

Performance Implications of

Virtualization

i

Abstract

Virtualization is a component of cloud computing. Virtualization transforms

traditional inflexible, complex infrastructure of individual servers, storage, and

network hardware into a flexible virtual resource pool and increases IT agility,

flexibility, and scalability while creating significant cost savings. Additional

benefits of virtualization include, greater work mobility, increased performance

and availability of resources, and automated operations. Many virtualization

solutions have been implemented. There are plenty of cloud providers using

different virtualization solutions to provide virtual machines (VMs) and

containers, respectively. Various virtualization solutions have different

performance overheads due to their various implementations of virtualization and

supported features. A cloud user should understand performance overheads of

different virtualization solutions and the impact on the performance caused by

different virtualization features, so that it can choose appropriate virtualization

solution, for the services to avoid degrading their quality of services (QoSs).

In this research, we investigate the impacts of different virtualization

technologies such as, container-based, and hypervisor-based virtualization as well

as various virtualization features such as, over-allocation of resources, live

migration, scalability, and distributed resource scheduling on the performance of

various applications for instance, Cassandra NoSQL database, and a large

telecommunication application. According to our results, hypervisor-based

virtualization has many advantages and is more mature compare to the recently

introduced container-based virtualization. However, impacts of the hypervisor-

based virtualization on the performance of the applications is much higher than

the container-based virtualization as well as the non-virtualized solution. The

findings of this research should be of benefit to the ones who provide planning,

designing, and implementing of the IT infrastructure.

ii

Acknowledgment

This research work was founded by the Swedish Foundation for Knowledge

and Development, KK-Stiftelsen, in Stockholm. Part of this research is result of

the collaboration between Blekinge Institute of Technology, Ericsson Company

and Compuverde Company located in Karlskrona, Sweden.

I would like to thank my Supervisor, Professor Lars Lundberg for his

invaluable guidance and support during my studies, and for giving me this

opportunity to work in a real-world industrial project. I would also like to thank

my secondary supervisors David Erman and Dragos Ilie for their invaluable

feedback and suggestions. In addition, I would like to thank my colleagues both

in Ericsson and Compuverde for their invaluable support. I would also like to

thank all my colleagues, the library staff, and the supporting departments at BTH.

Finally, I am also very grateful to my family and friends for supporting,

encouraging, and motivating me.

iii

Preface

This thesis is based on the work presented in the following eight papers. The

papers II, III, IV, V, and VI are published in peer-reviewed conference

proceedings. Paper I is published in a journal and Paper VII is been submitted to

a conference and is currently under peer-reviewing. Paper VIII is been submitted

to a Journal as well.

The included papers have been modified to fit this format, but the content is

unchanged.

Paper I

S. Shirinbab, L. Lundberg, D. Erman, ”Performance Evaluation of Distributed

Storage Systems for Cloud Computing”, published in International Journal of

Computer Applications (IJCA), 2013.

Paper II

S. Shirinbab, L. Lundberg, D. Ilie, ”Performance Comparison of KVM,

VMware, and XenServer using a Large Telecommunication Application”,

Proceedings of the Fifth International Conference on Cloud Computing, GRIDs,

and Virtualization, pp. 25-29, 2014.

Paper III

S. Shirinbab, L. Lundberg, “Performance Implications of Over-Allocation of

Virtual CPUs”, published in International Symposium on Networks, Computers

and Communications (ISNCC), pp.1-6, 2015.

Paper IV

S. Shirinbab, L. Lundberg, J. Håkansson, ”Comparing Automatic Load

Balancing using VMware DRS with a Human Expert”, published in IEEE

International Conference on Cloud Engineering Workshop (IC2EW), pp. 1-8,

2016.

Paper V

S. Shirinbab, L. Lundberg, “Performance Implications of Resource Over-

Allocation During the Live Migration”, published in IEEE International

Conference on Cloud Computing Technology and Science (CloudCom), pp. 1-6,

2016.

iv

Paper VI

S. Shirinbab, L. Lundberg, E. Casalicchio, ”Performance Evaluation of

Container and Virtual Machine Running Cassandra Workload”, published in 3rd

International Conference on Cloud Computing Technologies and Applications

(CloudTech), 2017.

Paper VII

S. Shirinbab, L. Lundberg, E. Casalicchio, ”Performance Comparison between

Horizontal Scaling of Hypervisor and Container Based Virtualization using

Cassandra NoSQL Database”, submitted to International Conference on

Virtualization Application and Technology (ICVAT), pp. 1-6, 2018.

Paper VIII

S. Shirinbab, L. Lundberg, “Scheduling Tasks with Hard Deadlines in Cloud-

Based Virtualized Software Systems”, will be submitted to a Journal.

v

There are other papers that are not included in this thesis but are related to this

research:

Paper IX

E. Casalicchio, L. Lundberg, S. Shirinbab, ”Optimal Adaptation for Apache

Cassandra”, published in Self Orgnizing Self Managing Clouds (SoSeMC)

workshop at 13th IEE International Conference on Autonomic Computing, pp. 1-

6, 2016.

Paper X

E. Casalicchio, L. Lundberg, S. Shirinbab, ”An Energy-Aware Adaptation

Model for Big Data Platforms”, (poster) published in Autonomic Computing, pp.

1-2, 2016.

Paper XI

S. Shirinbab, L. Lundberg, “Real-time Scheduling in Cloud-based Virtualized

Software Systems”, Proceedings of the second Nordic Symposium on Cloud

Computing and Internet Technologies, pp. 54-58, 2013.

Paper XII

S. Shirinbab, L. Lundberg, E. Casalicchio, ”Performance Evaluation of

Containers and Virtual Machines when Running Cassandra Workload

Concurrently”, submitted to a Journal.

Paper XIII

E. Casalicchio, L. Lundberg, S. Shirinbab, ”Energy-aware auto-scaling

algorithms for Cassandra virtual data centers”, published in Cluster Computing

journal, vol. 20, issue 3, pp. 2065-2082, 2017.

