number of complete periods of length

𝑇𝑉𝑀𝑖
, with execution 𝐶𝑉𝑀𝑖

, that are covered by t for the worst-case scenario is

177

given by Equation 1.

⌊
𝑡−(𝑇𝑉𝑀𝑖

−2𝐶𝑉𝑀𝑖
+𝑅𝑉𝑀𝑖

)

𝑇𝑉𝑀𝑖

⌋ (1)

In Figure 2, let t’ denote the minimum amount of time that the VM is running

during a time period of length t. Then we have Equation 2

𝑡′ = ⌊
𝑡−(𝑇𝑉𝑀𝑖

−2𝐶𝑉𝑀𝑖
+𝑅𝑉𝑀𝑖

)

𝑇𝑉𝑀𝑖

⌋ 𝐶𝑉𝑀𝑖
+ 𝑚𝑖𝑛 (𝑡 − (𝑇𝑉𝑀𝑖

− 2𝐶𝑉𝑀𝑖
+

 𝑅𝑉𝑀𝑖
) − (⌊

𝑡−(𝑇𝑉𝑀𝑖
−2𝐶𝑉𝑀𝑖

+𝑅𝑉𝑀𝑖
)

𝑇𝑉𝑀𝑖

⌋ 𝑇𝑉𝑀𝑖
) , 𝐶𝑉𝑀𝑖

) (2)

Equation 2 shows that t’ is a function of four parameters

 𝑡′ = 𝑓(𝑡, 𝑇𝑉𝑀𝑖
, 𝐶𝑉𝑀𝑖

, 𝑅𝑉𝑀𝑖
).

For fixed 𝑇𝑉𝑀𝑖
, 𝐶𝑉𝑀𝑖

, and 𝑅𝑉𝑀𝑖
 Figure 2 shows an increasing function

𝑓(𝑡, 𝑇𝑉𝑀𝑖
, 𝐶𝑉𝑀𝑖

, 𝑅𝑉𝑀𝑖
) from

(((𝑛 + 1)𝑇𝑉𝑀𝑖
− 2𝐶𝑉𝑀𝑖

+ 𝑅𝑉𝑀𝑖
), 𝑛𝐶𝑉𝑀𝑖

) to

(((𝑛 + 1)𝑇𝑉𝑀𝑖
− 𝐶𝑉𝑀𝑖

+ 𝑅𝑉𝑀𝑖
), (𝑛 + 1)𝐶𝑉𝑀𝑖

) , for n = 0, 1, 2,…

In Figure 3 𝑓−1(𝑡, 𝑇𝑉𝑀, 𝐶𝑉𝑀) is undefined during the time intervals when

𝑓(𝑡, 𝑇𝑉𝑀 , 𝐶𝑉𝑀) is flat. In [16] the authors define the inverse of a function with

flat intervals; they call it a pseudo-inverse since a function with flat intervals

is not invertible. In order to handle this problem in our case we take a safe

(worst-case) approach, and for all values of t in a flat interval we define

 𝑓−1(𝑡, 𝑇𝑉𝑀 , 𝐶𝑉𝑀) as the inverse of the maximum t value in that interval, thus

making the inverse defined for all parameters 𝑡, 𝑇𝑉𝑀𝑖
, 𝐶𝑉𝑀𝑖

, and 𝑅𝑉𝑀𝑖
.

From Figure 3, the pseudo-inverse function which is the maximum time that

VM is running during time t and that maps virtual time to (worst-case) real-

time for 𝑉𝑀𝑖 is given in Equation 3

𝑓−1(𝑡, 𝑇𝑉𝑀𝑖
, 𝐶𝑉𝑀𝑖

, 𝑅𝑉𝑀𝑖
) = (𝑇𝑉𝑀𝑖

− 2𝐶𝑉𝑀𝑖
+𝑅𝑉𝑀𝑖

) + 𝑡 + (⌈
𝑡

𝐶𝑉𝑀𝑖

⌉ − 1) (𝑇𝑉𝑀𝑖
−

 𝐶𝑉𝑀𝑖
) (3)

178

 With 0 ≤ 𝑖 ≤ 𝑘 and

𝑅𝑉𝑀𝑖
= 𝐶𝑉𝑀𝑖

+ ∑ ⌈
𝑅𝑉𝑀𝑖

𝑇𝑉𝑀𝑚

⌉ 𝐶𝑉𝑀𝑚

𝑖−1

𝑚=1

From Equation 3 the worst-case response time 𝑟𝑖,𝑗 for task 𝜏𝑖,𝑗

 is given by Equation 4.

 𝑟𝑖,𝑗 = 𝑓−1(𝑅𝑖,𝑗 , 𝑇𝑉𝑀𝑖
, 𝐶𝑉𝑀𝑖

, 𝑅𝑉𝑀𝑖
) (4)

With 𝑅𝑖,𝑗 = 𝐶𝑖,𝑗+∑ ⌈
𝑅𝑖,𝑗

𝑇𝑖,𝑚
⌉

𝑗−1
𝑚=1 𝐶𝑖,𝑚

The appropriate values of 𝑟𝑖,𝑗 are found through numeric iteration methods.

The condition for schedulability is that the worst-case response time must be

less or equal to the task’s period (𝑟𝑖,𝑗 ≤ 𝑇𝑖,𝑗).

The best case is when 𝑅𝑉𝑀𝑖
= 𝐶𝑉𝑀𝑖

, it means Equation 5.

𝑓−1(𝑡, 𝑇𝑉𝑀𝑖
, 𝐶𝑉𝑀𝑖

) = (𝑇𝑉𝑀𝑖
− 𝐶𝑉𝑀𝑖

) + 𝑡 + (⌈
𝑡

𝐶𝑉𝑀𝑖

⌉ − 1) (𝑇𝑉𝑀𝑖
− 𝐶𝑉𝑀𝑖

)

(5)

and it is for the first VM, because it has the highest priority.

The function in Equation 3 becomes equal to the pessimistic case when we

treat all VMs in isolation where 𝑅𝑉𝑀𝑖
= 𝑇𝑉𝑀𝑖

 [2]. The worst-case response

time 𝑟𝑖,𝑗 (for task 𝜏𝑖,𝑗),

 𝑟𝑖,𝑗 = 𝑓−1(𝑅𝑖,𝑗 , 𝑇𝑉𝑀𝑖
, 𝐶𝑉𝑀𝑖

, 𝑅𝑉𝑀𝑖
) is derived from Equation 6.

𝑓−1(𝑡, 𝑇𝑉𝑀𝑖
, 𝐶𝑉𝑀𝑖

, 𝑅𝑉𝑀𝑖
) = 2(𝑇𝑉𝑀𝑖

− 𝐶𝑉𝑀𝑖
) + 𝑡 + (⌈

𝑡

𝐶𝑉𝑀𝑖

⌉ − 1) (𝑇𝑉𝑀𝑖
−

𝐶𝑉𝑀𝑖
) (6)

179

Figure 9. The pseudo-inverse function for k VMs.

Figure 4. The worst-case scenario for 𝑉𝑀𝑖 with overhead.

180

Figure 5. The pseudo-inverse function for 𝑉𝑀𝑖 with overhead.

181

4.2.4 Accounting for Overhead

In this paper we consider preemptive system. Whenever preemption takes

place, different sources of overhead must be taken into account. Previous

studies have looked at overhead in compositional real-time systems [17], [18].

There are two important differences between these studies and our study: first,

in the previous studies the authors did not assume that we have information

about the entire workload (i.e., they assumed the pessimistic approach),

second, in compositional real-time systems the components are abstractions

and do not correspond to any execution time entity such as a VM. In our

approach we inflate the execution time of each VM to compensate for context

switching overhead between VMs; overhead due to context switching

between tasks inside a VM is orthogonal to our approach and can be handled

in the same way as in non-virtualized systems (e.g., by inflating the task

execution times).

In every execution cycle, the VM worst-case execution time is inflated by an

𝑋 which is an accumulation of cache overhead, release overhead, and some

other overheads that are part of a context switch. The maximum number of

preemptions suffered by a given VM is bounded by the number of releases of

higher priority VMs within its response time 𝑅𝑉𝑀 . E.g., in Figure 4, 𝑉𝑀𝑖
with j < 𝑖, has 4 𝑋 overhead, 1 𝑋 is the initial startup overhead of the VM, 2

𝑋 preemptions from 𝑉𝑀1 and 1 𝑋 from 𝑉𝑀2 in the worst-case scenario. The

pseudo-inverse function to calculate task’s the worst-case response time is

given by Equation 7 where the inflated worst-case response time 𝑅𝑉𝑀𝑖

′ for a

VM is given in Equation 8 and the inflated worst-case execution time 𝐶𝑉𝑀𝑖

′ is

given in Equation 9. The corresponding pseudo-inverse function is given in

the Figure 5. The condition for schedulability is that the worst-case response

time must be less or equal to the task’s period (𝑟𝑖,𝑗 ≤ 𝑇𝑖,𝑗) with 𝑟𝑖,𝑗 =

𝑓−1(𝑡, 𝑇𝑉𝑀𝑖
, 𝐶𝑉𝑀𝑖

, 𝑅𝑉𝑀𝑖

′).

𝑓−1(𝑡, 𝑇𝑉𝑀𝑖
, 𝐶𝑉𝑀𝑖

, 𝑅𝑉𝑀𝑖

′) = (𝑇𝑉𝑀𝑖
− 2𝐶𝑉𝑀𝑖

+ 𝑅𝑉𝑀𝑖

′) + 𝑡 + (⌈
𝑡

𝐶𝑉𝑀𝑖

⌉ −

1) (𝑇𝑉𝑀𝑖
− 𝐶𝑉𝑀𝑖

) (7)

 𝑅𝑉𝑀𝑖

′ = 𝐶𝑉𝑀𝑖

′ + ∑ (⌈
𝑅𝑉𝑀𝑖

′

𝑇𝑉𝑀𝑗

⌉ 𝐶𝑉𝑀𝑗

′)𝑖−1
𝑗=1 (8)

182

𝐶𝑉𝑀𝑖

′ = 𝐶𝑉𝑀𝑖
+ 𝑋 + ∑ (⌈

𝑅𝑉𝑀𝑖
′

𝑇𝑉𝑀𝑘

⌉ 𝑋)𝑖−1
𝑘=1 (9)

Equation 8 and 9 are solved using numeric iterative method as described in

Figure 6.

Figure 6. The algorithm flow chart to find 𝐶𝑉𝑀𝑖

′ and 𝑅𝑉𝑀𝑖

′ .

5. Inflated execution time is initialized, i.e., 𝐶𝑉𝑀𝑖

′ = 𝐶𝑉𝑀𝑖
+ 𝑖𝑋

6. Inflated response time 𝑅𝑉𝑀𝑖

′ is calculated using initial inflated execution

time.

7. Inflated execution time 𝐶𝑉𝑀𝑖

′ is calculated, this 𝐶𝑉𝑀𝑖

′ is again used to

calculate 𝑅𝑉𝑀𝑖

′ , this step iterates until 𝑅𝑉𝑀𝑖

′ value does not change

anymore.

8. If 𝑅𝑉𝑀𝑖

′ value does not change anymore, then we get the value for 𝑅𝑉𝑀𝑖

′ ,

and for 𝐶𝑉𝑀𝑖

′ .

Example in Figure 4, if i = 3, 𝐶𝑉𝑀1
= 1, 𝐶𝑉𝑀2

= 1, 𝐶𝑉𝑀3
= 1, 𝑇𝑉𝑀1

= 6, 𝑇𝑉𝑀2
=

12, 𝑇𝑉𝑀3
= 14, and X = 1,

𝐶𝑉𝑀1

′ = 𝐶𝑉𝑀1
+ 𝑋 = 2, since 𝑉𝑀1 has the highest priority, 𝑅𝑉𝑀1

′ = 2.

For 𝑉𝑀2 we have,

183

𝐶𝑉𝑀2

′ = 𝐶𝑉𝑀2
+ 2𝑋 = 3, 𝑅𝑉𝑀2

′ = 3 + ⌈
3

6
⌉ 2 = 5, 𝐶𝑉𝑀2

′ = 2 + ⌈
5

6
⌉ 1 = 3,

𝑅𝑉𝑀2

′ = 3 + ⌈
5

6
⌉ 2 = 5,

 𝐶𝑉𝑀2

′ = 2 + ⌈
5

6
⌉ 1 = 3, 𝑅𝑉𝑀2

′ = 3 + ⌈
5

6
⌉ 2 = 5, therefore 𝑅𝑉𝑀2

′ = 5, 𝐶𝑉𝑀2

′ =

3

For 𝑉𝑀3 we have, 𝐶𝑉𝑀3

′ = 𝐶𝑉𝑀3
+ 3𝑋 = 4, 𝑅𝑉𝑀3

′ = 4 + ⌈
4

6
⌉ 2 + ⌈

4

12
⌉ 3 = 9,

𝐶𝑉𝑀3

′ = 2 + ⌈
9

6
⌉ 1 + ⌈

9

12
⌉ 1 = 5

𝑅𝑉𝑀3

′ = 5 + ⌈
9

6
⌉ 2 + ⌈

9

12
⌉ 3 = 12, 𝐶𝑉𝑀3

′ = 2 + ⌈
12

6
⌉ 1 + ⌈

12

12
⌉ 1 = 5, 𝑅𝑉𝑀3

′ =

5 + ⌈
12

6
⌉ 2 + ⌈

12

12
⌉ 3 = 12

Therefore 𝑅𝑉𝑀3

′ = 12, 𝐶𝑉𝑀3

′ = 5

X (overhead weight) is arbitrary set to 1 since we are using synthesis tasks,

but in the real world application, the overhead will take different weight. We

make pessimistic but safe assumption by accumulating all the overhead at the

beginning of every execution cycle. This gives a straight forward way of

estimating the maximum overhead that a VM will face in every period.