vi

Table of Contents

1 Introduction .. 1

1.1 Background .. 1

1.1.1 Application virtualization ... 1

1.1.2 Desktop virtualization .. 2

1.1.3 Hardware virtualization .. 2

1.1.4 Network virtualization .. 3

1.1.5 Storage virtualization.. 3

1.2 Advantages and Disadvantages of Virtualization 4

1.2.1 Advantages of virtualization ... 4

1.2.2 Disadvantages of virtualization .. 5

1.3 Thesis Outline and Structure .. 6

2 Approach .. 7

2.1 Related Work .. 7

2.2 Aim and Scope ... 10

2.3 Research Questions .. 10

2.3.1 Research question 1 .. 11

2.3.2 Research question 2 .. 11

2.3.3 Research question 3 .. 11

2.3.4 Research question 4 .. 12

2.3.5 Research question 5 .. 12

2.3.6 Research question 6 .. 12

2.3.7 Research question 7 .. 13

2.3.8 Research question 8 .. 13

2.4 Research Methodology ... 14

2.4.1 Experimental Study .. 14

2.4.2 Theoretical and Simulation Study .. 15

3 Results .. 15

vii

3.1 Contributions .. 15

3.1.1 Contributions in Paper I.. 15

3.1.2 Contributions in Paper II .. 15

3.1.3 Contributions in Paper III ... 16

3.1.4 Contributions in Paper IV ... 16

3.1.5 Contributions in Paper V .. 16

3.1.6 Contributions in Paper VI ... 17

3.1.7 Contributions in Paper VII ... 17

3.1.8 Contributions in Paper VIII .. 17

3.2 Discussion .. 18

3.3 Conclusion and Future Work.. 22

3.4 References .. 24

4 Performance Evaluation of Distributed Storage Systems for Cloud

Computing .. 29

Abstract .. 29

4.1 Introduction .. 29

4.2 Background .. 30

4.2.1 Compuverde ... 33

4.2.2 Gluster .. 34

4.2.3 OpenStack’s Swift .. 34

4.3 Experimental Setup .. 35

4.3.1 Test Configurations .. 35

4.3.2 Test Cases ... 36

4.4 Read and Write Performance .. 38

4.4.1 Compuverde Unstructured .. 38

4.4.2 Compuverde Structured .. 38

4.4.3 OpenStack’s Swift .. 38

4.4.4 Gluster .. 38

viii

4.5 Comparing the Distributed Storage Systems 39

4.5.1 Compuverde Unstructured vs. OpenStack’s Swift 39

4.5.2 Compuverde Structured vs. Gluster ... 40

4.5.3 Recovery Test ... 41

4.6 Discussion and Related Work .. 41

4.7 Conclusion .. 42

4.8 References .. 55

5 Performance Comparison of KVM, VMware and XenServer using a Large

Telecommunication Application .. 58

Abstract .. 58

5.1 Introduction .. 58

5.2 State of The Art .. 59

5.2.1 Virtualization .. 59

5.2.2 Live Migration .. 60

5.3 Experimental Setup .. 61

5.3.1 Test Configurations .. 61

5.3.2 Test Cases ... 62

5.4 Comparison between KVM, VMware and XenServer 64

5.4.1 CPU, Disk Utilization and Response Time (6 cores, 12 cores, 16

cores) 64

5.4.2 CPU, Disk Utilization and ResponseTime during Live Migration

 65

5.4.3 Downtime and Total Migration Time ... 66

5.5 Related Work .. 67

5.6 Conclusion and Future Work.. 68

5.7 References .. 77

6 Performance Implications of Over-Allocation of Virtual CPUs 80

Abstract .. 80

ix

6.1 Introduction .. 80

6.2 Related Work .. 81

6.3 Experimental Setup .. 82

6.3.1 Testbed ... 82

6.3.2 Test cases .. 84

6.4 Experimental Results .. 85

6.5 Conclusion .. 87

6.6 References .. 91

7 Comparing Automatic Load Balancing using VMware DRS with a Human

Expert ... 94

Abstract .. 94

7.1 Introduction .. 94

7.1.1 Distributed Resource Scheduler (DRS) 94

7.2 Related Work .. 95

7.3 Experimental Setup .. 96

7.3.1 Testbed Setup ... 96

7.3.2 Test Scenarios ... 98

7.4 Comparing VMware’s DRS Migrations with Human Expert

Migrations .. 99

7.4.1 Test Case 1 ... 99

7.4.2 Test Case 2 ... 100

7.4.3 Test Case 3 ... 101

7.4.4 Test Case 4 ... 102

7.4.5 Test Case 5 ... 103

7.5 Conclusions .. 104

7.6 References .. 110

8 Performance Implications of Resource Over-Allocation During the Live

Migration .. 112

x

Abstract .. 112

8.1 Introduction .. 112

8.2 Related Work .. 114

8.3 Experimental Setup .. 114

8.3.1 Testbed setup .. 115

8.3.2 Test configurations ... 116

8.3.3 Test cases .. 116

8.4 Impact of over-allocation during live migration 119

8.4.1 Experimental Results .. 119

8.5 Conclusion .. 120

8.6 References .. 123

9 Performance Evaluation of Container and Virtual Machine Running

Cassandra Workload ... 125

Abstract .. 125

9.1 Introduction .. 125

9.2 Related Work .. 127

9.3 Evaluation ... 129

9.3.1 Experimental Setup .. 129

9.3.2 Workload .. 129

9.3.3 Performance metrics ... 131

9.3.4 Test cases .. 132

9.4 Experimental Results .. 132

9.4.1 Mix-Load .. 132

9.4.2 Write-Load ... 133

9.4.3 Read-Load .. 134

9.5 Conclusions and Future Work .. 134

9.6 References .. 145

xi

10 Performance Comparison between Horizontal Scaling of Hypervisor and

Container Based Virtualization using Cassandra NoSQL Database 148

Abstract .. 148

10.1 Introduction .. 148

10.2 Related Work .. 150

10.3 Evaluation ... 150

10.3.1 Experimental Setup .. 151

10.3.2 Workload .. 151

10.3.3 Performance Metrics .. 152

10.3.4 Test Cases ... 152

10.4 Performance and Scalability Comparison .. 153

10.4.1 Transactions per second (tps) ... 153

10.4.2 CPU utilization ... 153

10.4.3 Latency ... 154

10.5 Discussions and Conclusions ... 155

10.6 References .. 163

11 Scheduling Tasks with Hard Deadlines in Virtualized Software Systems

 164

Abstract .. 164

11.1 Introduction .. 164

11.2 Related Work .. 166

11.3 Problem Definition ... 169

11.4 Defining Tvm And Cvm ... 170

11.5 Example .. 173

11.6 Simulation Study .. 175

11.7 Results .. 176

11.7.1 Total Utilization of 0.1 ... 176

11.7.2 Total Utilization of 0.2 ... 177

xii

11.7.3 Total Utilization of 0.3 ... 177

11.8 Considering Overhead .. 177

11.8.1 Defining Overhead ... 178

11.8.2 Prediction Model .. 179

11.8.3 Overhead Simulation Study .. 182

11.9 Conclusions .. 183

11.10 References .. 195

1

1 Introduction

In the past few years, the IT industry’s focus on virtualization technology has

increased considerably. Virtualization is often confused with Cloud Computing,

virtualization is the fundamental technology that enables Cloud Computing.

Essentially, in this study our focus would be more on virtualization technology

rather than the Cloud. Virtualization implementation for organizations requires an

in-depth analysis of the organization’s specific needs and requirements. However,

a more important step before fully implementing a system or plan is to consider

pros and cons of the technology. In this study, we consider different types of

virtualization for instance container based, hypervisor based, and storage

virtualization. We evaluate virtualization solutions provided by different vendors

and compare the impacts of different solutions on the performance in terms of

CPU, and disk utilization as well as response time and latency using real

workloads for example a large real-time telecommunication application and the

Cassandra NoSQL database. In addition, we investigate some of the key features

in virtualization for instance live migration, over-allocation, horizontal and

vertical scaling provided by various vendors such as VMware, KVM, Xen and

Docker. The result of this research provides guidance for organizations to choose

the right virtualization solution to fit their organization’s needs.

1.1 Background

The concept of virtualization has been around for long time, it has been

developed in the late 1960s and early 1970s by International Business Machines

(IBM). Virtualization is commonly defined as a software that separates physical

infrastructure to create multiple dedicated resources.

There are different types of virtualization such as, application virtualization,

desktop virtualization, hardware virtualization, network virtualization, and

storage virtualization.

1.1.1 Application virtualization

Application virtualization is a process where applications get virtualized and

are delivered from a server to the end user’s device, such as laptops, smartphones,

and tablets. The user can then access and use the applications from virtually

anywhere. Any user actions are transmitted back to the hosting server. This type

of virtualization is particularly popular for businesses that require the use of their

applications on the go. Application virtualization vendors and their products

include Microsoft App-V, Citrix XenApp, VMware Horizon Apps.

2

1.1.2 Desktop virtualization

Similar to application virtualization mentioned above, desktop virtualization

separates the desktop environment from the physical client device that is used to

access it. The major advantages of desktop virtualization are that users are able to

access all their personal files and applications from any location and on any

computer. It also lowers the cost of licensing for installing software on desktops

and maintenance and patch management is very simple. Virtual desktop

infrastructure (VDI) is a type of desktop virtualization.

1.1.3 Hardware virtualization

Hardware virtualization also known as hardware-assisted virtualization or

server virtualization is the abstraction of computing resources from the software

that uses those resources. There are different virtualization techniques, such as

full virtualization, emulation virtualization, paravirtualization, and operating

system level virtualization. All these techniques vary in the virtualization

solutions and the level of abstraction while having the same goal.

1.1.3.1 Emulation virtualization

In traditional physical computing environments (see Figure 1.1), the operating

system is directly installed on hardware devices and has direct access to the

underlying computer hardware and components including the processor, memory,

storage and so on. This caused limitations for allocation of CPU and memory

resources also required service down during hardware upgrades on each server.

However, emulation virtualization installs a hypervisor or virtual machine

monitor (VMM), which creates an abstraction layer between the operating system

and the underlying hardware. This approach is known as “bare-metal/native

hypervisor” (see Figure 1.1). The alternative to a bare-metal approach involves

installing a host operating system first and then installing a hypervisor (see Figure

1.1). This approach is often referred to as “hosted hypervisor”. Examples of a

bare-metal/native hypervisors are Oracle VM, Microsoft Hyper-V, VMware ESX

and Xen. A well-known example of a hosted hypervisor is Oracle VM

VirtualBox, others includes VMware Server and Workstation, Microsoft Virtual

PC, KVM, QEMU and Parallels.

1.1.3.2 Operating system level virtualization

In operating system level virtualization, the operating system is altered so that

it operates like several different, individual systems. The virtualized environment

accepts commands from different users running different applications on the

same machine. The virtualized operating system separately handles the users and

3

their requests. The most popular operating system level virtualization method is

called containerization or container-based virtualization. Container-based

virtualization approach is to deploy and run distributed applications without

launching an entire virtual machine for each application (see Figure 1.1). Instead,

multiple isolated systems, called containers, are run on a single control host and

access a single kernel. Because containers share the same operating system kernel

as the host, containers can be more efficient than virtual machines, which require

separate operating system instances. Some popular implementations are Docker,

Linux containers (LXC), and OpenVZ.

Figure 1.1. Traditional and Virtual Architecture

1.1.4 Network virtualization

Network virtualization is defined by the ability to create a logical software-

based view of the underlying hardware and software networking resources

(switches, routers, etc.). As a result, network virtualization can better integrate

with and support increasingly virtual environments. Some of the well-known

network virtualization vendors are Arista, Nicira, and Cisco.

1.1.5 Storage virtualization

Storage virtualization is the grouping the physical storage from multiple

network storage devices into what appears to be a single storage device that is

managed from a central console. The management of storage such as performing

the tasks of backup, archiving, and recovery is becoming more difficult and time

consuming. Storage virtualization helps to address this problem by hiding the

actual complexity of storage area network (SAN). Storage administrators can

implement storage virtualization with software applications or by using hardware

and software hybrid appliances. Some of the benefits of storage virtualization

include automated management, expansion of storage capacity, reduced time in

4

manual supervision, easy updates, and reduced downtime. Vendors of software

defined storage includes Compuverde, RedHat’s Ceph and Gluster storage, and

VMware’s vSAN.

1.2 Advantages and Disadvantages of Virtualization

Making the commitment to switching over to a virtualized IT environment can

cause a fair amount of uncertainty among business owners. It is important to

know the advantages and disadvantages of doing so before making the leap. To

help with this, below is an overview of the key advantages and disadvantages of

going to a virtual environment.

1.2.1 Advantages of virtualization

There are many good reasons for companies and organizations to invest in

virtualization today. Below is an overview of the key benefits of virtualization.

1.2.1.1 Resource optimization

Many servers typically run for most of the day at low levels of utilization.

With features like thin provisioning, memory transparent page sharing and

Dynamic Resource Scheduler load balancing for CPU and Memory, the

administrators are better able to fully utilize the hardware resources. By

virtualizing the hardware and allocating parts of it based on the real needs of

users and applications, the available computing power, storage space and network

bandwidth can be used much more effectively.

1.2.1.2 Consolidation

Reduce datacenter costs by reducing the physical infrastructure. It is common

practice to dedicate individual computers to a single application. If several

applications only use a small amount of processing power, the administrator can

consolidate several computers into one server running multiple virtual

environments. For organizations that own hundreds or thousands of servers,

consolidation can dramatically reduce the need for floor space, HVAC, A/C

power, and co-location resources. This means the cost of ownership is reduced

significantly, since less physical servers and floor and rack space are required,

which in turn leads to less heat and power consumption, and ultimately a smaller

carbon footprint.

5

1.2.1.3 Increased availability

Virtualization brings new opportunities to data center administration, allowing

guaranteed uptime of servers and applications; speedy disaster recovery if large

scale failures do occur. Instant deployment of new virtual machines or even

aggregated pools of virtual machines via template images. Elasticity, that is,

resource provisioning when and where required instead of keeping the entire data

center in an always-on state. Reconfiguration of running computing environments

without impacting the users. Server virtualization provides a way to implement

redundancy without purchasing additional hardware. Redundancy, in the sense of

running the same application on multiple servers, is a safety measure: if for any

reason a server fails, another server running the same application takes over,

thereby minimizing the interruption in service. This kind of redundancy works in

two ways when applied to virtual machines, if one virtual system fails, another

virtual system takes over or by running the redundant virtual machines on

separate physical hardware you can also provide better protection against

physical hardware failure.

1.2.1.4 Operational flexibility

Migration refers to moving a server environment from one place to another.

With most virtualization solutions it is possible to move a virtual machine from

one physical machine in the environment to another. With physical servers this

was originally possible only if both physical machines ran on the same hardware,

operating system and processor. In the virtual world, a server can be migrated

between physical hosts with entirely different hardware configurations. Migration

is typically used to improve reliability and availability: in case of hardware

failure the guest system can be moved to a healthy server with limited downtime,

if any. It is also useful if a virtual machine needs to scale beyond the physical

capabilities of the current host and must be relocated to physical hardware with

better performance.

1.2.2 Disadvantages of virtualization

The disadvantages of virtualization are mostly those that would come with

any technology transition. With careful planning and expert implementation, all

of these drawbacks can be overcome.

1.2.2.1 Upfront costs

For the providers of a virtualization environment, the implementation costs

can be quite high for the servers and software licenses. Hardware and software

are required at some point and that means devices must either be developed,

manufactured, or purchased for implementation. This obstacle can also be more

6

readily navigated by working with a Managed IT Services provider, who can

offset this cost with monthly leasing or purchase plans.

1.2.2.2 Servers and applications compatibility issues

Virtualization still has limitations, for example not every application or server

is going to work within an environment of virtualization. That means an

individual or corporation may require a hybrid system to function properly and

since not every vendor supports virtualization and some may stop supporting it

after initially starting it, there is always a level of uncertainty when fully

implementing this type of system.

1.2.2.3 Data security risks

Because data is crucial to the success of a business, it is targeted frequently.

The average cost of a data security breach in 2017, according to a report

published by the Ponemon Institute, was $3.62 million. While a universal security

model in a virtualized environment makes it easier, generally, to manage security,

the virtual server might be on the same physical server as another company and

that could open to risks.

1.2.2.4 Scalability issues

Server sprawl is one of the unintended consequences of virtualization.

Although administrators can grow a business or opportunity quickly because of

virtualization, they may not be able to become as large as they would like. They

may also be required to be larger than they want to be when first starting out.

Because many entities share the same resources, growth creates lag within a

virtualization network. One large presence can take resources away from several

smaller businesses and there would be nothing anyone could do about it.

1.2.2.5 Bleed over issues

Bleed over occurs when the contents of one virtual server affect other virtual

servers. Bleed over issues are possible issues to be aware of when subscribing to

a virtualized server.

1.3 Thesis Outline and Structure

Chapter 2 presents the Related Work, the Aim & Scope together with the

Research Questions and the Methodology. In Chapter 3, the contributions are

presented, and the results are discussed and concluded in Section 3.2 and 3.3

7

respectively. Finally, the proposed Future Work is presented in Section 3.3 and

the publications are then presented in Chapters 4–11.

2 Approach

This chapter presents the Related Work for the publications in this thesis.

Followed by Aim & Scope, Research Questions, and Research Methodology.

2.1 Related Work

Today, storage virtualization is set to play an important role in modern cloud

computing infrastructures. In [1], the authors described the evolution of storage

systems and presented a set of challenges driving research and development

efforts in storage systems. Among the difficulties that storage administrators can

encounter when managing storage for virtual environments are lowering the cost

of storage, improving the performance, and increasing flexibility. Many types of

distributed storage systems have emerged to solve these problems, such as

commercial services, Google Drive [10], Dropbox [11], Compuverde [17] and

Windows Azure Storage [12], open source system, HDFS [13], Ceph [14],

GlusterFS [6], IOStack [9], OpenStack Swift [2] and Rackspace Cloud Files [15].

Storage can be divided into different types, such as traditional file and block

storage technologies, object-based storage, software-defined storage (SDS) [4],

and the latest data-defined storage [16].

There are few studies on implementing different techniques to improve the

performance of the storage for instance, in [3], the authors implemented a

bandwidth differentiation technique for OpenStack Swift that can control each

data stream and guarantees a high utilization of the device. In [5], the authors

proposed a solution to enable multilevel data fault tolerance on a single disk to

reduce storage system energy consumption. In [8], the authors proposed a self-

learning scheduler for OpenStack Cinder. In [18], the authors proposed an

approach to separate the distributed storage’s journal and data partitions and

others to different storage pools in order to speed up the I/O operations.

Many studies exist that either directly or indirectly conducted a performance

analysis or comparison between different storage solutions. For instance, in [7],

the authors performed availability and sensitivity analysis on OpenStack Swift. In

[19], the authors presented details on how different parameter and hardware

configurations affect the performance of the OpenStack Swift. In [20], the authors

reported performance results of Ceph in terms of latency and throughput during

insert, read, update, and delete operations. In [21], the authors compared three

storage solutions, Lustre, GlusterFS, and Hadoop. According to their results

Hadoop performed better than Lustre and GlusterFS. In [22], the authors

8

compared performance of four different storage solutions, Amazon S3, Amazon

Glacier, Windows Azure Blob, and Rackspace Cloud Files. According to their

results all services show weaknesses related to some workload and there was no

clear winner. In [23], the authors compared the performance of Google Drive,

Dropbox, and OneDrive. According to their results, OneDrive has a good

responsiveness to display learning object, Dropbox has a good performance to

upload and to download the learning object, and Google Drive delivers good

performance for manipulating the learning object. In [24], the authors compared

features of different storage types as provided by Amazon Web Services,

Windows Azure, and Google AppEngine. The focus of our work is to provide an

extensive survey on differences between various storage types as well as a

performance comparison between different storage systems (e.g., structured,

unstructured, and software-defined storage) in terms of IOPS and response time

as well as the throughput and recovery time during read, write, delete operations.

When it comes to the hardware virtualization, the de facto solution is to

employ the hypervisor-based and the container-based technologies. In the hosted

hypervisor-based virtualization the access is only provided to the physical

hardware, and each virtual machine needs a complete implementation of a guest

operating system including the binaries and libraries necessary for applications

[35]. As a result, the guest operating system will automatically compete on

resources with the applications running on the virtual machine, and essentially

decreases the quality of service (QoS) from the application’s perspective.