4.2.5 Simulation

The scheduling of tasks inside each VM uses RMS. We consider 8 programs

that run in a VM each. Each program is a task set of 10 tasks. Tasks’ periods

are randomly generated with a uniform distribution. We assume that the

average task periods are not the same in all programs, and we generated

random periods for the intervals [200, 800], [300, 900], [400, 1000],…, [900,

1500] for tasks inside 𝑉𝑀1, 𝑉𝑀2,…, 𝑉𝑀8 respectively. These intervals show

typical applications that have different deadline. We see that tasks’periods

overlap and we sorted the VMs in increasing average period order. Inspired

by the well-known RMS algorithm, we decided to use the average periods as

the basis for assigning static priorities to VMs, i.e., 𝑉𝑀1 has the highest

priority and 𝑉𝑀8 the lowest priority. We simulated four cases, case 1 with one

VM, case 2 with two VMs, case 3 with four VMs and case 4 with eight VMs.

Each case is simulated for different total utilizations U [0.1, 0.2,…, 0.8]; The

184

utilization is for the entire set of VMs in the simulation, and each VM has the

same utilization. For example if we have two VMs and a utilization of 0.6,

then the tasks in each VM have a total utilization of 0.3. When we have total

utilization of a program, we generate and distribute this total utilization to the

10 tasks using the Uunifast algorithm [19]. Each task’s execution 𝐶𝑖,𝑗 is then

obtained by multiplying the utilization of the task with the task’s period

generated previously. We have used heuristic method by setting the VM’s

period (TVM) to be equal to the shortest tasks’ period in the VM multiplied by

a factor in the interval [0.1,..,1.25]. This interval is reasonable since the time

elapsed before a VM can start its first execution in the first period must be

less than the shortest tasks’ period as long as the priority is based on rate

monotonic (RM). Then we calculate the VM’s hardware utilization,

𝐶𝑉𝑀 𝑇𝑉𝑀⁄ . We repeated each unique case for different values of CPU

utilization (for instance, one unique case is 4 VMs and a total utilization of

0.4) 20 times to be able to calculate average values and standard deviations.

We used the Matlab scheduling toolbox TORSCHE (Time Optimization of

Resources, SCHEduling) to schedule the first level, i.e., tasks inside VM [20],

[21]. We repeated the simulation for different overhead weight (X values) X=

[0,1,2,…,9] zero means the absence of overhead.

4.2.6 Results and Discussion

Figure 6 shows CVM TVM⁄ for 1 VM for the total utilization of 0.2 and 0.6 of

tasks inside the VM with respect to different period length. We see that for

shorter period, in the absence of the overhead the resource utilization

(CVM TVM⁄) decreases. However, for higher overhead for example when the

overhead equals to 9, CVM TVM⁄ decreases for higher periods and it increases

for shorter periods.

We observe that for 2 VMs, 4 VMs and 8 VMs (see Figures 7, 8 and 9) for

higher overhead and shorter period, CVM TVM⁄ increases to such extend that

VMs may even become unschedulable. Due to paper size limitations, we only

show the results for some scenarios in Figures 6 until 9 for the utilization 0.2

and 0.6 of tasks inside VMs. For the other utilizations, we also observe that

CVM TVM⁄ changes in the same manner. The results presented here are based

on simulations, and may thus not give the same CVM TVM⁄ value for all task

sets of different applications. However, we expect that the results’ trends will

be the same, i.e., VMs will benefit from longer period especially for higher

185

number of VMs, and for higher overhead as shown in Figures 6, 7, 8, and 9.

E.g., suppose IaaS provider has to serve 3 customers who run hard real-time

applications, the first customer needs to run a financial system that need to

produce results in short time, the second needs to run a navigation system, and

the third need to stream video. The provider needs to arrange these customers

according to their deadlines, consequently the VMs will be allocated their

period respectively. We know that 3 VMs for 3 customers will be allocated a

processor in a timeshare manner. If navigation system has the shortest period

then it will have the highest priority and it is allocated to VM1, if financial

system has the second shortest period it is allocated to VM2, and video

application will be allocated to VM3. By using Equation 7, the VMs scheduler

can dynamically determine how long VM period has to be in order to meet

the application’ deadline.

Figure 7. CVM TVM⁄ for 1VM, for total tasks’ utilization 0.2, and 0.6.

Figure 8. CVM TVM⁄ for 2VMs, for total tasks’ utilization 0.2 and 0.6.

186

Figure 9. CVM TVM⁄ for 4VMs, for total tasks’ utilization 0.2 and 0.6.

Figure 10. CVM TVM⁄ for 8VMs, for total tasks’ utilization 0.2 and 0.6.

4.2.7 Conclusions

In this paper we heuristically find different VMs’ periods and investigate the

impact of period length with respect to number of VMs and the overhead. We

also investigated how the choice of factor that we use when we determine the

TVM based on the shortest tasks’ period in the VM affects the processor

resource. The best choice of TVM will depend on the costs for VM switches

and the periods of the tasks running inside the VMs. Our result quantifies the

trade-off between CPU resource (CVM TVM⁄) and VM’s period (TVM) when

selecting an appropriate TVM where higher number of VM will benefits from

using longer period especially in the presence of the overhead. Due to context

switch, as the number of VMs increases, as we need longer period. The

method described in this paper can be applied to allocate resources for real-

time application using IaaS where virtual machine is a key element.

References

[1] L. Abeni and T. Cucinotta, “Efficient virtualisation of real-time activities,” in

Service-Oriented Computing and Applications (SOCA),

 2011 IEEE International Conference, 2011, pp. 1–4.

187

[2] L. Lundberg and S. Shirinbab, “Real-time scheduling in cloud-based

virtualized software systems,” in Proceedings of the Second Nordic

Symposium on Cloud Computing & Internet Technologies, 2013, pp. 54–58.

[3] Y. Ren, L. Liu, Q. Zhang, Q. Wu, J. Wu, J. Kong, J. Guan, and H. Dai,

“Residency-Aware Virtual Machine Communication Optimization: Design

Choices and Techniques,” in Proceedings of the 2013 IEEE Sixth International

Conference on Cloud Computing, Washington, DC, USA, 2013, pp. 823–830.

[4] M. Kurtadikar, A. Patil, P. Toshniwal, and J. Abraham, “An Inter-VM

Communication Model Supporting Live Migration,” in 2013 International

Conference on Cloud Ubiquitous Computing Emerging Technologies (CUBE),

2013, pp. 63–68.

[5] C. Niyizamwiyitira and L. Lundberg, “Real-Time Systems Scheduling of

Multiple Virtual Machines.” [Online]. Available:

http://www.bth.se/people/cnw.nsf/pages/real-time-scheduling-virtualization.

[Accessed: 09-Jun-2015].

[6] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in

a hard-real-time environment,” J. ACM, vol. 20, no. 1, pp. 46–61, 1973.

[7] L. Lundberg, “Analyzing fixed-priority global multiprocessor scheduling,” in

Real-Time and Embedded Technology and Applications Symposium, 2002.

Proceedings. Eighth IEEE, 2002, pp. 145–153.

[8] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin, “On task schedulability in real-

time control systems,” in Real-Time Systems Symposium, 1996., 17th IEEE,

1996, pp. 13–21.

[9] D. Seto, J. P. Lehoczky, and L. Sha, “Task period selection and schedulability

in real-time systems,” in Real-Time Systems Symposium, 1998. Proceedings.,

The 19th IEEE, 1998, pp. 188–198.

[10] T. Chantem, X. Wang, M. D. Lemmon, and X. S. Hu, “Period and deadline

selection for schedulability in real-time systems,” in Real-Time Systems, 2008.

ECRTS’08. Euromicro Conference on, 2008, pp. 168–177.

[11] T. Cucinotta, G. Anastasi, and L. Abeni, “Respecting Temporal Constraints in

Virtualised Services.,” in COMPSAC (2), 2009, pp. 73–78.

188

[12] I. Shin and I. Lee, “Periodic resource model for compositional real-time

guarantees,” in Real-Time Systems Symposium, 2003. RTSS 2003. 24th IEEE,

2003, pp. 2–13.

[13] J. Lee, S. Xi, S. Chen, L. T. Phan, C. Gill, I. Lee, C. Lu, and O. Sokolsky,

“Realizing compositional scheduling through virtualization,” in Real-Time and

Embedded Technology and Applications Symposium (RTAS), 2012 IEEE

18th, 2012, pp. 13–22.

[14] S. Xi, C. Lu, C. Gill, M. Xu, L. T. Phan, I. Lee, and O. Sokolsky, “Global Real-

Time Multi-Core Virtual Machine Scheduling in Xen,” Washington University

Technical Report, Tech. Rep, 2013.

[15] A. Burns and A. J. Wellings, Real-time systems and programming languages:

Ada 95, real-time Java, and real-time POSIX. Pearson Education, 2001.

[16] E. Bini, T. H. C. Nguyen, P. Richard, and S. K. Baruah, “A Response-Time

Bound in Fixed-Priority Scheduling with Arbitrary Deadlines,” IEEE Trans.

Comput., vol. 58, no. 2, pp. 279–286, Feb. 2009.

[17] S. Chen, L. T. Phan, J. Lee, I. Lee, and O. Sokolsky, “Removing abstraction

overhead in the composition of hierarchical real-time systems,” in Real-Time

and Embedded Technology and Applications Symposium (RTAS), 2011 17th

IEEE, 2011, pp. 81–90.

[18] L. T. Phan, M. Xu, J. Lee, I. Lee, and O. Sokolsky, “Overhead-aware

compositional analysis of real-time systems,” in Real-Time and Embedded

Technology and Applications Symposium (RTAS), 2013 IEEE 19th, 2013, pp.

237–246.

[19] E. Bini and G. C. Buttazzo, “Measuring the performance of schedulability

tests,” Real-Time Syst., vol. 30, no. 1–2, pp. 129–154, 2005.

[20] M. Kutil, P. Sucha, R. Capek, and Z. Hanzalek, “Optimization and scheduling

toolbox,” Matlab—Modelling Program. Simul., pp. 239–260, 2010.

[21] “TORSCHE Scheduling Toolbox for Matlab.” [Online]. Available:

http://rtime.felk.cvut.cz/scheduling-toolbox/. [Accessed: 07-May-2014].

189

Chapter Five

 C. Niyizamwiyitira and L. Lundberg, “A Utilization-based Schedulability

Test of Real-time Systems Running on a Multiprocessor Virtual Machine,

Accepted to be published in the computer Journal, 2018

190

A Utilization-based Schedulability Test of

Real-time Systems Running on a

Multiprocessor Virtual Machine

Abstract

We consider a real-time application that executes in a VM with multiple

virtual cores. Tasks are scheduled globally using fixed-priority scheduling. In

order to avoid Dhall’s effect, we classify tasks into two priority classes: heavy

and light. Heavy tasks have higher priority than light tasks. For light tasks we

use rate monotonic priority assignment. We propose a utilization-based

schedulability test. If the task set is schedulable, we provide an assignment of

priorities to tasks. The input to the test is the task set, the number of cores in

the VM, the period, deadline and blocking time for the VM. We evaluate how

jitter, when scheduling VMs on the hypervisor level, affects the schedulability

of the real-time tasks running in the VM. The schedulability of the real-time

tasks in the VM decreases when the hypervisor jitter increases, but on the other

hand the schedulability on the hypervisor level increases if we allow more

jitter, i.e., there is a trade-off. Our results make it possible to evaluate this

trade-off and take informed decisions when selecting scheduling parameters

on the hypervisor level. Experimental evaluations show that the priority

assignment used by our algorithm schedules more task sets than using rate

monotonic (RM) priority assignment.

Keywords

Hard real-time scheduling; Multiprocessor utilization based schedulability

test; Virtual multiprocessor scheduling; Global fixed priority scheduling; VM

deadline

191

5.1 Introduction

Virtualization is a good way to increase resource utilization; it increases

flexibility and scalability, and creates significant cost savings because of

simplified system management. This is typically done by using so called

virtual machines (VMs). In order to benefit from the cost-effectiveness of

virtualization, real-time systems with hard deadlines are important

applications to move to VMs. However, predicting if a real-time system is

schedulable or not, is a challenging task. Virtualization makes it possible to

run multiple VMs on one physical server, and it is possible to configure the

VMs on multicore processor systems so that each VM uses all or a subset of

the physical cores; many VMs may time share the same set of physical cores.

To guarantee schedulability of a real-time application inside a VM, we need

to guarantee that the VM is executed a certain amount of time during a

specified time period, i.e., we must provide a period and a minimum execution

time when the VM runs the real-time tasks. This has been studied for VMs

with one processor [1]. Guaranteeing real-time properties becomes more

complex if the tasks are executed on a multiprocessor [2], and running the task

set in a multiprocessor VM adds complexity compared to the normal

(unvirtualized) multiprocessor case. In this paper we have developed a

utilization-based schedulability test for a task set running in a VM with m

virtual processor cores. In order to avoid Dhall’s effect (to be explained later)

we classify tasks into two priority classes, light tasks and heavy tasks (the

state-of-the-art-technique for avoiding Dhall’s effect).

A real-time application consists of a task set with deadlines. The CPU

utilization U, is the fraction of processor time spent executing the task set Γ =
 {𝜏1, … , 𝜏𝑛}. U is calculated by summing up the contribution of each task 𝜏𝑖

(𝑢𝑖 = 𝐶𝑖 𝑇𝑖⁄ [3]; 𝐶𝑖 is the worst case computation time for task 𝜏𝑖 and 𝑇𝑖 is the

period of 𝜏𝑖). The overall system utilization factor for a uniprocessor system

of a task set composed of n tasks is given in Equation 1

𝑈 = ∑ 𝑢𝑖 = ∑
Ci

Ti

𝑛
𝑖

𝑛
𝑖 (1)

In the case of multiprocessor systems with m processors, the system

utilization US is given in Equation 2

192

𝑈𝑆 =
∑ 𝑢𝑖

𝑛
𝑖

𝑚
=

∑
Ci
Ti

𝑛
𝑖

𝑚
 (2)

In this paper we define an algorithm that provides a utilization-based test that

shows if a task set is schedulable or not. If the task set is schedulable the

algorithm provides the priority for each task. The input to the algorithm is a

task set Γ, the number of processor cores in the VM (m), the period for the

VM (𝑇𝑉𝑀), the VM’s deadline (𝐷𝑉𝑀), and the blocking time (Bp) during each

period when the virtual machine does not have access to the underlying

hardware (and thus also the computation time 𝐶𝑉𝑀 of the VM since 𝐵𝑝 =
 𝑇𝑉𝑀 – 𝐶𝑉𝑀). See Figure 1 for an overview of the 𝐷𝑉𝑀, 𝑇𝑉𝑀, 𝐶𝑉𝑀, and Bp

parameters. These parameters and the problem definition, will be further

explained in Section 3.