In recent years, there have been several efforts to compare performance of

different hypervisors. For instance, in [25], the authors compared Vmware

Server, Xen Server and OpenVZ, in terms of network utilization, SMP

performance, file system performance, and MPI scalability. According to their

results OpenVZ provides the best overall performance. In [28], the authors

compared the performance of Xen and KVM. According to their results Xen

outperformed KVM on a kernel compile test and KVM outperformed Xen on

I/O-intensive tests. In [30], the authors compared performance of Hyper-V,

KVM, vSphere, and Xen. According to their results there is no perfect

hypervisor, and that different workloads may be best suited for different

hypervisors. In [31], the authors compared Xen and KVM performance using

Hadoop MapReduce. According to their results, KVM was better for disk

reading. Xen was better when there was a combination of disk reading and

writing with CPU intensive computations. In [32], VMware compared

performance of Xen and VMware ESX Server with non-virtualized. According to

their results, VMware ESX Server is far better equipped to meet the demands of

an enterprise datacenter than the Xen hypervisor. There are some similarities

between these studies and ours. However, none of these studies considered real-

time telecommunication applications or NoSQL Cassandra database. In our work,

9

we also considered various virtualization features, such as, over-allocation of

resources, VMware’s distributed resource scheduler (DRS) and live migration.

To mitigate the performance overhead of hypervisor-based virtualization,

researchers and practitioners recently started promoting container-based

virtualization [35]. This technology is eventually evolved into virtualization

mechanisms like Linux Vserver, OpenVZ and Linux Containers (LXC) [36],

[37]. Unlike hypervisors, containers would be more resource efficient by

excluding the execution of hypervisor and guest operating system, and more time

efficient by avoiding booting (and shutting down) a whole operating system [38],

[39]. Nevertheless, it has been identified that the cascading layers of container

images come with inherent complexity and performance penalty [40]. In other

words, the container-based virtualization technology could also negatively impact

the corresponding quality of service (QoS) due to its performance overhead.

Although the performance advantages of containers were investigated in several

pioneer studies [25], [26], [36], [41], the container-based virtualization solution

did not gain significant popularity until the recent underlying improvements in

the Linux kernel, and especially until the emergence of Docker (Starting from an

open-source project in early 2013) [42]. To examine the performance of Docker

containers, a molecular modeling simulation software [43] and a PostgreSQL

database-based Joomla application [44] have been used to benchmark the Docker

environment against the VM environment. In [27], the authors compared energy

efficiency of four hypervisors, KVM, Xen, VMware, and Hyper-V, as well as

Docker container. According to their results, container virtualization which is

light-weight in terms of system implementation and maintenance, is not more

power efficient than hypervisors. In [29], the authors compared the performance

of KVM, Docker and LXC with non-virtualized. According to their results the

level of overhead introduced by containers can be considered almost negligible.

The closest work to ours are [34], [45], and the IBM research report [33] on the

performance comparison of VM and Linux containers. However, we recognized

that these studies are incomplete (e.g., they did not consider non-CPU features, or

did not finish the container’s network evaluation). In addition, our work denies

the IBM report’s finding that “containers and VMs impose almost no overhead on

CPU and memory usage” Furthermore, in addition to the average performance

overhead of virtualization technologies, we are more concerned with their impact

on the applications performance during horizontal or vertical scaling. There are

also performance studies on deploying containers inside VMs (e.g., [46], [47]),

however we did not include this virtualization scenario in this study.

There has been a significant amount of effort dedicated to optimizing the

performance of virtual environments [48], [49], [50], [54]. However, there is

comparatively lesser work in real-time scheduling of tasks with hard deadlines in

virtualized environments [55]. In [51], the authors studied a constant bandwidth

server (CBS) on top of Earliest Deadline First (EDF) for scheduling real-time

10

tasks with hard deadlines on virtual machines. The results show that virtual

machine technology and scheduling algorithm can affect the real-time application

performance. In [52], the authors developed a Compositional Scheduling

Architecture (CSA) that is built on the Xen virtualization platform. The

architecture allows timing isolation among virtual machines and supports timing

guarantees for real-time tasks running on each virtual machine. In [53], the

authors addressed the problem of scheduling hard real-time tasks with arbitrary

deadlines on multiprocessors. In [56], the authors proposed a combination of the

two scheduling algorithms (one which assigns priorities to tasks in a monotonic

relation to their request rates and the other one was the dynamic deadline driven

scheduling algorithm) which appears to provide most of the benefits of the

deadline driven scheduling algorithm, and can be readily implemented in existing

computers. However, none of these works considered how the overhead for

switching from one virtual machine to another affects the schedulability of task

set running in the virtual machine. In our method we considered virtual machines

with one virtual core. However, it is easily extendable to virtual machines with

multiple cores as long as each real-time task is allocated to one of the (virtual)

cores. So, in that case the analysis needs to be repeated for each of the virtual

cores to make sure that all real-time tasks on each core meet their deadlines.

2.2 Aim and Scope

The main focus of this thesis is how to optimize various platform

virtualization software and shared storage in order to improve the performance of

the real-time applications. This thesis aims to provide useful insights to system

designers, as well as data center operators for real-time workload placement and

virtual machine scheduling. Currently, a comparison of performance impacts of

different hypervisors and containers on real-time applications is lacking.

Therefore, the intention of this thesis is to extensively evaluate performance of

different server virtualization solutions and virtualization features for instance,

load balancing, resource scheduling, live migration, and scalability using a large

real-time telecommunication application and NoSQL Cassandra database

workload. In addition, performance evaluation and comparison of different

storage virtualization solutions as well as real-time scheduling of tasks with hard

deadlines are included in this study.

2.3 Research Questions

The main questions we explore in this thesis is: How to choose from various

hardware and storage virtualization solutions in order to improve the performance

of the real-time applications and at the same time maximize the utilization of

resources. While investigating this question other challenges have risen. First,

virtualization’s performance overhead must be considered specially in case of

11

over-allocation of resources and the impact of the overhead on the performance

of the real-time applications. Second, maturity of different technologies in terms

of what virtualization features they offer for instance, load balancing, live

migration, horizontal and vertical scaling as well as which has the lowest negative

impact on the QoS of the real-time applications. The main research question has

been approached using the following eight sub-research questions covered in this

thesis. Research questions 2, 3, 4, 5, 6, and 7 investigating different hardware

virtualization solutions and features. Optimization of storage virtualization

solutions is Research question 1. Research question 8 is again optimizing

scheduling algorithms for virtualization platforms.

2.3.1 Research question 1

What kind of shared storage do we need in terms of hardware and software to

minimize performance bottlenecks?

Storage for virtualization has changed data centers in many ways. Many

companies moved most of their data from local disk resources to some form of

shared storage. Therefore, it is of interest to evaluate performance of different

storage solutions for virtualization. We investigate this research question in Paper

I, Section 4.

2.3.2 Research question 2

Which platform virtualization software should we use to get the best

performance of the real-time applications?

There are number of vendors that provide hardware virtualization solutions.

Every solution has its own pros and cons. Therefore, when organizations consider

any of those options, they need to be aware of the tradeoff they are making

between performance and virtualization flexibility. In Paper II (Section 5) we

addressed this research question.

2.3.3 Research question 3

How the resource allocation parameters in the platform virtualization

software should be configured to provide high utilization of the hardware

resources, without affecting the performance of the real-time applications?

In a virtualized environment, the physical hardware is partitioned into virtual

components. Resources like memory and CPU must be precisely allocated. Any

deviations will result in either under-utilization of resources or allocating too

many resources that can negatively impact the performance of the real-time

12

applications. Therefore, in paper III (Section 6) we investigate different resource

allocation scenarios to find the most efficient and accurate scenario.

2.3.4 Research question 4

How well VMware’s load balancer (DRS) performs compared to a human

expert in terms of efficiently utilizing resources without affecting the performance

of the real-time applications?

Load balancing is a key component of highly-available infrastructures. It used

to improve the performance and reliability of applications by distributing the

workload across multiple servers. It is of interest to observe how a load balancer

work in general and investigate its impact on the performance of real-time

telecommunication applications. This research question is addressed in Paper IV

(Section 7).

2.3.5 Research question 5

How does resource over-allocation affects the performance of the real-time

applications during live migration, in terms of CPU and disk utilization as well

as the application response time?

Live migration and resource over-allocation technologies can contribute to

efficient resource management in a cloud datacenter. However, live migration

will inevitably entail downtime for the virtual machine involved. Even if the

downtime is relatively short, its effect can be serious for real-time applications

which are sensitive to response time degradations. So, the challenge is to over-

allocate resources in a way to improve the performance of the real-time

applications during live migration. We investigate this challenge in Paper V,

Section 8.

2.3.6 Research question 6

Which hardware virtualization solution performs better, container-based, or

hypervisor-based, in terms of how much performance overheads they produce

and how this overhead affects the performance of NoSQL database applications?

Recently, virtual machines and containers received a widespread attention and

many IT organizations overlooking how the two compare and contrast. Since

containers are well-known for being light-weight and producing less performance

overhead than virtual machines, it is of interest to compare the two technologies

and their impact on the NoSQL database applications which are adopted

13

increasingly by many organizations as a more cloud-friendly solution to their big

data problems. In Paper VI (Section 9) we investigate this research question.