Figure 1. Scheduling a VM with deadline DVM (TVM = 9, DVM = 7, Bp = 4, thus making CVM =

5). The black parts represent the time intervals when the VM is blocked and does not have

access to the hardware; the DVM parameter controls the acceptable variation of the length of

these periods (i.e., DVM controls the acceptable jitter on the hypervisor level). If DVM = CVM

(the minimum value of DVM), all periods when the VM does not have access to the hardware

must have the same length (Bp). If DVM = TVM (the maximum value of DVM), the length of the

periods when the VM does not have access to the hardware are allowed to vary between 0 and

2Bp. In general, the length of the periods when the VM does not have access to the hardware

are allowed to vary between TVM - DVM and 2Bp - TVM + DVM = Bp - CVM + DVM.

This paper extends the study of utilization-based schedulability test of real-

time systems on multiprocessor VM, where the authors proposed a scheduling

algorithm that considered 𝐵𝑝, 𝑇𝑉𝑀, m and the task set [4]. In the current paper,

we consider an additional parameter; the deadline 𝐷𝑉𝑀 of the virtual machine

during which the VM must have finished its execution time 𝐶𝑉𝑀. The 𝐷𝑉𝑀

193

parameter controls the acceptable amount of jitter on the hypervisor level; we

will see that considering 𝐷𝑉𝑀 makes it possible to evaluate important trade-

offs and take informed decisions when selecting scheduling parameters on the

hypervisor level, also considering the effect of context switching overhead at

the hypervisor level. Moreover, compared to the previous conference paper,

the proofs are more complete, the main algorithm has been improved, and the

paper contains experimental evaluations which compare the performance of

our approach to traditional rate monotonic (RM) priority assignment.

Additionally, the literature review has been extended considerably.

The rest of this paper is structured in the following way. Section 2 contains

background and related work. Section 3 provides the problem definition.

Section 4 describes the proposed algorithm. Section 5 discusses the VM

deadline and the position of the blocking period. Section 6 presents the

simulation, and finally, Section 7 presents our conclusions. Compared to the

conference paper [4], Sections 5 and 6 are completely new, and large parts of

the other sections have been rewritten and extended.

The rest of this paper is structured in the following way. Section 2 contains

background and related work. Section 3 provides the problem definition.

Section 4 describes the proposed algorithm. Section 5 discusses the VM

deadline and the position of the blocking period. Section 6 presents the

simulation, and finally, Section 7 presents our conclusions. Compared to the

conference paper [4], sections 5 and 6 are completely new, and large parts of

the other sections have been rewritten.

5.2 Background and Related Work

Liu and Layland have shown that for uni-processors rate monotonic (RM)

priority assignment is optimal since no other fixed-priority scheme can

schedule a task set that cannot be scheduled by RM [5]. They derived an upper

bound of system utilization for guaranteed uni-processor scheduling for a task

set of n tasks. Liu and Layland have shown that for uni-processors rate

monotonic (RM) priority assignment is optimal since no other fixed-priority

scheme can schedule a task set that cannot be scheduled by RM [5]. They

derived an upper bound of system utilization for guaranteed uni-processor

scheduling for a task set of n tasks.

194

𝑈 ≤ 𝑛 (2
1

𝑛⁄ − 1) (3)

The bound in Equation 3 tends to about 69% for infinitely large task set. This

bound is, however, limited to uniprocessor systems. There are two basic

approaches to extend preemptive task models to multiprocessor systems:

partitioned and global scheduling. In the partitioned approach, a task is

statically allocated to a particular processor core, i.e., a task is not allowed to

migrate to another processor.

In the global approach, any tasks can execute on any processor. At every

moment the m highest priority tasks are selected for execution on the m

processors using preemption and migration if necessary. This is the most

common way to schedule non real-time tasks on multiprocessor systems, and

it is in many cases practical to handle non real-time and real-time tasks in a

uniform manner.

The theory behind uniprocessor scheduling can be used for partitioned

multiprocessor scheduling, e.g., the well-known uniprocessor schedulability

test [6]. However, when it comes to global scheduling, the so called Dhall’s

effect shows that a direct application of the RM priority assignment scheme

may result in failure to meet deadlines even for systems with very low

multiprocessor utilization [7].

In Figure 2, eight tasks run on a multiprocessor with seven processors, Dhall’s

effect occurs if we assign priorities based on task periods without considering

task utilization, for instance 𝜏8 misses its deadline even though the system

utilization 𝑈𝑆 = ((7 ∗ 2 10⁄) + 9 11⁄)/7 ≈ 0.317. If we reduce 𝐶𝑖 (𝑖 =

1, … ,7) to 1 and increase 𝐶8 to 10, 𝜏8 will still miss the deadline, even though

𝑈𝑆 = ((7 ∗ 1 10⁄) + 10 11⁄)/7 ≈ 0.230.

Dhall’s effect does not occur for liquid task sets [8] where each task has a very

small utilization. If we consider any arbitrary task set, Dhall’s effect can be

avoided by dividing the tasks into two priority classes based on task

utilization, namely heavy and light. The heavy tasks, i.e., the tasks with high

utilization, get higher priority than the light tasks. In [9], the authors came up

with a utilization bound of 33% for an infinitely large number of processors

when using the heavy/light classification. Later on, an optimal bound of 37.5

% was derived by Lundberg in [2].

195

Figure 2. Illustration of Dhall’s effect, adopted from [2]

In general, there are two kinds of schedulability tests: tests based on the

utilization of the task set and tests based on more detailed analysis of the

behavior of each task. The advantage of utilization-based tests is that they are

fast and uncomplicated since they approximate the demand of the task set with

the worst-case scenario for a given utilization; the drawback of utilization-

based tests is that they are often pessimistic (since they consider the worst-

case scenario) compared to the more detailed tests. In virtualized systems, one

does not only need to consider the demand of the real-time tasks, one also

needs to consider the supply of the processor resources during different time

intervals. In this paper we approximate the demand of the task set with the

worst-case scenario for a certain utilization, and compare this with the

available supply of the processor resources. This approach gives the same

advantages and drawbacks for the virtualized case as for the traditional

unvirtualized case, i.e., compared to detailed models of both demanded and

supplied times, our utilization based test is faster and less complicated, but

also more pessimistic in some cases. The novelty of our proposed

schedulability test is that it is utilization-based, while most of the previous

work in the area is based on comparing demanded time and supplied time. We

will show that, the computational complexity of our admission test algorithm

is 𝑂(𝑚𝑛), where n is the number of tasks and m is the number of virtual cores

196

(processors) in the VM running the real-time tasks (in most real applications

m << n). In the literature, there exist some studies that consider real-time

virtual multiprocessor scheduling, below we present the ones that are most

relevant for our study.

In [28] the authors present a schedulability test (admission test) based of the

Parallel Supply Function (PSF). This test is valid for Earliest Deadline First

(EDF) scheduling, which is a scheduling algorithm that uses dynamic task

priorities; we consider static task priorities. The authors do not state the

computational complexity of their admission test. However, the complexity of

their test is clearly higher than the complexity of our test. PSF provides a

detailed model of the supply function. The benefit with this is that the

schedulability test does not become overly pessimistic. However, the price for

the detailed model is that the analysis becomes complex.

Compared to PSF, the Multiprocessor Periodic Resource (MPR) [29] and the

Generalized Multiprocessor Periodic Resource (GMPR) [27] models provide

simpler supply functions. The price for the simplicity is increased pessimism

in the schedulability analysis; the advantage is reduced complexity compared

to PSF. However, both MPR and GMPR compare demanded time and

supplied time, which makes them more complex than our utilization-based

approach which simplifies the model for demanded time. The trade-off is

again speed and simplicity (an advantage of the utilization-based approach)

versus increased pessimism (a drawback of the he utilization-based approach).

An early model for comparing the demanded and supplied time in time-shared

uni-processor system was the Bounded Delay Model (BDM) [30]. Shin and

Lee have extended their compositional real-time scheduling framework (CSF)

so that they can do schedulability analysis (or feasibility analysis as they call

it) of BDM [31]. Similar frameworks have recently been used for minimizing

the energy consumption for real-time tasks in systems that allow dynamic

voltage and frequency scaling [33].

The schedulability test presented in our paper is based on the utilization of the

task set. In order to obtain a test that is not overly pessimistic one must, as

discussed before, control Dhall’s effect. Schedulability tests that are based on

more detailed analysis of the demand and supply times do not need to handle

Dhall’s in the same explicit way, i.e., in that case one may accept that a task

197

set with very low utilization will miss its deadline as long as the priority

assignment algorithm is capable of scheduling more task sets on average (the

probability of seeing a specific real-time task set is, however, unclear, and as

a consequence of this, it is unclear what it means to be better in the average

case). Using similar scenarios as the ones used in Section 6 in this paper, Davis

and Burns have in [32] shown that the heuristic priority assignment algorithm

DkC [32] performs well on average. DkC is based on a priority assignment

algorithm called TkC [35]. In TkC the priority of a task 𝜏𝑖 is based on Ti – kCi

and in DkC the priority of a task 𝜏𝑖 is based on Di – kCi, where Ti is the period,

Di the deadline, and Ci the worst-case execution time of the task; k is a real

number computed as k =
𝑚−1+√5𝑚2−6𝑚+1

2𝑚
, where m is the number of

processors. It can be noted that k is increasing, and that k =
1+√5

2
≈ 1.618,

when m → ∞. For both TkC and DkC priority assignment, it is possible to

define a task set with arbitrarily low utilization that misses its deadline due to

Dhall’s effect when we have a multiprocessor with a large number of

processors (e.g., by extending the example in [34]).

In [10], the authors studied a reservation-based algorithm, i.e., a Constant

Bandwidth Server (CBS) on top of Earliest Deadline First (EDF) for

scheduling real-time tasks with hard deadlines on VMs. A reservation-based

scheduler allocates a computation budget for every reservation period to each

VM. The results show that VM technology and the scheduling algorithm affect

the real-time application performance. The authors propose to use a less

pessimistic analysis to dimension the VM scheduling parameters if one uses

the CBS algorithm.

In [11], the authors studied a scheduling method of real-time applications on

multicore hardware using a so called synchronized deferrable server. Given a

task set, they categorize it into non-migrating tasks and migrating tasks. Non-

migrating tasks are statically bounded to a core and are modeled as sporadic

tasks whereas migrating tasks can migrate across the cores. This results in

using partitioned and global scheduling at the same time.

In [12], the authors presented a method to schedule real-time applications on

multiprocessors by virtualizing the processors. Tasks are clustered and each

cluster is assigned to a set of virtual processors. In that study, scheduling is

done at two levels. The first is scheduling virtual processors onto physical

198

processors and the second is scheduling tasks on a set of virtual processors.

In [13], the authors developed a Compositional Scheduling Architecture

(CSA) that is built on the Xen virtualization platform. The architecture allows

timing isolation among VMs and supports timing guarantees for real-time

tasks. In [14], the authors present a model that includes the cache in

hierarchical scheduling while keeping temporal isolation between

applications that share a uniprocessor.

In [15], the authors propose a mechanism to schedule soft real-time systems,

which provides temporal isolation between VMs that share a processor. In

[16], [17], the authors present a model that accounts for the overhead, in

compositional hierarchical scheduling for uniprocessors. In [18]

compositional scheduling theory was also applied to a multi-core VM

scheduler for the Xen real-time virtualization platform.

In connection with hard deadlines systems, the utilization has been studied for

real-time systems that respond to external environment within a specific

deadline that is called age constraint. This age constraint is the time between

the beginning of the execution of a task in one period and the end of the task

in the next period [19].

In [1], the authors addressed the problem of scheduling hard real-time

applications in a VM. The authors proposed a technique such that real-time

applications could meet their deadlines when they are scheduled on a single

VM. The authors considered a uniprocessor VM, i.e., a VM with one virtual

core.

In [20], the authors gave a utilization bound of 3 − √7 ≈ 0.35425 for

aperiodic tasks where the utilization threshold is based on the maximum

synthetic utilization. If the load on the multiprocessor server stays below

0.35425, the server guarantees the schedulability of all tasks. This bound was

derived from the function 𝑢(𝑥) = 2(1 − 𝑥) (2 + √2 + 2𝑥⁄) where the

variable x is the utilization of the task with the longest period. The bound is

based on a scheduling policy where tasks with a utilization below the bound

(light tasks) are scheduled based on earliest deadline first. This bound was

later improved to (3 − √5)/2 ≈ 0.38197 by scheduling tasks with a

utilization below the bound based on least slack first [34].

In [21], the authors proposed an approach to schedule real-time tasks on

199

virtual processors using clustering techniques. Cluster-based scheduling, can

be viewed as a generalization of partitioned and global scheduling, where

tasks are statically assigned to a cluster and then globally scheduled within the

cluster. Cluster-based scheduling can be classified into two types: physical

and virtual depending on how a cluster is mapped to the processors in the

platform. Physical clusters share no processors in the platform, i.e., a

processor in a multiprocessor can only belong to one cluster. Virtual clusters

can time-share processors, i.e., a processor in a multiprocessor can belong to

one cluster at one time and then belong to another cluster at another time.

In [22], the authors proposed predictable virtual processors for real-time

systems where all virtual processors are scheduled on top of the same physical

processor using earliest-deadline-first or rate monotonic scheduling. The

method proposed by the authors creates the illusion of a dedicated processor

for each virtual processor. Real-time tasks are scheduled on top of a virtual

processor as if it was a physical processor. Each virtual processor is assigned

a utilization that can guarantee the schedulability of the real-time tasks that

are running on that processor. In [23], the authors presented a methodology

for running periodic and sporadic real-time applications with relative

deadlines that share resources on a multiprocessor platform; the physical

multiprocessor is abstracted through sets of virtual processors.

5.3 Definition

We consider the problem of scheduling a task set Γ =
{𝜏1, 𝜏2, 𝜏3, … , 𝜏𝑛} consisting of n independent, periodic real-time tasks on m

identical virtual processors in a VM that runs a time 𝐶𝑉𝑀 periodically every

𝑇𝑉𝑀 time interval with a blocking time of 𝐵𝑝 (𝐵𝑝 = 𝑇𝑉𝑀 – 𝐶𝑉𝑀) during

which the VM does not have access on the hardware. An example of a periodic

multiprocessor VM is Xen [24]. We also assume that there is a deadline 𝐷𝑉𝑀

associated with the VM. The VM needs to finish its execution time 𝐶𝑉𝑀 within

𝐷𝑉𝑀 time units after its release; we assume that 𝐶𝑉𝑀 ≤ 𝐷𝑉𝑀 ≤ 𝑇𝑉𝑀 , i.e.,

constrained deadlines. We assume that m physical processors are available to

the VM during the time interval 𝐶𝑉𝑀 in every period (see Figure 1).

The multiprocessor VM schedules the runnable tasks by arranging them in a

shared ready queue and dequeues them in priority order as soon as a (virtual)

processor becomes available (as always in virtualized systems, each VM is

unaware of the fact that it does not have constant access to the underlying

200

hardware). We assume preemptive scheduling, i.e., a lower priority task may

be preempted when a higher priority task becomes runnable. The preempted

task is in that case put back into the ready queue, and can later be restarted on

any available processor. We assume that there is no overhead or other penalty

for switching from one task to another. Each task can execute on at most one

processor at a time.

The problem is thus defined by five parameters:

 Γ = {𝜏1, 𝜏2, 𝜏3, … , 𝜏𝑛}
 𝑚

 𝐵𝑝 (𝐵𝑝 = 𝑇𝑉𝑀 - 𝐶𝑉𝑀), i.e., 𝐶𝑉𝑀 = 𝑇𝑉𝑀 − 𝐵𝑝

 𝑇𝑉𝑀

 𝐷𝑉𝑀

Based on these five parameters we want to determine:

 If we can guarantee that Γ = {𝜏1, 𝜏2, 𝜏3, … , 𝜏𝑛} is schedulable under

these conditions.

 How we should assign priorities to the n tasks in Γ in case we can

guarantee that Γ is schedulable.

Tasks can be either heavy or light (based on their utilization). Heavy tasks

get higher priority than light tasks, and light tasks get priorities according to

the Rate Monotonic (RM) priority assignment algorithm. RM assigns

priorities to tasks according to their periods; tasks with shorter periods get

higher priorities.

In order to solve the problem defined above, we start by considering a task set

X that consists of a task 𝜏𝑥 = (𝐶𝑥, 𝑇𝑥) and an arbitrary number of tasks with

higher priority, and thus shorter periods, than 𝜏𝑥 (at the moment we assume

that all tasks are light). We consider critical task sets, which means that 𝜏𝑥

meets its deadlines in all periods, but any extension of 𝐶𝑥 results in a missed

deadline for 𝜏𝑥. Let 𝑋′ denote task set 𝑋 when we remove 𝜏𝑥. It is clear that

for a certain task 𝜏𝑥 there is an infinite number of task sets 𝑋′. Let 𝑋′̅ denote

the set of all possible task sets 𝑋′ for a given 𝜏𝑥 and let 𝑋′′ denote a task set in

𝑋′̅ with minimum utilization, and let 𝑈′′ denote the utilization of task set 𝑋′′.
We refer to 𝑋′′ as an extremal task set; for a certain task 𝜏𝑥 there could be

many extremal task sets, all these will, however, have the same utilization 𝑈′′.

Theorem 1: For 𝐵𝑝 = 0, consider a task set 𝑋𝑒 that consists of 𝑘𝑚 tasks

201

where all tasks have 𝐶 = 𝑒, and where 𝑘 is the number of task that run on a

single virtual processor and 𝑚 is the number of virtual processors. 𝜏1,1 =
 (𝑒, 𝑇), 𝜏1,2 = (𝑒, 𝑇),… , 𝜏1,𝑚 = (𝑒, 𝑇)

𝜏2,1 = (𝑒, 𝑇 + 𝑒), 𝜏2,2 = (𝑒, 𝑇 + 𝑒),… , 𝜏2,𝑚 = (𝑒, 𝑇 + 𝑒)

𝜏3,1 = (𝑒, 𝑇 + 2𝑒), 𝜏3,2 = (𝑒, 𝑇 + 2𝑒), … , 𝜏3,𝑚 = (𝑒, 𝑇 + 2𝑒)

.

.

.

𝜏𝑘,1 = (𝑒, 𝑇 + (𝑘 − 1)𝑒), 𝜏𝑘,2 = (𝑒, 𝑇 + (𝑘 − 1)𝑒),… , 𝜏𝑘,𝑚 = (𝑒, 𝑇 +
(𝑘 − 1)𝑒),

where 𝑇 =
𝑇𝑥+𝐶𝑥

2
, and 𝑘𝑒 = 𝑇𝑥– 𝑇.

As 𝑒 → 0 and 𝑘 → ∞ while preserving all equations, the task set 𝑋𝑒 becomes

liquid (by definition) and also extremal, with 𝑋𝑒 → 𝑋′′
Proof: When 𝐵𝑝 = 0 there is no virtualization, and it is therefore the same

case as in [2].

Figure 3 shows how this task set executes on a number of identical virtual

processors, i.e., 𝑚 = 3; shaded areas indicate the time periods when the task

set is executing.

Corollary 1: In an extremal and liquid task set, a task 𝜏𝑥 should be classified

as a light task if 𝑈′′ ≤ 𝑙𝑛 (1 +
𝑑

𝑇
) otherwise it should be classified as a heavy

task. 𝑈′′ is the utilization of the task set 𝑋𝑒 in Theorem 1.

Proof: Let k denote the number of execution slots and d denote the length of

the interval occupied by the k slots. The total utilization of the tasks 𝜏1,1, …𝜏𝑘,1

defined in Theorem 1 is Σ𝑖=1
𝑘 𝑒

𝑇+(𝑖−1)𝑒
 . If 𝑒 → 0 and 𝑘 → ∞ so

that 𝑘𝑒 = 𝑑 is constant, the utilization 𝑈′′ is a decreasing function of 𝑚 [25].

We thus obtain a lower bound after this limit, in which a Riemann sum

converges to an integral:

𝛴𝑖=1
𝑘 𝑒

𝑇+(𝑖−1)𝑒
→ ∫

𝑑𝑡

𝑇+𝑡

𝑑

0
= 𝑙𝑛 (1 +

𝑑

𝑇
). (4)

202

Figure 3. Scheduling 𝑚𝑘 tasks on 𝑚 processor when 𝐵𝑝 = 0.

Figure 4. Scheduling a VM with 𝐷𝑉𝑀 = 𝑇𝑉𝑀 − 𝐵𝑝

When 𝐵𝑝 > 0, we can construct a task set 𝑋′′ similar to when 𝐵𝑝 = 0. We

must make sure that all processors are idle at time 𝑇𝑥 + 𝑒 (which we had for

the task set described in Theorem 1 when 𝐵𝑝 = 0). It is also clear that in an

extremal task set 𝑋′′, the second arrival of any task in the interval [0, 𝑇𝑥]

should not occur during a period when the VM does not have access to the

hardware. The reason for this is that if a task 𝜏𝑖 from 𝑋′′ arrives when the VM

does not have access to the hardware, the period 𝑇𝑖 of task 𝜏𝑖 can be extended

without reducing the interference on 𝜏𝑥, since all tasks in 𝑋′′ execute two times

before time 𝑇𝑥. This is a contradiction to the definition of extremal task sets,

since the utilization of 𝑋′′ will decrease if we extend some period. Obviously,

tasks can only execute during periods when the VM has access to the

hardware.

In the rest of this section we assume that 𝐷𝑉𝑀 = 𝐶𝑉𝑀, i.e., constrained

deadlines. As a consequence, the blocking periods Bp come at the same place

in all periods 𝑇𝑉𝑀. In the worst-case scenario, the task set is released at the

203

start of a time period when the VM does not have access to the hardware. As

a consequence, the tasks start executing in the VM after a blocking time Bp

(see Figure 4). In Section 5 we relax this restriction and look at the general

case when we can have different values of 𝐷𝑉𝑀. However, we always assume

that 𝐷𝑉𝑀 ≤ 𝑇𝑉𝑀.

Theorem 2: Consider four integers 𝑎𝑘, 𝑏𝑘, 𝑐𝑘, 𝑧 ≥ 0 , where 𝑎𝑘, 𝑏𝑘, 𝑐𝑘 denote

the number of execution slots of length e in three types of intervals; and let

 𝑎, 𝑏, 𝑐 denote the length of the intervals that these slots block, and let z be the

number of intervals of length 𝑏. When 𝐵𝑝 > 0 and 𝐷𝑉𝑀 = 𝑇𝑉𝑀 − 𝐵𝑝, there

is a task set 𝑋𝑒′′ that consists of 𝑎𝑘𝑚 + 𝑧𝑏𝑘𝑚 + 𝑐𝑘𝑚 tasks such that

𝜏1,1 = 𝜏1,2 =,… , = 𝜏1,𝑚 = (𝑒, 𝑇)

𝜏2,1 = 𝜏2,2 =, … ,= 𝜏2,𝑚 = (𝑒, 𝑇 + 𝑒)

.

.

.

𝜏𝑎𝑘,1 = 𝜏𝑎𝑘,2 =, … ,= 𝜏𝑎𝑘,𝑚 = (𝑒, 𝑇 + (𝑎𝑘 − 1)𝑒)

𝜏𝑎𝑘+1,1 = 𝜏𝑎𝑘+1,2 =,… ,= 𝜏𝑎𝑘+1,𝑚 = (𝑒, 𝑇 + 𝐵𝑝 + 𝑎𝑘𝑒)

𝜏𝑎𝑘+2,1 = 𝜏𝑎𝑘+2,2 =,… ,= 𝜏𝑎𝑘+2,𝑚 = (𝑒, 𝑇 + 𝐵𝑝 + 𝑎𝑘𝑒 + 𝑒).

.

.

𝜏𝑎𝑘+𝑏𝑘,1 = 𝜏𝑎𝑘+𝑏𝑘,2 =, … ,= 𝜏𝑎𝑘+𝑏𝑘,𝑚 = (𝑒, 𝑇 + 𝐵𝑝 + 𝑎𝑘𝑒 + (𝑏𝑘 − 1)𝑒)

𝜏𝑎𝑘+𝑏𝑘+1,1 = 𝜏𝑎𝑘+𝑏𝑘+1,2 =, … ,= 𝜏𝑎𝑘+𝑏𝑘+1,𝑚

= (𝑒, 𝑇 + 2𝐵𝑝 + 𝑎𝑘𝑒 + 𝑏𝑘𝑒)

𝜏𝑎𝑘+𝑏𝑘+2,1 = 𝜏𝑎𝑘+𝑏𝑘+2,2 =, … ,= 𝜏𝑎𝑘+𝑏𝑘+2,𝑚

= (𝑒, 𝑇 + 2𝐵𝑝 + 𝑎𝑘𝑒 + 𝑏𝑘𝑒 + 𝑒)
.

.

.

𝜏𝑎𝑘+2𝑏𝑘,1 = 𝜏𝑎𝑘+2𝑏𝑘,2 =, … ,= 𝜏𝑎𝑘+2𝑏𝑘,𝑚

= (𝑒, 𝑇 + 2𝐵𝑝 + 𝑎𝑘𝑒 + 𝑏𝑘𝑒 + (𝑏𝑘 − 1)𝑒)
.

.

.

𝜏𝑎𝑘+(𝑧−1)𝑏𝑘+1,1 = 𝜏𝑎𝑘+(𝑧−1)𝑏𝑘+1,2 =, … ,= 𝜏𝑎𝑘+(𝑧−1)𝑏𝑘+1,𝑚 =

 (𝑒, 𝑇 + 𝑧𝐵𝑝 + 𝑎𝑘𝑒 + (𝑧 − 1)𝑏𝑘𝑒)

204

𝜏𝑎𝑘+(𝑧−1)𝑏𝑘+2,1 = 𝜏𝑎𝑘+(𝑧−1)𝑏𝑘+2,2 =, … ,= 𝜏𝑎𝑘+(𝑧−1)𝑏𝑘+2,𝑚 =

 (𝑒, 𝑇 + 𝑧𝐵𝑝 + 𝑎𝑘𝑒 + (𝑧 − 1)𝑏𝑘𝑒 + 𝑒)
.

.

.

𝜏𝑎𝑘+𝑧𝑏𝑘,1 = 𝜏𝑎𝑘+𝑧𝑏𝑘,2 =, … ,= 𝜏𝑎𝑘+𝑧𝑏𝑘,𝑚 =

 (𝑒, 𝑇 + 𝑧𝐵𝑝 + 𝑎𝑘𝑒 + (𝑧 − 1)𝑏𝑘𝑒 + (𝑏𝑘 − 1)𝑒)

𝜏𝑎𝑘+𝑧𝑏𝑘+1,1 = 𝜏𝑎𝑘+𝑧𝑏𝑘+1,2 =, … ,= 𝜏𝑎𝑘+𝑧𝑏𝑘+1,𝑚 =

 (𝑒, 𝑇 + (𝑧 + 1)𝐵𝑝 + 𝑎𝑘𝑒 + 𝑧𝑏𝑘𝑒)

𝜏𝑎𝑘+𝑧𝑏𝑘+2,1 = 𝜏𝑎𝑘+𝑧𝑏𝑘+2,2 =, … ,= 𝜏𝑎𝑘+𝑧𝑏𝑘+2,𝑚 =

 (𝑒, 𝑇 + (𝑧 + 1)𝐵𝑝 + 𝑎𝑘𝑒 + 𝑧𝑏𝑘𝑒 + 𝑒)
.