2.3.7 Research question 7

How different hardware virtualization solutions, container-based and

hypervisor-based perform during horizontal scaling and how do they impact the

performance of the NoSQL database applications?

One of the biggest advantages of virtualization in cloud is the scalability

feature. There are two different approaches to accomplish scaling, vertical and

horizontal. Vertical scaling is more costly compare to horizontal scaling and is

limited by the fact that the virtual machines/containers can only get as big as the

size of the server. However, horizontal scaling offers the ability to scale wider to

deal with the traffic. The challenge with horizontal scaling is to calculate how

many virtual machines/containers can be placed on the same server without

negatively impacting the performance of the NoSQL database applications. In

addition, it is of interest to understand how well containers and virtual machines

scale, in terms of performance overhead produced by an extra instance added on

the same server. This research question is addressed in Paper VII (Section 10).

2.3.8 Research question 8

How can we schedule a virtual machine containing a number of real-time

applications with hard deadlines on the hypervisor level, in a way that all the

tasks inside the virtual machine meet their deadlines?

This research question can be broken down into the following sub-questions:

2.3.8.1 Research question 8.1

How can we schedule a hypervisor that contains number of virtual machines

in a way that, all the real-time applications with hard deadlines that are running

inside these virtual machines meet their deadlines?

In virtualized environments performance of a virtual machine can be

negatively affected by co-resident virtual machines which can result in missing

deadlines for applications with hard deadlines. It is of interest to understand how

scheduling is done in hypervisors and it can be optimized to avoid such negative

impacts. We proposed an approach to solve this problem in Paper VIII, Section

11.

14

2.3.8.2 Research question 8.2

How the scheduling algorithm will be affected by the overhead that will be

produced by switching from one virtual machine to another?

In real systems the hypervisor scheduler should consider a performance

overhead while switching between virtual machines in order to not negatively

affecting the applications with hard deadlines. In Paper VIII (Section 11), we

proposed an approach to calculate for the performance overhead while scheduling

virtual machines on hypervisor level.

2.4 Research Methodology

2.4.1 Experimental Study

We used comparative studies to address research questions 1, 2, 6 and 7. For

research question 1 we did an experiment with three different distributed storage

solutions (Compuverde vs. Gluster vs Openstack’s Swift). Then we gathered the

measurement data, we performed an analysis of the data and presented the results.

For research question 2, we considered various hypervisors, VMware, KVM, and

XenServer. We collected data related to the performance in terms of CPU and

disk utilization as well as response time of a real-time telecommunication

application. In addition, we tested the three hypervisors’ live migration

techniques. Here we also measured downtime and total migration time of

different hypervisors and compared them with each other. For research question

6, we compared a hypervisor-based (VMware) and a container-based (Docker)

virtualization solutions. We collected data related to the performance in terms of

CPU and disk utilization as well as latency of the Cassandra NoSQL database

application under write, read and mixed workloads. For research question 7, we

focused on comparing horizontal scalability of the two solutions and presented

our observations as well as analysis of the performance data under different

scenarios.

For research question 3 we used VMware hypervisor and tested various

scenarios for resource allocation. Here we gathered data from performance

measurements, CPU and disk utilization as well as response time of a real-time

telecommunication application. After we gathered all data, we conducted an

analysis of the data and presented our observations.

For research question 4, we compared performance of VMware’s automatic

load balancer distributed resource scheduler (DRS) technology versus human

expert manual decisions under various scenarios. We collected data related to the

performance in terms of CPU utilization both before and after balancing the load

15

as well as the number of application requests failure. We analyzed the collected

data and presented our observations.

For research question 5, we used platform virtualization software (VMware)

and tested various scenarios for resource over-allocation in combination with live

migration using a real-time telecommunication application. Here we gathered

data from performance measurements, CPU utilization, downtime, and total

migration time of the application. After we gathered all data, we analyzed the

data and present our observations.

2.4.2 Theoretical and Simulation Study

For research question 8, we used simulation and defined a prediction model.

We proposed a mathematical equation that helped us when scheduling

hypervisors and we implemented the equation in a simulation application, using

the Java programming language. We did a number of experiments in the

simulated environment to verify that our technique can be applied in various

scenarios. In addition, we proposed a prediction model where we included

performance boundaries and compared these bounds with our simulation studies.

3 Results

3.1 Contributions

3.1.1 Contributions in Paper I

The main focus in Paper I (Section 4) is to evaluate four large distributed

storage systems. Two of these use Distributed Hash Tables (DHTs) in order to

keep track of how data is distributed, and two systems use multicasting to access

the stored data. We measured the read/write/delete performance, as well as the

recovery time when a storage node goes down. The evaluations are done on the

same hardware, consisting of 24 storage nodes and a total storage capacity of 768

TB of data. These evaluations show that the multicast approach outperforms the

DHT approach.

3.1.2 Contributions in Paper II

Paper II (Section 5) presents the results from a performance comparison of

three well-known virtualization hypervisors: KVM, VMware and XenServer. In

this paper, we measured performance in terms of CPU utilization, disk utilization

and response time of a large industrial real-time application. The application runs

inside a virtual machine (VM) controlled by the KVM, VMware and XenServer

16

hypervisors, respectively. Furthermore, we compared the three hypervisors based

on downtime and total migration time during live migration. The results show

that the Xen hypervisor results in higher CPU utilization and thus also lower

maximum performance compared to VMware and KVM. However, VMware

causes more write operations to disk than KVM and Xen, and Xen causes less

downtime than KVM and VMware during live migration. This means that no

single hypervisor has the best performance for all aspects considered here.

3.1.3 Contributions in Paper III

In Paper III (Section 6), we presented that overall system performance is

sensitive to appropriate allocation of resources (e.g., CPU), and there are other

factors such as context-switch overhead and waiting in a queue that are affecting

the performance. We observed that over-allocation of (virtual) CPU resources to

virtual machines when there are many numbers of them running on one host in a

virtualized environment is a big challenge. Thus, it is important to identify

performance bottlenecks and avoid them when running in virtualized

environment. The results of this study will help virtualized environment service

providers to decide how much resources should be allocated for better

performance as well as how much resource would be required for a given load.

3.1.4 Contributions in Paper IV

In Paper IV (Section 7), we evaluated VMware’s Distributed Resource

Scheduler (DRS) in a number of realistic scenarios using multiple instances of a

large industrial telecommunication application. We also measured the

performance on the hosts before and after the migration in terms of CPU

utilization and compared automatic DRS migrations with manual human expert

migrations. According to our results, DRS with the most aggressive threshold

gave us the best results. It could balance the load in 40% of cases while in other

cases it could not balance the load properly. DRS did completely unnecessary

migrations back and forth in some cases. The results of this study should help IT

organization to better understand how DRS works in general as well as how to

configure migration thresholds in their environments to prevent DRS from

additional vMotion activities.

3.1.5 Contributions in Paper V

In Paper V (Section 8), we conducted an experiment using a large

telecommunication application that runs inside virtual machines, here we varied

the number of vCPU resources allocated to these virtual machines in order to find

the best choice which at the same time reduces the risk of under-allocating

resources after the migration and increases the performance during the live

17

migration. We used VMware’s vMotion to migrate virtual machines while they

are running. The results of this study should help virtualized environment service

providers to decide how much resources should be allocated for better

performance during live migration as well as how much resource would be

required for a given load.

3.1.6 Contributions in Paper VI

In Paper VI (Section 9), we presented an extensive performance comparison

between VMware and Docker container, while running Apache Cassandra as

workload. Apache Cassandra is a leading NoSQL distributed database when it

comes to Big Data platforms. As baseline for comparisons we used the

Cassandra’s performance when running on a physical infrastructure (non-

virtualized). Our study shows that Docker had lower overhead compared to the

VMware when running Cassandra. In fact, the Cassandra’s performance on the

Dockerized infrastructure was as good as on the Non-Virtualized.

3.1.7 Contributions in Paper VII

In Paper VII (Section 10), we compared performance differences caused by

scaling of the different hardware virtualization technologies in terms of CPU

utilization, latency, and the number of transactions per second. The workload is

Apache Cassandra, which is a leading NoSQL distributed database for Big Data

platforms. Our results show that running multiple instances of the Cassandra

database concurrently, affected the performance of read and write operations

differently; for both VMware and Docker, the maximum number of read

operations was reduced when we ran several instances concurrently, whereas the

maximum number of write operations increased when we ran instances

concurrently.

3.1.8 Contributions in Paper VIII

In Paper VIII (Section 11), we described a technique for calculating a period

and an execution time for a VM containing a real-time application with hard

deadlines. This result makes it possible to apply existing real-time scheduling

theory when scheduling VMs on the hypervisor level, thus making it possible to

guarantee that the real-time tasks in a VM meet their deadlines. If overhead for

switching from one VM to another is ignored, it turns out that (infinitely) short

VM periods minimize the utilization that each VM needs to guarantee that all

real-time tasks in that VM will meet their deadlines. Having infinitely short VM

periods is clearly not realistic, and in order to provide more useful results we have

considered a fixed overhead at the beginning of each execution of a VM.