.

.

𝜏𝑎𝑘+𝑧𝑏𝑘+𝑐𝑘,1 = 𝜏𝑎𝑘+𝑧𝑏𝑘+𝑐𝑘,2 =, … , = 𝜏𝑎𝑘+𝑧𝑏𝑘+𝑐𝑘,𝑚 =

 (𝑒, 𝑇 + (𝑧 + 1)𝐵𝑝 + 𝑎𝑘𝑒 + 𝑧𝑏𝑘𝑒 + (𝑐𝑘 − 1)𝑒)

When 𝑒 → 0 and 𝑎𝑘, 𝑏𝑘, 𝑐𝑘 → ∞ with 𝑎𝑘𝑒 = 𝑎, 𝑏𝑘𝑒 = 𝑏, and 𝑐𝑘𝑒 = 𝑐 we

obtain 𝑋𝑒′′ → 𝑋′′ and minimal utilization: 𝑈(𝑋′′) ≤ 𝑈(𝑋𝑒′′). Period T

represents the period for liquid tasks, in order to be able to schedule our

tasks as if they are running on a physical uniprocessor, we embed the

virtualization properties such as 𝑇𝑉𝑀 and Bp into T.

𝑇 =
𝑇𝑥 −⌊

𝑇𝑥
𝑇𝑉𝑀

⌋ 𝐵𝑝−𝑚𝑖𝑛(𝑇𝑥−𝑇𝑉𝑀⌊
𝑇𝑥

𝑇𝑉𝑀
⌋,𝐵𝑝)+𝐶𝑥

2
+

 (⌊

(𝑇𝑥 −⌊
𝑇𝑥

𝑇𝑉𝑀
⌋ 𝐵𝑝−𝑚𝑖𝑛(𝑇𝑥−𝑇𝑉𝑀⌊

𝑇𝑥
𝑇𝑉𝑀

⌋,𝐵𝑝)+𝐶𝑥)

2
⁄

𝑇𝑉𝑀−𝐵𝑝
⌋ + 1)𝐵𝑝 (5)

𝑎 = 𝑚𝑖𝑛 (𝑇𝑥 , 𝑇𝑉𝑀 ⌈𝑇 𝑇𝑉𝑀
⁄ ⌉) − 𝑇 (6)

If 𝑎 = 𝑇𝑥 − 𝑇 then 𝑧 = 0, 𝑏 = 0, and 𝑐 = 0 (see Figure 5).

𝑧 = 𝑚𝑎𝑥(0, ⌊𝑇𝑥/𝑇𝑉𝑀⌋ − ⌈𝑇/𝑇𝑉𝑀⌉) (7)

If 𝑧 > 0 then 𝑏 = 𝑇𝑉𝑀 – 𝐵𝑝 (8)

𝑐 = 𝑚𝑎𝑥(0, 𝑇𝑥 − ⌊𝑇𝑥/𝑇𝑉𝑀⌋𝑇𝑉𝑀 − 𝐵𝑝) (9)

Proof: The available time (non-blocked time) Ta, during which task 𝜏𝑥 has to

205

complete its execution, is 𝑇𝑥 minus the time when the VM is blocked. The

available time Ta is thus

𝑇𝑎 = 𝑇𝑥 − ⌊
𝑇𝑥

𝑇𝑉𝑀
⌋ 𝐵𝑝 − 𝑚𝑖𝑛 (𝑇𝑥 − 𝑇𝑉𝑀 ⌊

𝑇𝑥

𝑇𝑉𝑀
⌋ , 𝐵𝑝) . (10)

The minimum depends on whether 𝑇𝑥 is in a blocked interval or not.

Figure 5. Scheduling 𝑚 ∗ 𝑎𝑘 tasks on 𝑚 virtual processors when 𝐵𝑝 > 0, 𝑎 = 𝑇𝑥 − 𝑇, 𝑧 =
0, and 𝑐 = 0

From the definition of 𝑋′′ we know that in the interval [0, 𝑇𝑥] this task set will

generate interference on 𝜏𝑥 that will keep all processors busy during a total

time interval of 𝑇𝑎 − 𝐶𝑥. Half of this interference is generated by the first

release of each task and the other half is generated by the second release of

each task. The available time before time 𝑇 is 𝑇 − (⌊
𝑇

𝑇𝑉𝑀
⌋ + 1)𝐵𝑝, since time

T is always in a period when the VM has access to the processors. Therefore

we obtain Equation 11 that covers all the time that VM has access to the

hardware during time interval [0, Tx].

𝐶𝑥 + 2(𝑇𝑎 − (𝑇 − (⌊
𝑇

𝑇𝑉𝑀
⌋ + 1) 𝐵𝑝)) = 𝑇𝑎 (11)

From Equation 11,

𝑇 − (⌊
𝑇

𝑇𝑉𝑀
⌋ + 1) 𝐵𝑝 =

𝑇𝑎+𝐶𝑥

2
 (12)

206

We want to find a solution 𝑇, this solution turns out to be

𝑇 =
(𝑇𝑎+𝐶𝑥)

2
+ (⌊

(𝑇𝑎+𝐶𝑥)
2⁄

TVM−𝐵𝑝
⌋ + 1) 𝐵𝑝 (13)

If we replace 𝑇𝑎 in Equation 13 by its value (see Equation 10) we get T,

𝑇 =
𝑇𝑥 −⌊

𝑇𝑥
𝑇𝑉𝑀

⌋ 𝐵𝑝−𝑚𝑖𝑛(𝑇𝑥−𝑇𝑉𝑀⌊
𝑇𝑥

𝑇𝑉𝑀
⌋,𝐵𝑝)+𝐶𝑥

2

 +(⌊

(𝑇𝑥 −⌊
𝑇𝑥

𝑇𝑉𝑀
⌋ 𝐵𝑝−𝑚𝑖𝑛(𝑇𝑥−𝑇𝑉𝑀⌊

𝑇𝑥
𝑇𝑉𝑀

⌋,𝐵𝑝)+𝐶𝑥)

2
⁄

𝑇𝑉𝑀−𝐵𝑝
⌋ + 1) 𝐵𝑝

The period of 𝜏𝑥 may either end during a period when the VM is blocked (in

this case 𝑐 = 0 in Theorem 2), or in a period when the VM has access to the

processors (in this case 𝑐 > 0, or 𝑎 = 𝑇𝑥 − 𝑇 in Theorem 2). If the period of

𝜏𝑥 ends during a period when the VM is blocked, we have two cases: 𝑧 =
 0 or 𝑧 > 0. If 𝑧 = 0 we only have the a-component of the interference (see

Figure 5). If 𝑧 > 0, we have one or more b-components (see Figure 7). It is

clear that the task set in Theorem 2 fills each b-component using minimum

utilization of the interfering tasks. Also, the a-component is filled using

minimum utilization in the same way as in Theorem 1. If the period of 𝜏𝑥 ends

during a period when the VM has access to the processors, we have three

cases: 𝑐 = 0 and 𝑧 = 0, 𝑐 > 0 and 𝑧 = 0, or 𝑐 > 0 and 𝑧 > 0. If 𝑐 =
 0 and 𝑧 = 0, we only have the a-component of the interference (see Figure

4). In this case we have the same situation as in Theorem 1. If 𝑐 > 0 and 𝑧 =
 0, we have no b-component (see Figure 6).

It is clear that the task set in Theorem 2 fills the a-component and the c-

component using minimum utilization of the interfering tasks. If 𝑐 > 0 and

𝑧 > 0 we have the situation shown in Figure 8. It is again clear that the task

set in Theorem 2 fills the a-, b-, and c- components using minimum utilization

of the interfering tasks.

207

Figure 6. Scheduling 𝑚(𝑎𝑘 + 𝑐𝑘) tasks on 𝑚 processors when 𝐵𝑝 > 0, 𝑎 =

(𝑇𝑉𝑀 ⌈𝑇 𝑇𝑉𝑀
⁄ ⌉) − 𝑇, 𝑧 = 0 and 𝑐 > 0

Figure 7. Scheduling 𝑚(𝑎𝑘 + 2𝑏𝑘) tasks on m processor when 𝐵𝑝 > 0, 𝑎 =

(𝑇𝑉𝑀 ⌈𝑇 𝑇𝑉𝑀
⁄ ⌉) − 𝑇, 𝑧 > 0 and 𝑐 = 0

208

Figure 8. Scheduling 𝑚(𝑎𝑘 + 2𝑏𝑘 + 𝑐𝑘) tasks on m processor when 𝐵𝑝 > 0, 𝑎 =

(𝑇𝑉𝑀 ⌈𝑇 𝑇𝑉𝑀
⁄ ⌉) − 𝑇, 𝑧 > 0 and 𝑐 > 0.

Corollary 2: In an extremal and liquid task set, a task 𝜏𝑥 should be classified

as a light task if Equation 14 is true, otherwise it should be classified as a

heavy task and has higher priority than light tasks.

𝑈′′ ≤ 𝑙𝑛 (1 +
𝑎

𝑇
) + ∑ 𝑙𝑛 (1 +

𝑏

𝑇+𝑎+𝑠𝐵𝑝+(𝑠−1)𝑏
)𝑠=𝑧

𝑠=1 + 𝑙𝑛 (1 +

𝑐

𝑇+𝑎+(𝑧+1)𝐵𝑝+𝑧𝑏
) (14)

where 𝑈′′ is the utilization of the extremal task set 𝑋′′.

Proof: The total utilization of the tasks 𝜏1,1, …,𝜏𝑎𝑘,1 defined in Theorem 2

equals Σ𝑖=1
𝑎𝑘 𝑒

𝑇+(𝑖−1)𝑒
. If 𝑒 → 0 and 𝑎𝑘 → ∞ so that 𝑎𝑘𝑒 = 𝑎 is constant, the

utilization Σ𝑖=1
𝑎𝑘 𝑒

𝑇+(𝑖−1)𝑒
 is a decreasing function of 𝑚 [25]. We thus obtain a

lower bound after this limit, in which a Riemann sum converges to an integral:

𝛴𝑖=1
𝑎𝑘 𝑒

𝑇+(𝑖−1)𝑒
→ ∫

𝑑𝑡

𝑇+𝑡

𝑎

0
= 𝑙𝑛 (1 +

𝑎

𝑇
) (15)

Corollary 2 follows by using a similar argument for the other parts of the

task set, i.e., parts b and c.

209

5.4 Algorithm Description

The following is the description of the algorithm that is shown in Figure 9.

1. Given a task set 𝛤 = {𝜏1, 𝜏2, … , 𝜏𝑛},
2. 𝑖 = 0

3. 𝑖 ≔ 𝑖 + 1
4. Given

 𝑇 =

𝑇𝑖 −⌊

𝑇𝑖
𝑇𝑉𝑀

⌋ 𝐵𝑝−𝑚𝑖𝑛(𝑇𝑖−𝑇𝑉𝑀⌊
𝑇𝑖

𝑇𝑉𝑀
⌋,𝐵𝑝)+𝐶𝑖

2
+

(⌊

(𝑇𝑖 −⌊
𝑇𝑖

𝑇𝑉𝑀
⌋ 𝐵𝑝−𝑚𝑖𝑛(𝑇𝑖−𝑇𝑉𝑀⌊

𝑇𝑖
𝑇𝑉𝑀

⌋,𝐵𝑝)+𝐶𝑖)

2
⁄

𝑇𝑉𝑀−𝐵𝑝
⌋ + 1)𝐵𝑝

If
1

𝑚
∑ 𝐶𝑗/𝑇𝑗

𝑖−1
𝑗=1 ≥ 𝑙𝑛 (1 +

𝑎

𝑇
) + ∑ 𝑙𝑛 (1 +

𝑏

𝑇+𝑎+𝑠𝐵𝑝+(𝑠−1)𝑏
) +𝑧

𝑠=1

𝑙𝑛 (1 +
𝑐

𝑇+𝑎+(𝑧+1)𝐵𝑝+𝑧𝑏
), then 𝜏𝑖 is a light task, do i ≔ 𝑖 + 1

5. repeat until i==n,

6. 𝛤 is schedulable, end

else 𝜏𝑖 is a heavy task, continue to Step 7.

7. Give task 𝜏𝑖 the highest priority, // we mark it as heavy. (N.B. we cannot

have more than m heavy tasks).

8. if 𝐶𝑖 ≤ 𝑇𝑖 − ⌊
𝑇𝑖

𝑇𝑉𝑀
⌋ 𝐵𝑝 − 𝑚𝑖𝑛 (𝑇𝑖 − 𝑇𝑉𝑀 ⌊

𝑇𝑖

𝑇𝑉𝑀
⌋ , 𝐵𝑝) (16)

9. and 𝑖 == 𝑛 and 𝑖 == 𝑚

then 𝛤 is schedulable, end. //(this is a special case that can only happen when

𝑛 == 𝑚)

10. elseif m > 1 then

11. (𝑚 ≔ 𝑚 − 1), Γ ≔ Γ\{𝜏𝑖}, reset 𝑖 = 0,

 else

12. 𝛤 is not schedulable, end

210

We can have at most 𝑛 “Yes” alternatives in a row in Step 4 (the inner loop),

and we can have at most 𝑚 “No” alternatives in Step 9 (the outer loop).

The total number of loops equals to:

𝑛 + (𝑛 − 1) + (𝑛 − 2) + ⋯+ (𝑛 − (𝑚 − 1)) = 𝑚𝑛 − (1 + 2 + ⋯+ (𝑚 −

1)) = 𝑚𝑛 − (
(𝑚−1)𝑚

2
) = 𝑚𝑛 (1 − (

(𝑚−1)

2𝑛
)). The complexity of the

algorithm is thus O(mn).