Considering this overhead, a set of real-time tasks, the speed of each processor

18

core, and a certain processor utilization of the VM containing the real-time tasks,

we present a simulation study and some performance bounds that make it

possible to determine if it is possible to schedule the real-time tasks in the VM,

and in that case for which periods of the VM that this is possible.

3.2 Discussion

In terms of storage virtualization, we compared two unstructured storage

systems for Cloud Computing (Compuvede Unstructured and Openstack’s Swift)

and two structured storage systems for Cloud Computing (Compuverde

Structured and Gluster). Compuverde uses multicasting and Openstack’s Swift

and Gluster use Distributed Hash Tables (DHTs). The architectural advantage of

DHTs compared to multicasting is that they do not need to broadcast requests; the

hash table gives them the address of the nodes that store of the requested data and

it avoids communication overhead. However, the disadvantage with DHTs is that

they need to run a hash function to obtain the address of the data, which

introduces processing overhead. This means that the architectural decision,

whether to use DHTs or multicasting will introduce different kinds of overhead:

processing overhead for DHTs and communication overhead for multicasting.

We believe that the main reason for the higher performance of Compuverede

compared to Gluster and Openstack’s Swift is that Compuverde uses multicast

instead of DHTs. The communication overhead introduced by multicasting does

not affect the performance as negatively as the processing overhead introduced

by DHTs. The recovery tests show that Compuverde recovers from a storage

node failure much faster than OpenStack’s Swift and Gluster. One additional

reason for Gluster to perform slower than Compuverde Structure could be that

Gluster involves proxy servers in self-healing while Compuverde uses the many-

to-many replication pattern and only involves storage nodes in self-healing.

Another reason could be that Compuverde has built its own recovery protocol

from scratch, whereas OpenStack’s Swift and Gluster base their protocols on

existing applications (e.g., rsync). Moreover, the processor utilization for Gluster

never exceeds 50%, even for high loads. This indicates that there are internal

performance bottlenecks in Gluster, which probably contributes to the relatively

long time for self-healing.

Further in the thesis we investigate impacts of different hardware

virtualization solutions on performance of real-time applications. The results of

the performance tests indicate that KVM and VMware performed better in terms

of CPU utilization compared to Xen. While, in terms of disk utilization, KVM

and Xen had similar performance while VMware had the highest disk utilization.

In terms of response time of the real-time application, Xen had the longest

response times compared to KVM and VMware. We believe that the method that

a hypervisor uses to accurately emulate the physical hardware to prevent guests

from accessing it except under carefully controlled circumstances is a key factor

19

in its performance. For instance, Type 1 hypervisors (KVM and Xen) avoid the

overhead that a Type 2 hypervisor (VMware ESXi) incurs when it requests access

to physical resources from the host OS. However, other factors also play an

important role in a hypervisor’s performance. For example, VMware ESXi

generally requires more time to create and start a server than KVM and Xen. In

addition, we believe that the type of workload is a very important factor as well

and different virtualization solutions may behave differently if the type of

workload/application changes. The work presented in this thesis is limited to a

test of only one real-time application, therefore our recommendation for IT

organizations is to conduct a similar test using their application instead before

they decide which type of hypervisor to use.

In the thesis, we tested live migration technologies of different hypervisors

(KVM, VMware ESXi and Xen). The results indicate that Xen’s live migration

technology, XenMotion, performed better than VMware’s vMotion and KVM

live migration technology in terms of downtime and total migration time. further,

we investigate different ways of using the physical CPU resources and how it can

affect system performance. In virtualized environments the number of virtual

CPUs (vCPUs) does not need to match the number of CPUs (or CPU cores) on

the physical server. So, if we sum up the number of vCPUs in all virtual

machines on a physical server, we could end up in three situations: the total

number of vCPUs exceeds the number of physical CPU cores (over-allocation),

the total number of vCPUs is the same as the number of physical CPU cores

(balanced allocation), or the number of vCPUs is smaller than the number of

physical CPU cores (under-allocation). Resource allocation is very important

especially during live migration of virtual machines. Most of the time the source

host will become under-allocated and the destination host will become over-

allocated. It is clear that under-allocation will result in sub-optimal resource

utilization since some physical CPU cores will not be used. Therefore, we

conbined the live migration of VMware ESXi vMotion and over-allocation of

CPU resources in order to figure out how different allocation of vCPUs to each

virtual machine will affect the performance during live migration. Also,

investigated how other virtual machines in the background are affected during the

live migration of one virtual machine from the source host to the destination host.

We hope that these studies can be helpful in optimizing existing live migration

mechanisms.

VM migrations can be used for balancing the utilization of server host
resources in order to avoid having heavily loaded hosts while lightly loaded
servers are available. Load balancing helps to maximize resource by optimizing
the mapping of VMs to hosts. We considered five different test scenarios, and
three different loads to test VMware distributed resource scheduler (DRS) under
its three different levels of aggressiveness. This means that we looked at in total
5*3*3 = 45 cases. In 23 of these cases DRS did nothing. In 11 cases it did (more
or less) the same decision as a human expert. And in 7 cases DRS balanced the

20

load to some extent, but in 4 cases DRS suffered from the “ping-pong” effect and
did completely unnecessary migrations back and forth. We observed that when
the migration threshold was set to level 1 (conservative) or level 3
(moderate/default) DRS did not migrate any virtual machine in most of the cases.
However, in some cases, DRS started to migrate virtual machines even when the
migration threshold was set to level 1 (conservative). One reason could be that
VMware designers considered similar test scenarios when they designed the DRS
algorithm (evacuating a physical machine for maintenance is a very common
scenario); however, for some more complex test scenarios VMware’s DRS was
unreliable, according to our results. Overall if we compare the system
performance after DRS migration we can observe that we obtained better results -
more close to human expert migrations - with the aggressive threshold (level 5).
In 15 cases out of 45 cases where we used level 5, we got no migrations in two
cases, good (human expert quality) migrations in 7 cases, reasonably good
migrations in three cases, and the undesirable “ping-pong” effect in three cases.
So even if the migrations are better in general using level 5, the risk of suffering
from the “ping-pong” effect is also considerably higher compared to the other
levels of aggressiveness. One very important factor here is to understand how
well the application can handle the migrations and how often the migration
should happen. For some real-time applications having too many migrations in a
short time may cause request failures and disturbance in the application
performance. Therefore, it is important for administrators of big data centers to
investigate different migration thresholds and always select the one that results in
an overall improvement in resource utilization and load balancing while at the
same time does not negatively impacting the application performance.

When it comes to deciding between container-based and hypervisor-based
virtualization, we believe that it is important to look at the “scope” of the work, as
others have suggested it as well. For instance, if one would like to run multiple
instances of the same application can benefit from using container-based
virtualization, however, if one is interested in running multiple applications that
require different operating systems, hypervisor-based virtualization is
recommended. Even though container solution is showing very low overhead and
system resource consumption, it suffers from securing stored data which is
crucial for database protection. Comparing containers architecture with virtual
machines, containers cannot be secure candidate for databases because all
containers share the same kernel and are therefore less isolated than virtual
machines. A bug in the kernel affects every container and results in data loss. On
the other hand, hypervisor-based virtualization is a mature and secure technology.
Virtual machines are able to partition and distribute resources viably in the
hypervisor without relying on kernel support or separate hardware. We
investigate in the thesis, performance of NoSQL Cassandra database on both
containers and virtual machines. According to our results, hypervisor-based
virtualization suffers from noticeable overhead which effects the performance of
the databases. Since both containers and virtual machines have their set of
benefits and drawbacks, an alternative solution could be to combine the two

21

technologies to get the benefits of both security of the virtual machine with the
execution speed of containers.

Scalability is also the major discussion point in designing the infrastructure.
Today’s applications need t scale based on the demand. Containers and virtual
machines have their own advantages and limitation when it comes to scalability.
There is always a difficult decision to decide which technology to choose
considering requirements of different applications. In this study, we tested both
technologies in terms of their scalability and their impact on the performance of a
NoSQL database. We observed that running multiple instances of the Cassandra
database concurrently, affected the performance of read and write operations
differently; for both VMware and Docker, the maximum number of read
operations was reduced when we ran several instances concurrently, whereas the
maximum number of write operations increased when we ran instances
concurrently. In general, according to our results, running Cassandra inside
multiple clusters of VMware virtual machines was showing less performance in
terms of maximum number of transactions per second compared to the Docker
containers.

Further in the thesis, we investigate hypervisor scheduling of virtual machines

considering real-time applications with hard deadlines. Based on an existing real-

time application and the processor speed of the physical hardware, we calculated

a period and an execution time such that the existing real-time application meets

all deadlines when it is executed in a virtual machine. We show that if overhead

for switching from one virtual machine to another is ignored, it turns out that

(infinitely) short virtual machine periods minimizes the utilization that each

virtual machine needs to guarantee that all real-time tasks in that virtual machine

meet their deadlines. Having infinitely short virtual machine periods is clearly not

realistic, and in order to provide more useful results we consider a fixed overhead

at the beginning of each execution of a virtual machine. Considering this

overhead, a set of real-time tasks, the speed of each processor core, and a certain

processor utilization of the virtual machine containing the real-time tasks, we

presented a simulation study and some performance bounds that made it possible

to determine if it is possible to schedule the real-time tasks in the virtual machine,

and in that case for which periods of the virtual machine that this is possible. We

based our calculations on the case when we used static priorities, and thus RMS,

in the original real-time applications. Our approach can easily be generalized to

cases when other scheduling policies, such as EDF, are used in the original real-

time applications. The work presented in this thesis is limited to cover only

processor, however with some modification this approach can be used for

multiprocessor scenarios as well.

22

3.3 Conclusion and Future Work

This thesis investigates how different virtualization solutions affect the

performance of various applications. First, we evaluated different storage

virtualization solutions and compared their I/O performance as well as their

recovery time (when one node goes down). According to our study, Compuverde

outperforms the Gluster and Openstack solutions in terms of read/write/delete

process as well as recovery test. In the future studies, it would be interesting to

compare Compuverde with other solutions such as Hadoop, Lustre, EMC Atmos,

etc.

Second, we measured the performance of three different hardware

virtualization solutions in terms of CPU utilization, disk utilization and response

time using a large real-time industrial application. In addition, we measured the

performance of these three hypervisors in terms of downtime and total migration

time during the live migration and compared their results. According to the

results, both VMware and KVM perform better in terms of application response

time and CPU utilization. Xen’s performance was below that of the two other

virtualization systems tested. However, Xen’s live migration technology,

XenMotion, performed better than VMware’s vMotion and KVM live migration

technology in terms of downtime. For this experiment we used only two servers

and maximum four virtual machines (two virtual machines on each server), it

would be interesting to scale up the environment and run the same sort of tests

and performance measurements when there are number of servers and many

number of virtual machines. Also, it would be very interesting to test the live

migration in that environment to see how scalable these three different

hypervisors are and how powerful their live migration technique has been

designed.

Further, we quantified the cost of having different amounts of over-allocation.
Providers of virtualized service can use this quantification in order to do a
balanced trade-off between the flexibility offered by over-allocation and the
performance penalty. Our results indicate that it is in many cases wise to use a
moderate level of over-allocation (not exceeding a factor of two) which gives
some flexibility at a very modest performance cost. Our measurements also show
that the write latency decreases with the number of VMs sharing the physical
server (seen indirectly as by considering that the amount of writes to disk
increases with the number of VMs sharing the same physical server - due to write
throttling in the application). Over-allocation increases the write latency (seen
indirectly as by considering that the amount of writes to disk increases with over-
allocation - due to write throttling in the application). There was no clear
connection between the application level response time with neither the number
of VMs nor with the degree of over-allocation. To investigate over-allocation
more, we measured the performance in terms of CPU utilization, migration down
time and total migration time of a large telecommunication application during the

23

live migration. According to our results, over-allocation has a small effect on the
CPU utilization of the low loaded VMs, while it highly effects the downtime and
total migration time. However, once we have reached a certain amount of over-
allocation, then having more over-allocation does not have noticeable effect even
on the downtime and the total migration time. Also, we show that live migration
of a heavy loaded VM when the amount of over-allocation is medium or massive
increases the risk of getting request failures especially for large real-time
applications.

In the thesis, we compared VMware’s DRS migrations versus human expert
migrations using various realistic test scenarios. We show that there is still
considerable room for improvement of VMware’s state-of-the-art DRS load
balancing systems. In particular, load balancing needs to be more robust in the
sense that completely unnecessary migrations should be avoided.

To answer research question 6, we tried to address the problem of which
solution is better for distributed databases such as Cassandra, Non-Virtualized,
Virtualized (VMware) or Docker? The overall result showed that the biggest
issue with running the Cassandra-Virtualized, is the significant resource and
operational overheads of the virtualization layer which affects the performance of
the application too. According to the results, Cassandra-Dockerized consumed
fewer resources and operational overheads compared to the Cassandra-
Virtualized. In addition, the performance of Cassandra-Dockerized was as good
as Cassandra-Non-Virtualized. Since both containers and virtual machines have
their set of benefits and drawbacks, an alternative solution could be to combine
the two technologies. In the future, it would be of interest to investigate the
alternative solution by running containers inside virtual machines running
Cassandra workload. In this way, IT organization can get the benefits of both
security of the virtual machine with the execution speed of containers. Further in
the thesis, we compared the performance of running multiple clusters of the
NoSQL Cassandra database inside Docker containers and VMware virtual
machines. We measured the performance in terms of CPU utilization, Latency
mean and the maximum number of Transactions Per Second (TPS). According to
our results, running Cassandra inside multiple clusters of VMware virtual
machines was showing less performance in terms of maximum number of
transactions per second compared to the Docker containers. The overall
performance difference was around 20% lower during the mixed workload,
around 16% lower during the write-only workload and around 29% lower during
read-only workload. As it has been discussed before in general the read-only
workload is showing less performance than the write-only workload, and the
impact of the different types of workloads on the performance in terms of CPU
utilization is higher on virtual machines than containers. However, considering
the scalability aspects of the virtual machines and the containers, according to our
results, containers scale better without losing too much performance while virtual
machines overhead is very high, and it has a negative impact on the performance
of the application. This might differ depending on the application and the type of
workload as we have seen during our experiments. Therefore, cloud providers

24

need to investigate this issue while deploying both virtual machines and
containers across data centers also at larger scale.

To answer research question 8, we proposed a new algorithm for calculating a

period and an execution time for a virtual machine containing a real-time

application with hard deadlines. We also presented a simulation study and some

performance bounds that made it possible to determine if it is possible to schedule

the real-time tasks in the virtual machine, and in that case for which periods of

the virtual machine that this is possible. This result makes it possible guarantee

that the real-time tasks in a virtual machine meet their deadlines. If overhead for

switching from one virtual machine to another is ignored, it turns out that

(infinitely) short virtual machine periods minimize the utilization that each virtual

machine needs to guarantee that all real-time tasks in that virtual machine will

meet their deadlines. Having infinitely short virtual machine periods is clearly not

realistic, and in order to provide more useful results we have also considered a

fixed overhead at the beginning of each execution of a virtual machine. In our

study we considered non-preemptive scheduling; however, it would be interesting

to modify this algorithm in order to make it work as a pre-emptive scheduling

algorithm. In the future, it would be interesting to execute this algorithm on in a

real environment and see how it will perform.

3.4 References

[1] R. J. T. Morris, and B. J. Truskowski, “The Evolution of Storage

Systems”, IBM Systems Journal, vol.24, issue.2, pp. 205-217, 2003.

[2] openStack, “OpenStack”, docs.openstack.org.

[3] R. Nou, A. Miranda, M Siquier, T. Cortes, ”Improving OpenStack Swift

Interactions with I/O Stack to Enable Software Defined Storage”,

published in SC2 conference, pp. 63-70, 2017.

[4] G. Kandiraju, H. Franke, M. Williams, M. Steinder, and S. Black,

“Software Defined Infrustructure”, IBM journal of Research and

Development, vol.58, issue.2, pp. 2:1-2:13, 2014.

[5] Sh. Chen et al., “Utilizing Multi-Level Data Fault Tolerance to Converse

Energy on Software-Defined Storage”, published in SmartCloud

conference, pp. 1-6, 2017.

[6] GlusterFS. Glsterfs @ONLINE, https://www.gluster.org/, 2018.

[7] M. D. Mauro, M. Longo, F. Postiglione, G. Carullo, M. Tambasco,

“Software defined storage: Availability Modeling and Sensitivity

Analysis”, published in SPECTS conference, pp. 1-7, 2017.

[8] B. Ravandi, and I. Papapanagiotou, “A Self-Learning Scheduling in Cloud

Software Defined Block Storage”, published in CLOUD conference, pp.

415-422,2017.

https://www.gluster.org/

25

[9] R. Gracia-Tinedo et al., “IOStack: Software-Defined Object Storage”,

published in IEEE Internet Computing Journal, vol. 20, issue. 3, pp. 10-

18, 2016.

[10] Ch. Chu et al., “Security Concerns in popular Cloud Storage Services”,

published in IEEE Pervasive Computing, vol. 12, issue. 4, pp. 50-57,

2013.

[11] R. Gracia-Tinedo et al., “Actively Measuring Personal Cloud Storage”,

published in CLOUD conference, pp. 301-308, 2013.

[12] B. Calder et al., “Windows Azure Storage: A Highly Available Cloud

Stoage Service with Storage Consistency”, published in SOSP conference,

pp.143-157, 2011.

[13] K. Shvachko, H. Kuang, S. Radia, R. Chansler, ”The Hadoop Distributed

File System”, published in MSST conference, pp. 1-10, 2010.

[14] S. A. Weil, S. A. Brandit, . L. Miller, D. D. E. Long, and C. Matzahn,

“Ceph: A Scalable, High-Performance Distributed File System”,

published in OSDI conference, pp. 1-14, 2006.