Figure 9. Algorithm flowchart

211

5.4.1 Example

We consider the task set Γ = {𝜏1, 𝜏2, 𝜏3, … , 𝜏8}
𝜏1𝐶1 = 2𝑇1𝜏2,𝐶2 = 2𝑇2 =; 𝜏3,𝐶3 = 2𝑇3 =𝜏4,𝐶4 =
2, 𝑇4 =; 𝜏5, 𝐶5 = 2, 𝑇5 =

𝜏6, 𝐶6 = 2, 𝑇6 =; 𝜏7, 𝐶7 = 2, 𝑇7 =𝜏8,𝐶8 = 10, 𝑇8 = 33

Consider a VM with 𝑚 = 3, 𝑇𝑉𝑀 = 6 and 𝐵𝑝 = 2. The critical task is τ8, in

order to save space we skip the analysis of the first seven tasks. By inserting

𝑇𝑥 = 𝑇8 = 33, 𝑇𝑉𝑀 = 6, 𝐵𝑝 = 2, and 𝐶𝑥 = 𝐶8 = 10 in

𝑇 =
𝑇𝑥 −⌊

𝑇𝑥
𝑇𝑉𝑀

⌋ 𝐵𝑝−𝑚𝑖𝑛(𝑇𝑥−𝑇𝑉𝑀⌊
𝑇𝑥

𝑇𝑉𝑀
⌋,𝐵𝑝)+𝐶𝑥

2

+(⌊

(𝑇𝑥 −⌊
𝑇𝑥

𝑇𝑉𝑀
⌋ 𝐵𝑝−𝑚𝑖𝑛(𝑇𝑥−𝑇𝑉𝑀⌊

𝑇𝑥
𝑇𝑉𝑀

⌋,𝐵𝑝)+𝐶𝑥)

2
⁄

𝑇𝑉𝑀−𝐵𝑝
⌋ + 1)𝐵𝑝 = 23.5

The utilization 𝑈′′ of τ1 to τ7 equals
1

3
∑

2

10
7
1 ≈ 0.467

𝑎 = 𝑚𝑖𝑛 (33 , 6 ⌈
23.5

6
⌉) – 23.5 = 0.5

𝑧 = 𝑚𝑎𝑥 (0, ⌊
33

6
⌋ − ⌈

23.5

6
⌉) = 1

𝑏 = 6 – 2 = 4

𝑐 = 𝑚𝑎𝑥 (0, 33 − ⌊
33

6
⌋ 6 − 2) = 1

From Equation 14, by replacing T, a, b, c, and z, the threshold equals to

𝑙𝑛 (1 +
0.5

23.5
) + ∑𝑙𝑛 (1 +

4

23.5 + 1 + 2 + (1 − 1)4
)

1

𝑠=1

+ 𝑙𝑛 (1 +
1

23.5 + 1 + (1 + 1)2 + (1 ∗ 4)
)

= 𝑙𝑛 (1 +
0.5

23.5
) + 𝑙𝑛 (1 +

4

26.5
) + 𝑙𝑛 (1 +

1

32.5
) ≈ 0.192

Since the threshold is smaller than 𝑈′′, i.e., 0.192 < 0.467, we allocate 𝜏8 to

its own processor and check if it is schedulable (Step 4 in the algorithm). Since

10 ≤ 33 − ⌊
33

6
⌋ 2 − 𝑚𝑖𝑛 (33 − 6 ⌊

33

6
⌋ , 2), i.e., 10 ≤ 21, 𝜏8 is schedulable.

The next step is to check one by one if the remaining tasks 𝜏1, 𝜏2, … 𝜏7 are

212

schedulable on the remaining two processors. It turns out that the task set is

schedulable. Figure 10 shows that this task set is not schedulable using rate

monotonic priority assignment. However, it is schedulable when we use the

heavy and light classification (see Figure 11). In Figure 11, the heavy task

𝜏8 executes uninterruptedly, as if it had a processor of its own.

Figure 10. Scheduling a task set of 8 tasks on a VM with 𝑚 = 3, 𝑇𝑉𝑀 = 6, 𝐵𝑝 = 2 using

RM

Figure 11. Scheduling a task set of 8 tasks on a VM with m = 3, 𝑇𝑉𝑀 = 6 𝐵𝑝 = 2

when classifying 𝜏8 as heavy

213

5.5 The effect of different deadlines (DVM)

Large values on 𝐷𝑉𝑀 increase the possible variation of the position of the

blocking period Bp during each period 𝑇𝑉𝑀. The longest time that a VM is

blocked occurs when the VM execution time (𝐶𝑉𝑀) comes as early as possible

in one period (i.e., immediately after the release of the VM, thus making Bp

occur at the end of the 𝑇𝑉𝑀 period), and the VM execution time (𝐶𝑉𝑀) comes

as late as possible in the next periods. In that case the VM will be blocked

during a time period of Bp + 𝐷𝑉𝑀 - 𝐶𝑉𝑀, e.g., if 𝐷𝑉𝑀 = 𝑇𝑉𝑀 the VM will be

blocked during a period of length 2Bp. Figure 12 shows how the VM is

executed in the worst case scenario for 𝐷𝑉𝑀 = 𝑇𝑉𝑀. The extreme case with

two Bps consecutively, is shown in Figure 13 for a multiprocessor VM with

three virtual processors. A similar periodic VM is discussed in [1]. Figures 14

and 15 show the corresponding worst case scenarios for a 𝐷𝑉𝑀 longer than

𝐶𝑉𝑀 but shorter than 𝑇𝑉𝑀. As a result, Theorem 3 below replaces Theorem 2

in Step 4 in the algorithm described in Section 4.

Figure 12. Worst-case scenario for 𝐷𝑉𝑀 = 𝑇𝑉𝑀

214

Figure 13. The worst case scenario: Scheduling 𝑚(𝑎𝑘 + 2𝑏𝑘 + 𝑐𝑘) tasks on m

processor when 𝐵𝑝 > 0, 𝑎 = (𝑇𝑉𝑀 ⌈𝑇 𝑇𝑉𝑀
⁄ ⌉) − 𝑇, 𝑧 > 0 and 𝑐 > 0, with 𝐷𝑉𝑀 =

 𝑇𝑉𝑀

Figure 14. Scheduling VM with 𝑇𝑉𝑀 − 𝐵𝑝 < 𝐷𝑉𝑀 < 𝑇𝑉𝑀.

215

Figure 15. The worst case scenario: Scheduling 𝑚(𝑎𝑘 + 2𝑏𝑘 + 𝑐𝑘) tasks on m

processor when 𝐵𝑝 > 0, 𝑎 = (𝑇𝑉𝑀 ⌈𝑇 𝑇𝑉𝑀
⁄ ⌉) − 𝑇, 𝑧 > 0 and 𝑐 > 0. With

𝑇𝑉𝑀 − 𝐵𝑝 ≤ 𝐷𝑉𝑀 ≤ 𝑇𝑉𝑀

The period 𝑇 is affected by 𝐷𝑉𝑀, the formula in Equation 5 that is used in the

algorithm in Step 4, is for the general case computed using Equation 18 in

Theorem 3 (see below). Step 8 in the algorithm also becomes Equation 17 to

determine if a heavy task 𝜏𝑖 is schedulable on its own dedicated processor.

𝐶𝑖 ≤ 𝑇𝑖 − 𝐷𝑉𝑀 + 𝑇𝑉𝑀 − 𝐵𝑝 − ⌊
𝑇𝑖−𝐷𝑉𝑀+𝑇𝑉𝑀−𝐵𝑝

𝑇𝑉𝑀
⌋ 𝐵𝑝 − 𝑚𝑖𝑛 (𝑇𝑖 − 𝐷𝑉𝑀 +

𝑇𝑉𝑀 − 𝐵𝑝 − 𝑇𝑉𝑀 ⌊
𝑇𝑖−𝐷𝑉𝑀+𝑇𝑉𝑀−𝐵𝑝

𝑇𝑉𝑀
⌋ , 𝐵𝑝). (17)

 Theorem 3: We use the same task set as in Theorem 2. When we consider

𝐷𝑉𝑀 the formulas for T, a, b, c, and z are as follows:

𝑇 =

(
𝑇𝑥−𝐷𝑉𝑀+𝑇𝑉𝑀−𝐵𝑝 −⌊

𝑇𝑥−𝐷𝑉𝑀+𝑇𝑉𝑀−𝐵𝑝

𝑇𝑉𝑀
⌋𝐵𝑝

− 𝑚𝑖𝑛(𝑇𝑥−𝐷𝑉𝑀+𝑇𝑉𝑀−𝐵𝑝−𝑇𝑉𝑀⌊
𝑇𝑥−𝐷𝑉𝑀+𝑇𝑉𝑀−𝐵𝑝

𝑇𝑉𝑀
⌋,𝐵𝑝)+𝐶𝑥

)

2

216

+

(

⌊

 (

𝑇𝑥−𝐷𝑉𝑀+𝑇𝑉𝑀−𝐵𝑝 –⌊
𝑇𝑥−𝐷𝑉𝑀+𝑇𝑉𝑀−𝐵𝑝

𝑇𝑉𝑀
⌋𝐵𝑝

−𝑚𝑖𝑛 (𝑇𝑥−𝐷𝑉𝑀+𝑇𝑉𝑀−𝐵𝑝−𝑇𝑉𝑀⌊
𝑇𝑥−𝐷𝑉𝑀+𝑇𝑉𝑀−𝐵𝑝

𝑇𝑉𝑀
⌋,𝐵𝑝)+𝐶𝑥

)

2

⁄

𝑇𝑉𝑀−𝐵𝑝

⌋

+ 1

)

𝐵𝑝 + (𝐷𝑉𝑀 − 𝑇𝑉𝑀 + 𝐵𝑝)

 (18)

𝑎 = 𝑚𝑖𝑛 (𝑇𝑥 − 𝐷𝑉𝑀 + 𝑇𝑉𝑀 − 𝐵𝑝, 𝑇𝑉𝑀 ⌈
𝑇−𝐷𝑉𝑀+𝑇𝑉𝑀−𝐵𝑝

𝑇𝑉𝑀
⌉) − (𝑇 − 𝐷𝑉𝑀 +

𝑇𝑉𝑀 − 𝐵𝑝) (19)

If 𝑎 = 𝑇𝑥 − 𝑇 then 𝑧 = 0, 𝑏 = 0, and 𝑐 = 0

𝑧 = 𝑚𝑎𝑥 (0, ⌊
𝑇𝑥−𝐷𝑉𝑀+𝑇𝑉𝑀−𝐵𝑝

𝑇𝑉𝑀
⌋ − ⌈

𝑇−𝐷𝑉𝑀+𝑇𝑉𝑀−𝐵𝑝

𝑇𝑉𝑀
⌉) (20)

if 𝑧 > 0 then 𝑏 = 𝑇𝑉𝑀 – 𝐵𝑝 (21)

𝑐 = 𝑚𝑎𝑥(0, 𝑇𝑥 − 𝐷𝑉𝑀 + 𝑇𝑉𝑀 − 𝐵𝑝 − ⌊
𝑇𝑥−𝐷𝑉𝑀+𝑇𝑉𝑀−𝐵𝑝

𝑇𝑉𝑀
⌋ 𝑇𝑉𝑀 − 𝐵𝑝) (22)

Proof: The available time (non-blocked time) that task 𝜏𝑥 has to complete its

execution is 𝑇𝑥 minus the time when the VM is blocked. The available time

denoted by 𝑇𝑎 is thus (see Figure 15):

𝑇𝑎 = 𝑇𝑥 − (𝐷
𝑉𝑀

− 𝐶𝑉𝑀) − ⌊
𝑇𝑥−(𝐷𝑉𝑀− 𝐶𝑉𝑀)

𝑇𝑉𝑀
⌋𝐵𝑝 − 𝑚𝑖𝑛 (𝑇𝑥 − (𝐷

𝑉𝑀
− 𝐶𝑉𝑀) −

𝑇𝑉𝑀 ⌊
𝑇𝑥−(𝐷𝑉𝑀− 𝐶𝑉𝑀)

𝑇𝑉𝑀
⌋ , 𝐵𝑝) (23)

with 𝐶𝑉𝑀 = 𝑇𝑉𝑀 − 𝐵𝑝 we get

𝑇𝑎 = 𝑇𝑥 − 𝐷𝑉𝑀 + 𝑇𝑉𝑀 − 𝐵𝑝 − ⌊
𝑇𝑥−𝐷𝑉𝑀+𝑇𝑉𝑀−𝐵𝑝

𝑇𝑉𝑀
⌋𝐵𝑝 − 𝑚𝑖𝑛 (𝑇𝑥 − 𝐷𝑉𝑀 +

𝑇𝑉𝑀 − 𝐵𝑝 − 𝑇𝑉𝑀 ⌊
𝑇𝑥−𝐷𝑉𝑀+𝑇𝑉𝑀−𝐵𝑝

𝑇𝑉𝑀
⌋ , 𝐵𝑝) (24)

The minimum depends on whether 𝑇𝑥 ends in a blocked interval or not.

From the definition of 𝑋′′ we know that in the interval [0, 𝑇𝑥] this task set will

generate interference that will keep all processors busy during a total time

interval of 𝑇𝑎 − 𝐶𝑥. Half of this interference is generated by the first release

of each task and the other half is generated by the second release of each task.

The available time before T that the VM has access to the processors is 𝑇 −

𝐷𝑉𝑀 + 𝑇𝑉𝑀 − 𝐵𝑝 − (⌊
𝑇−𝐷𝑉𝑀+𝑇𝑉𝑀−𝐵𝑝

𝑇𝑉𝑀
⌋ + 1)𝐵𝑝. This means that the time that

𝜏𝑥 is blocked due to the second release of the tasks in 𝑋′′ is 𝑇𝑎 −

217

 (𝑇 − 𝐷𝑉𝑀 + 𝑇𝑉𝑀 − 𝐵𝑝 − (⌊
𝑇−𝐷𝑉𝑀+𝑇𝑉𝑀−𝐵𝑝

𝑇𝑉𝑀
⌋ + 1)𝐵𝑝) and since the time

that 𝜏𝑥 is blocked due to the first release of the tasks in 𝑋′′ is the same.

Therefore, we get

𝐶𝑥 + 2(𝑇𝑎 − (𝑇 − 𝐷𝑉𝑀 + 𝑇𝑉𝑀 − 𝐵𝑝 − (⌊
𝑇−𝐷𝑉𝑀+𝑇𝑉𝑀−𝐵𝑝

𝑇𝑉𝑀
⌋ + 1)𝐵𝑝)) = 𝑇𝑎

(25)

From (25) we get (26)

𝑇 − 𝐷𝑉𝑀 + 𝑇𝑉𝑀 − 𝐵𝑝 − (⌊
𝑇−𝐷𝑉𝑀+𝑇𝑉𝑀−𝐵𝑝

𝑇𝑉𝑀
⌋ + 1)𝐵𝑝 = (𝑇𝑎 + 𝐶𝑥)/2 (26)

From (26) we find a solution for 𝑇 in (27)

𝑇 =

(
𝑇𝑥−𝐷𝑉𝑀+𝑇𝑉𝑀−𝐵𝑝 −⌊

𝑇𝑥−𝐷𝑉𝑀+𝑇𝑉𝑀−𝐵𝑝

𝑇𝑉𝑀
⌋𝐵𝑝

−𝑚𝑖𝑛(𝑇𝑥−𝐷𝑉𝑀+𝑇𝑉𝑀−𝐵𝑝−𝑇𝑉𝑀⌊
𝑇𝑥−𝐷𝑉𝑀+𝑇𝑉𝑀−𝐵𝑝

𝑇𝑉𝑀
⌋,𝐵𝑝)+𝐶𝑥

)

2

+

(

⌊

 (

𝑇𝑥−𝐷𝑉𝑀+𝑇𝑉𝑀−𝐵𝑝 –⌊
𝑇𝑥−𝐷𝑉𝑀+𝑇𝑉𝑀−𝐵𝑝

𝑇𝑉𝑀
⌋𝐵𝑝

−𝑚𝑖𝑛 (𝑇𝑥−𝐷𝑉𝑀+𝑇𝑉𝑀−𝐵𝑝−𝑇𝑉𝑀⌊
𝑇𝑥−𝐷𝑉𝑀+𝑇𝑉𝑀−𝐵𝑝

𝑇𝑉𝑀
⌋,𝐵𝑝)+𝐶𝑥

)

2

⁄

𝑇𝑉𝑀−𝐵𝑝

⌋

+ 1

)

𝐵𝑝 + 𝐷𝑉𝑀 − 𝑇𝑉𝑀 + 𝐵𝑝 (27) ■

Corollary 3: In an extremal and liquid task set, a task 𝜏𝑥 should be classified

as a light task if Equation 28 is true, otherwise it should be classified as a

heavy task thus having higher priority than light tasks.

𝑈′′ ≤ 𝑙𝑛 (1 +
𝑎

𝑇
) + ∑𝑙𝑛 (1 +

𝑏

𝑇 + 𝑎 + 𝑠𝐵𝑝 + (𝑠 − 1)𝑏
)

𝑠=𝑧

𝑠=1

+

 𝑙𝑛 (1 +
𝑐

𝑇+𝑎+(𝑧+1)𝐵𝑝+𝑧𝑏
) (28)

Proof: Refer to proof of Corollary 2. In Equation 28 the T a, b, c, and z

parameters are calculated from Equations 18-22.

5.5.1 Example

Consider the example in Section 4.1, and assume that 𝐷𝑉𝑀 = 𝑇𝑉𝑀, then using

Equation 27, we have 𝑇 = 25.

218

The utilization 𝑈′′of τ1 to τ7 =
1

3
∑

2

10
7
1 ≈ 0.467

𝑎 = 𝑚𝑖𝑛 (33 − 2 , 6 ⌈
25−2

6
⌉) – (25 − 2) = 4, 𝑧 = 𝑚𝑎𝑥 (0, ⌊

33−2

6
⌋ −

⌈
25−2

6
⌉) = 1, therefore 𝑏 = 5

𝑐 = 𝑚𝑎𝑥 (0, 33 − 2 − ⌊
33 − 2

6
⌋ 6 − 2) = 0

 From Corollary 3, Equation 28 and by calculating T, a, b, c, and z the

threshold equals 𝑙𝑛 (1 +
4

25
) + 𝑙𝑛 (1 +

5

25+4+2
) ≈ 0.298

Since the threshold is smaller than 𝑈′′, i.e., 0.298 < 0.467, we allocate 𝜏8 to

its own processor and then check if it is schedulable (Step 4 in the algorithm).

Since 𝐶8 ≤ 𝑇8 − 𝐷𝑉𝑀 + 𝑇𝑉𝑀 − 𝐵𝑝 − ⌊
𝑇8−𝐷𝑉𝑀+𝑇𝑉𝑀−𝐵𝑝

𝑇𝑉𝑀
⌋ 𝐵𝑝 − 𝑚𝑖𝑛 (𝑇8 −

𝐷𝑉𝑀 + 𝑇𝑉𝑀 − 𝐵𝑝 − 𝑇𝑉𝑀 ⌊
𝑇8−𝐷𝑉𝑀+𝑇𝑉𝑀−𝐵𝑝

𝑇𝑉𝑀
⌋ , 𝐵𝑝),

i.e., 10 < 20, we see that 𝜏8 is schedulable on its own processor. The next

step is to check one by one if the remaining tasks 𝜏1, 𝜏2, … 𝜏7 are schedulable

on the remaining two processors using RM. 𝜏7 misses deadline (see Figure

16), hence the task set is not schedulable we need to increase the resources by

decreasing the blocking time.

Let us decrease the blocking time 𝐵𝑝, and then schedule the same task set

using 𝑇𝑉𝑀 = 6, 𝐵𝑝 = 1.

Using Equation 27 we get 𝑇 = 23

𝑎 = 𝑚𝑖𝑛 (33 − 1 , 6 ⌈
23 − 1

6
⌉) – (23 − 1) = 2

𝑧 = 𝑚𝑎𝑥 (0, ⌊
33 − 1

6
⌋ − ⌈

23 − 1

6
⌉) = 1

Therefore 𝑏 = 6 − 1 = 5

𝑐 = 𝑚𝑎𝑥 (0, 33 − 1 − ⌊
33 − 1

6
⌋ 6 − 1) = 1

From Equation 28, and by calculating T, a, b, c, and z the threshold equals

219

𝑙𝑛 (1 +
2

23
) + ∑𝑙𝑛 (1 +

5

23 + 2 + 𝑠 ∗ 1 + (𝑠 − 1)5
)

1

𝑠=1

+ 𝑙𝑛 (1 +
1

23 + 2 + (1 + 1)1 + (1 ∗ 5)
) =

𝑙𝑛 (1 +
2

23
) + 𝑙𝑛 (1 +

5

26
) + 𝑙𝑛 (1 +

1

32
) ≈ 0.290

Figure 16 . The worst case scenario: Scheduling tasks with 𝑚 = 3, 𝑇𝑉𝑀 = 6, 𝐵𝑝 = 2

Since the threshold is smaller than 𝑈′′, i.e., 0.290 < 0.467, we allocate 𝜏8 to

its own processor and then check if it is schedulable. Since 𝐶8 ≤ 𝑇8 − 𝐷𝑉𝑀 +

𝑇𝑉𝑀 − 𝐵𝑝 − ⌊
𝑇8−𝐷𝑉𝑀+𝑇𝑉𝑀−𝐵𝑝

𝑇𝑉𝑀
⌋ 𝐵𝑝 − 𝑚𝑖𝑛 (𝑇8 − 𝐷𝑉𝑀 + 𝑇𝑉𝑀 − 𝐵𝑝 −

𝑇𝑉𝑀 ⌊
𝑇8−𝐷𝑉𝑀+𝑇𝑉𝑀−𝐵𝑝

𝑇𝑉𝑀
⌋ , 𝐵𝑝), i.e., 10 < 26, we see that 𝜏8 is schedulable. The

next step is to check one by one if the remaining tasks 𝜏1, 𝜏2, … 𝜏7 are

schedulable on the remaining two processors using RM. It turns out that the

task set is schedulable (see Figure 17).

220

Figure 17. The worst case scenario: scheduling tasks with 𝑚 = 3, 𝑇𝑉𝑀 = 6, 𝐵𝑝 = 1, 𝐷𝑉𝑀 =
𝑇𝑉𝑀

5.5.2 Hypervisor scheduling parameters trade-off

If we select a short 𝐷𝑉𝑀, the jitter is reduced, which increases the chance that

the task set 𝛤 can be scheduled. However, decreasing 𝐷𝑉𝑀 will make it harder

to schedule the VM on the hypervisor level in most cases (if the periods of the

VMs sharing the hardware are all the same, or harmonic, increasing the 𝐷𝑉𝑀

may, however, not increase schedulability). In order to compensate for this

increased scheduling difficulty on the hypervisor level one could either extend

the 𝑇𝑉𝑀 or shorten the 𝐶𝑉𝑀 of the VM. However, extending the 𝑇𝑉𝑀 and/or

shortening the 𝐶𝑉𝑀will make it harder to schedule 𝛤 on the VM. This means

that there is a trade-off. One way of exploring this trade-off is to extend the

𝐷𝑉𝑀 and shorten the 𝑇𝑉𝑀 or vice versa, or to shorten both the 𝐷𝑉𝑀 and the 𝐶𝑉𝑀

or vice versa (still keeping 𝐶𝑉𝑀 ≤ 𝐷𝑉𝑀 ≤ 𝑇𝑉𝑀). By using the results in this

paper, these trade-offs can be evaluated for a certain 𝛤 and for a certain set of

VMs sharing the multiprocessor hardware (if a VM uses either all hardware

resources or no hardware resources at each point in time, then scheduling of

the VMs on the hypervisor level can be evaluated using well known

schedulability tests from single-processors [6]).

There is of course some context switching overhead on the hypervisor level,

221

i.e., there will be a context switching delay before the VM can start executing

the real-time tasks. If we assume that the time for a context switch is fixed, it

is trivial to incorporate the context switching overhead into our formulas since

we keep track of the number of VM context switches in the worst-case

scenarios. It is clear that a large context switching overhead will favor a long

𝑇𝑉𝑀 (since this will reduce the number of context switches). Based on the

discussion above we know that a long 𝑇𝑉𝑀 can to some extent be compensated

by a short 𝐷𝑉𝑀. To sum up, the optimal combination of the scheduling

parameters on the hypervisor level depends on the task set 𝛤, the context

switching overhead, and whether the 𝑇𝑉𝑀 periods of the VMs sharing the

hardware are harmonic or not; the effect of different combination of

scheduling parameters on the hypervisor level can be evaluated using our

results and well-known results from single-processor real-time scheduling.

5.6 Evaluation of Average Performance

 As discussed before, the classification of tasks into heavy and light is the

state-of-the-art way of avoiding Dhall’s effect. By avoiding Dhall’s effect we

can guarantee that all task sets with a low utilization are schedulable. It is,

however, not clear how the classification of tasks into heavy and light affects

the average performance of a real-time system. In order to evaluate the

average performance of using the heavy/light classification, we did an

experiment.

We consider a multiprocessor VM with 10 processors, we work on two cases,

(1) one task set has 300 tasks and (2) one task set has 500 tasks. Periods are

randomly generated with a uniform distribution over a range of [100...3000].

Each case is simulated for different task set utilizations U [0.1, 0.2,…, 0.5]

per processor. The distribution is done by the UUnifast algorithm, this

algorithm efficiently generates task sets with uniform distribution with O(n)

complexity [26]. In order to avoid that individual tasks may have utilization

higher than one, we generated n/m tasks m times (n is the number of tasks and

m is the number of processors), and then we consolidated all tasks into a single

task set with n tasks. A task’s execution time was obtained by multiplying the

utilization of the task with the task’s period. We ran 30 task sets in each case

and measured the average success ratio, which is the number of schedulable

task sets over the total number of task sets.

222

Finding the optimal values for 𝐶𝑉𝑀, 𝐷𝑉𝑀 and 𝑇𝑉𝑀 is complex. The optimal

values do not only depend on the real-time task set being scheduled; they also

depend on the system overhead for switching from one VM to another.

Theoretically, it is always better to have very short 𝑇𝑉𝑀 [36]. The obvious

problem with this is that for small 𝑇𝑉𝑀 we get excessive context switching

between different VMs. This means that there is a trade-off where also the

system overhead for context switching needs to be considered; for more

details on this see [36]. The measurements are done for RM priority

assignment and using heavy/light priority assignment. 𝑇𝑉𝑀 equals to a half of

the shortest tasks’ period in the task set in both cases; this has been

heuristically found to be reasonable [36]. We have 𝐵𝑝 = 𝐶𝑉𝑀 = 𝐷𝑉𝑀 =
 𝑇𝑉𝑀/2 in both cases.

Figure 18. Case (1) with 300 tasks per task set, (a) 𝐷𝑉𝑀 = 𝑇𝑉𝑀 − 𝐵𝑝, (b) 𝐷𝑉𝑀 = 0.75𝑇𝑉𝑀 ,

and (c) 𝐷𝑉𝑀 = 𝑇𝑉𝑀

Figure 19. Case (2) with 500 tasks per task set, (a) 𝐷𝑉𝑀 = 𝑇𝑉𝑀 − 𝐵𝑝, (b) 𝐷𝑉𝑀 = 0.75 𝑇𝑉𝑀 ,

and (c) 𝐷𝑉𝑀 = 𝑇𝑉𝑀

Figures 18 and 19 show that the utilization based schedulability test and heavy

light priority assignment performs better than RM for both cases. When 𝐷𝑉𝑀

is as high as possible, i.e., 𝐷𝑉𝑀 = 𝑇𝑉𝑀, the utilization based test schedules

223

fewer task sets (see Figure 18 (c), 19 (c)). The best case is when 𝐷𝑉𝑀 is as

short as possible, i.e., 𝐷𝑉𝑀 = 𝑇𝑉𝑀 − 𝐵𝑝 (see Figure 18 (a) and 19 (a)).

However, when 𝐷𝑉𝑀 is short it will be more difficult to schedule the VMs so

that all VMs meet their deadlines (as defined by 𝐷𝑉𝑀). For instance, if we have

two VMs with 𝐷𝑉𝑀 = 𝑇𝑉𝑀 − 𝐵𝑝, we will (unless for special cases with

harmonic periods) not be able to schedule these two VMs on the target

multiprocessor even if the sum of 𝐶𝑉𝑀/𝑇𝑉𝑀 is very small for these VMs. If we

allow more jitter, it will be much easier to schedule these two VMs. This

means that there is a trade-off; a short 𝐷𝑉𝑀 makes it easier to schedule real-

time tasks inside the VM, but makes it harder to schedule the VM so that the

VM deadlines are always met. Keeping the same utilization and increasing

the number of tasks decreases the schedulability, i.e., the success ratio in

Figure 18 (300 tasks) is higher than the corresponding success ratio in Figure

19 (500 tasks).

5.7 Conclusions

We present an algorithm that determines if a task set that executes in a VM

with 𝑚 virtual processors is schedulable or not. The test for each task in the

task set is based on the utilization of the tasks with higher priorities, the period

of the VM executing the task set (𝑇𝑉𝑀), the time that the VM is blocked in

each period (𝐵𝑝), and the VM deadline (𝐷𝑉𝑀). 𝐷𝑉𝑀 affects the length of the

first period when the VM is blocked. In the worst case when 𝐷𝑉𝑀 = 𝑇𝑉𝑀, the

tasks start executing after two Bps. In the worst case when 𝐷𝑉𝑀 = 𝑇𝑉𝑀 − 𝐵𝑝,

the tasks start executing after one Bp. Generally, we have 𝑇𝑉𝑀 −
𝐵𝑝 ≤ 𝐷𝑉𝑀 ≤ 𝑇𝑉𝑀 where tasks start executing after a time 𝑡, (𝐵𝑝 ≤ 𝑡 ≤ 2𝐵𝑝)

depending on 𝐷𝑉𝑀. A large 𝐷𝑉𝑀 makes it easier to schedule the VMs on the

physical hardware, since the hypervisor has more flexibility regarding when

the VM should be given access to the physical hardware. However, this

flexibility makes the worst-case scenario more unfavorable for the real-time

tasks running in the VM, so there is a trade-off. The preferred balance in this

trade-off depends on the characteristics of the other VMs that share the same

physical multiprocessor.

We calculate parameters T, a, b, c, and z, based on m, 𝐷𝑉𝑀, 𝑇𝑉𝑀, Bp, and the

task 𝜏𝑥 (the task that we are testing). In the utilization-based schedulability

test for 𝜏𝑥, we compare the utilization 𝑈′′ of the interfering tasks with the

224

bound

𝑈′′ ≤ 𝑙𝑛 (1 +
𝑎

𝑇
) + ∑𝑙𝑛 (1 +

𝑏

𝑇 + 𝑎 + 𝑠𝐵𝑝 + (𝑠 − 1)𝑏
)

𝑠=𝑧

𝑠=1

+ 𝑙𝑛 (1 +
𝑐

𝑇 + 𝑎 + (𝑧 + 1)𝐵𝑝 + 𝑧𝑏
)

If the utilization of the interfering tasks is above the bound, 𝜏𝑥 is classified as

heavy and gets the highest priority, otherwise the task is classified as light.

Light tasks are scheduled using RM priority assignment. Our algorithm checks

each task in the task set and classifies each task as heavy or light. It is shown

through simulation that the classification in light and heavy tasks used in the

utilization-based schedulability test is more favorable than traditional RM

priority assignment in the sense that we can on average schedule more task

sets.

Our results makes it possible to evaluate important trade-offs and take

informed decisions when selecting scheduling parameters on the hypervisor

level, also considering the effect of context switching overhead at the

hypervisor level. The computational complexity of the algorithm is 𝑂(𝑚𝑛),

where n is the number of tasks and m is the number of virtual cores

(processors) in the VM running the real-time tasks.

Acknowledgements

This work is part of the research project "Scalable resource-efficient systems

for big data analytics" funded by the Knowledge Foundation (grant:

20140032) in Sweden. We also thank Telenor Sverige for providing the data.

References

[1] Lundberg, L. and Shirinbab, S. (2013) Real-time scheduling in cloud-based

virtualized software systems. Proceedings of the Second Nordic Symposium on

Cloud Computing & Internet Technologies, Oslo, 01-03 September, pp. 54–58,

ACM New York, NY, USA.

[2] Lundberg, L. (2002) Analyzing fixed-priority global multiprocessor

scheduling. Proceedings of Eighth IEEE Real-Time and Embedded Technology

https://www.acm.org/publications

225

and Applications Symposium, San Jose, CA, USA, 25-27 September, pp. 145–

153. IEEE Computer Society Washington, DC, USA.

[3] Buttazzo, G. C. (2011) Hard real-time computing systems: predictable

scheduling algorithms and applications. Springer, NY, USA.

[4] Niyizamwiyitira, C., Lundberg, L. and Lennerstad, H. (2015) Utilization-based

Schedulability Test of Real-time Systems on Virtual Multiprocessors.

Proceedings of 44th International Conference on Parallel Processing

Workshops, Beijing, 01-04 September, pp. 267–276. IEEE, New Jersey, USA

[5] Liu, C. L. and Layland, J. W. (1973) Scheduling algorithms for

multiprogramming in a hard-real-time environment. J. ACM, 20, pp. 46–61.

[6] Burns, A. and Wellings, A. J. (2001) Real-time systems and programming

languages: Ada 95, real-time Java, and real-time POSIX. Pearson Education,

Boston, USA.

[7] Dhall, S. K. and Liu, C. L. (1979) On a real-time scheduling problem,

Operational Research, 26, pp. 127–140.

[8] Abdelzaher, T., Andersson, B. and Jonsson, J. (2002) The aperiodic

multiprocessor utilization bound for liquid tasks. Proceedings of Eighth IEEE

Real-Time and Embedded Technology and Applications Symposium, 25-27

September, San Jose, CA, USA, pp. 173–184. Washington, DC, USA.

[9] Andersson, B., Baruah, S. and Jonsson, J. (2001) Static-priority scheduling on

multiprocessors. Proceedings of Real-Time Systems Symposium, 25-27

September, San Jose, CA, USA, pp. 193–202. IEEE Computer

Society Washington, DC, USA.

[10] Cucinotta, T., Anastasi, G. and Abeni, L. (2009) Respecting Temporal

Constraints in Virtualised Services. Proceedings of COMPSAC, Seattle, WA,

USA, 20-24 July, pp. 73–78. IEEE Computer Society Washington, DC, USA

[11] Zhu, H., Goddard, S. and Dwyer, M. B. (2011) Response Time Analysis of

Hierarchical Scheduling: The Synchronized Deferrable Servers Approach.

Proceedings of Real-Time Systems Symposium, Vienna, Austria, 29 Nov-2

Dec, pp. ~239–248. IEEE Computer Society Washington, DC, USA.

[12] Shin, I., Easwaran, A. and Lee, I. (2008) Hierarchical Scheduling Framework

for Virtual Clustering of Multiprocessors. Proceedings of Euromicro

226

Conference on Real-Time Systems, Prague, Czech Republic, pp. 181–190.

IEEE Computer Society Washington, DC, USA.

[13] Lee, J. et al., (2012) Realizing compositional scheduling through virtualization,

Proceedings of Real-Time and Embedded Technology and Applications

Symposium, Beijing, China, pp. 13–22. IEEE Computer Society Washington,

DC, USA.

[14] Lunniss, W., Altmeyer, S., Lipari, G. and Davis, R. I. (2014) Accounting for

cache related pre-emption delays in hierarchical scheduling. Proceedings of the

22nd International Conference on Real-Time Networks and Systems, Versaille,

France, 8-10 October, pp. 183-186. ACM New York, NY, USA.

[15] T. Cucinotta, T.,Giani, D., Faggioli, D., and Checconi, F. (2011) Providing

performance guarantees to virtual machines using real-time scheduling.

Proceedings of Euro-Par 2010 Parallel Processing Workshops, Ischia, Italy ,30

Aug, -3 Sept. pp. 657–664. Springer-Verlag Berlin Heidelberg.

[16] Chen, S., Phan, L. T., Lee, J., Lee, I., and Sokolsky, O. (2011) Removing

abstraction overhead in the composition of hierarchical real-time systems.

Proceedings of Real-Time and Embedded Technology and Applications

Symposium, Chicago, IL, USA, pp. 81–90. IEEE Computer

Society Washington, DC, USA.

[17] Phan, L. T., Xu, M., Lee, J., Lee, I., and Sokolsky, O. (2013) Overhead-aware

compositional analysis of real-time systems. Proceedings of Real-Time and

Embedded Technology and Applications Symposium, Philadelphia, PA, USA,

pp. 237–246. IEEE Computer Society Washington, DC, USA.

[18] Xu, M. et al. (2013) Cache-aware compositional analysis of real-time multicore

virtualization platforms. Proceedings of Real-Time Systems Symposium,

Vancouver, BC, Canada, pp. 1–10. IEEE Computer Society Washington, DC,

USA.

[19] Lundberg, L. (2002) Utilization based schedulability bounds for age constraint

process sets in real-time systems. Real-Time Syst., 23, pp. 273–295.

[20] Lundberg, L. and Lennerstad, H. (2007) Guaranteeing response times for

aperiodic tasks in global multiprocessor scheduling. Real-Time Syst., 35, pp.

135–151.

https://www.acm.org/publications

227

[21] Easwaran, A., Shin, I. and Lee, I. (2009) Optimal virtual cluster-based

multiprocessor scheduling, Real-Time Syst., 43, pp. 25–59.

[22] Markatos, E. and LeBlanc, T. (1991) Predictable Virtual Processors for Real-

Time Systems. Technical Report, Rochester Univ.

[23] Biondi, A., Buttazzo, G. and Bertogna, M. (2016) Partitioning and Interface

Synthesis in Hierarchical Multiprocessor Real-Time Systems. Proceedings of

the 24th International Conference on Real-Time Networks and Systems, Brest,

France, pp. 257–266. ACM New York, NY, USA.

[24] Xi, S. et al. (2014) Real-time multi-core virtual machine scheduling in Xen.

Proceedings of International Conference on Embedded Software, Jaypee

Greens, India, pp. 1–10. IEEE Computer Society, Washington DC, USA.

[25] Lundberg, L. and Lennerstad, H. (2003) Global multiprocessor scheduling of

aperiodic tasks using time-independent priorities, Proceedings of The 9th IEEE

Real-Time and Embedded Technology and Applications Symposium, Ontario,

Canada, pp. 170–180, Washington, DC, USA.

[26] Bini, E. and Buttazzo, G. C. (2005) Measuring the performance of

schedulability tests, Real-Time Syst., 30, pp. 129–154.

[27] Burmyakov, A., Bini, E. and Tovar, E. (2012) The Generalized Multiprocessor

Periodic Resource Interface Model for Hierarchical Multiprocessor Scheduling.

Proceedings of the 20th International Conference on real-time and network

systems (RTNS'12), pp. 131-139, Pont-à-Mousson, France.

[28] Bini, E., Bertogna, M. and Baruah, S. (2010) The Parallel Supply Function

Abstraction for a Virtual Multiprocessor. Dagstuhl Seminar Proceedings

10071, http://drops.dagstuhl.de/opus/volltexte/2010/2542.

[29] Shin, I., Easwaran, A. and Lee, I. (2008) Hierarchical Scheduling Framework

for Virtual Clustering Multiprocessors. Proceedings of the 20th Euromicro

Conference on Real-Time Systems, pp. 181-190, Prague, Czech Republic.

[30] Feng, X. and Mok, A. (2002) A Model of Hierarchical Real-Time Virtual

resources, Proceedings of the 23rd IEEE Real-Time Systems Symposium, pp.

26-35, Austin, Texas, USA.

https://www.acm.org/publications
http://drops.dagstuhl.de/opus/volltexte/2010/2542

228

[31] Shin, I. and Lee, I. (2004) Compositional Real-Time Scheduling Framework,

Proceedings of the 25th IEEE International Real-Time Systems Symposium, pp.

57-67, Lisbon, Portugal.

[32] Davis, R. and Burns A. (2009) Priority Assignment for Global Fixed Priority

Pre-emptive Scheduling in Multiprocessor Real-Time Systems, Proceedings of

the 30th IEEE Real-Time Systems Symposium, pp. 398-409, Washington, DC,

USA.

[33] Kim, J., Gangadharan, D., Sokolsky, O., Legay, A. and Lee, I. (2017)

Extensible Energy Planning Framework for Preemptive Tasks, Proceedings of

the 20th International Symposium on Real-Time Computing, pp. 32-41,

Toronto, Canada.

[34] Lundberg, L. (2011) Slack-based multiprocessor scheduling of aperiodic real-

time tasks. Real-Time Systems 47(6), pp. 618-638.

[35] Andersson, B. and Jonsson, J. (2000) Fixed-priority preemptive multiprocessor

scheduling: to partition or not to partition, Proceedings of the 7th International

Workshop on Real-Time Computing and Applications Symposium, pp. 337-

346, Cheju Island, South Korea.

[36] Niyizamwiyitira, C. and Lundberg, L. (2017) Real-time scheduling of multiple

virtual machines, International Journal of Computers and their Applications,

Vol. 24, no. 3, pp. 91-109.

https://dblp.uni-trier.de/db/journals/rts/rts47.html#Lundberg11

	title
	cnw_dissertation