[15] E. Bocchi, M. Mellia, S. Sarni, ”Cloud Storage Service Benchmarking:

MEthodologies and Experimentations”, pp. 395-400, 2014.

[16] Tarmin, Tarmin@ONLINE, https://www.tarmin.com/, 2018.

[17] Compuverde, Compuverde@ONLINE, http://compuverde.com/, 2018.

[18] M. Karim, L. Tuan, W. Ming-Tat, and H. Ong, “Improving Performance

of Databse Appliances on Distributed Object Storage”, published in

ICCCRI conference, pp. 45-52, 2015.

[19] L. Li, D. Li, Z. Su, L. Jin, and G. Huang, ”Performance Analysis and

Framework Optimization of Open Source Cloud Storage System”,

published in China Communications journal, vol. 13, issue. 6, pp. 110-

122, 2016.

[20] J. Lee, C. Song, and K. Kang, ”Benchmarking Large-Scale Object Storage

Servers”, published in COMPSAC conference, pp. 594-595, 2016.

[21] W. Chen and C. Liu, “Performance Comparison on the Heterogeneous

File System in Cloud Storage System”, published in CIT conferenc, pp.

694-701, 2017.

[22] E. Bocchi, M. Mellia, and S. Sarni, ”Cloud Sorage Service Benchmarking:

Methodologies and Experimentations”, published in CloudNet conference,

pp. 395-400, 2014.

[23] R. Ferdiana, “The Comparison of Consumer Cloud Storage for a Storage

Extension on the E-Learning”, published in InAES conference, pp. 1-5,

2016.

[24] H. Dewan, and R. C. Hansdah, “A Survey of Cloud Storage Facilities”,

published in SERVICES conference, pp. 224-231, 2011.

https://www.tarmin.com/
http://compuverde.com/

26

[25] J. Walters, V. Chaudhary, M. Cha, S. Guercio, and S. Gallo, “A

Comparison of Virtualization Technologies for HPC”, published in AINA

conference, pp. 861-868, 2008.

[26] J. Walters, et al., “GPU Passthrough Perfromance: A Comparison of

KVM, Xen, VMware ESXi, and LXC for CUDA and OpenCL

Applications”, published in CLOUD conference, pp. 636-643, 2014.

[27] C. Jiang et al., “Energy Efficiency Comparison of Hypervisors”,

published in IGSC conference, pp. 1-8, 2016.

[28] T. Deshane et al., “Quantitative Comparison of Xen and KVM”, published

in Xen Summit, pp. 1-3, 2008.

[29] R. Morabito, J. Kjallman, and M. Komu, “Hypervisors vs. LightWeight

Virtualization: A Performance Comparison”, published in IC2E, pp. 386-

393, 2015.

[30] J. Hwang, S. Zeng, F. Wu, and T. Wood, “A Component-Based

Performance Comparison of Four Hypervisors”, published in IFIP

conference, pp. 269-276, 2013.

[31] J. Li et al., “Performance Overhead Among Three Hypervisors: An

Experimental Study using Hadoop Benchmarks”, published in BigData

congress, pp. 9-16, 2013.

[32] VMware, “A Performance Comparison of Hypervisors” @ONLINE,

https://www.vmware.com/pdf/hypervisor_performance.pdf, 2018.

[33] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An Updated

Performance Comparison of Virtual Machines and Linux Containers”,

published in ISPASS conference, pp. 171-172, 2015.

[34] Z. Li, M. Kihi, Q. Lu, and J. Andersson, ”Performance Overhead

Comparison between Hypervisor and Container Based Virtualization”,

published in AINA conference, pp. 955-962, 2017.

[35] D. Bernstein, “Containers and Cloud: From LXC to Docker to

Kubernetes”, published in Cloud Computing journal, vol. 1, issue. 3, pp.

81-84, 2014.

[36] M. G. Xavier, M. V. Neves, and c. Rose, “A Performance Comparison of

Container-Based Virtualization for MapReduce Clusters”, published in

PDP conference, pp. 299-306, 2014.

[37] C. Pahl, “Containerization and the PaaS Cloud”, published in Cloud

Computing journal, vol. 2, issue. 3, pp.24-31, 2014.

[38] D. Merkel, “Docker: Lightweight Linux Containers For Consistent

Development And Deployment”, published in Linux journal, vol. 239, pp.

76-91, 2014.

[39] C.Anderson, “Docker”, published in Software journal, vol. 32, issue. 3,

pp.102-105, 2015.

https://www.vmware.com/pdf/hypervisor_performance.pdf

27

[40] T. Banerjee, “Understanding The Key Differences Between LXC And

Docker”, @ONLINE, https://archives.flockport.com/lxc-vs-docker/, 2018.

[41] J. Che, C. Shi, Y. Yu, and W. Lin, “A Synthetical Performance Evaluation

Of Openvz, Xen And KVM”, published in APSCC conference, pp. 587-

594. 2010.

[42] D. Strauss, “Containers - Not Virtual Machines - Are The Future Cloud”,

published in Linux journal, vol. 228, pp. 118-123, 2013.

[43] T. Adufu, J. Choi, and Y. Kim, “Is Container-Based Technology A

Winner For High Performance Scientific Applications?”, published in

APNOMS conference, pp. 507-510, 2015.

[44] A. M. Joy, “Performance Comparison Between Linux Containers And

Virtual Machines”, published in ICACEA conference, pp. 507-510, 2015.

[45] K.-T. Seo, H.-S. Hwang, I.-Y. Moon, O.-Y. Kwon, and B.-J. Kim,

“Performance Comparison Analysis Of Linux Container And Virtual

Machine For Building Cloud”, published in Advanced Science and

Technology Letters journal, vol. 66, pp. 105-111, 2014.

[46] R. Dua, A. R. Raja, and D. Kakadia, “Virtualization Vs Containerization

To Support PaaS”, published in IC2E conference, pp. 610-614, 2014.

[47] S. F. Piraghaj, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya, “Efficient

Virtual Machine Sizing For Hosting Containers As A Service”, published

in SERVICES conference, pp. 31-38, 2015.

[48] A. Menon, J. R. Santos, Y. Turner, G. J. Janakiraman, and W.

Zwaenepoel, “Diagnosing Performance Overheads In The Xen Virtual

Machine Environment”, published in VEE conference , pp. 13-23, 2005.

[49] P. Apparao, R. Iyer, X. Zhang, D. Newell, and T. Adelmeyer,

“Characterization & Analysis Of A Server Consolidation Benchmark”,

published in VEE conference, pp. 21-30, 2008.

[50] A. Menon, A. L. Cox, and W. Zwaenepoel, “Optimizing Network

Virtualization In Xen”, published in ATEC conference, pp. 1-14,2006.

[51] T. Cucinotta, G. Anastasi, and L. Abeni, “Respecting Temporal

Constraints In Virtualised Services”, published in COMPSAC conference,

pp. 73-78, 2009.

[52] J. Lee, S. Xi, S. Chen, L. T. Phan, C. Gill, I. Lee, C. Lu, and O. Sokolsky,

“Realizing Compositional Scheduling Through Virtualization”, published

in RTAS conference, pp. 13-22, 2012.

[53] S. Ramamurthy, “Scheduling Periodic Hard Real-Time Tasks with

Arbitrary Deadlines on Multiprocessors”, published in RTSS conference,

pp. 1-10, 2002.

[54] A. Magalhaes, M. Rela, and J. Silva, ”Deadlines in Real-Time Systems”,

technical report, pp. 1-20, 1993.

https://archives.flockport.com/lxc-vs-docker/

28

[55] L. Briand, and D. Roy, “Meeting Deadlines in Hard Real-Time Systems”,

book published by IEEE Computer Society Press Los Alamitos, ISBN.

0818674067, 1997.

[56] C. L. Liu and J. W. Layland, “Scheduling algorithms for

multiprogramming in a hard-real-time environment”, published in JACM

journal, vol. 20, issue. 1, pp. 46-61, 1973.

29

4 Performance Evaluation of Distributed Storage Systems

for Cloud Computing

Abstract

The possibility to migrate a virtual server from one physical computer in a

cloud to another physical computer in the same cloud is important in order to

obtain a balanced load. In order to facilitate live migration of virtual servers, one

needs to provide large shared storage systems that are accessible for all the

physical servers that are used in the cloud. Distributed storage systems offer

reliable and cost-effective storage of large amounts of data and such storage

systems will be used in future Cloud Computing. We have evaluated four large

distributed storage systems. Two of these use Distributed Hash Tables (DHTs) in

order to keep track of how data is distributed, and two systems use multicasting to

access the stored data. We measure the read/write/delete performance, as well as

the recovery time when a storage node goes down. The evaluations are done on

the same hardware, consisting of 24 storage nodes and a total storage capacity of

768 TB of data. These evaluations show that the multicast approach outperforms

the DHT approach.

4.1 Introduction

The possibility to migrate a virtual server from one physical computer in a

cloud to another physical computer in the same cloud is important in order to

obtain a balanced load. In order to facilitate live migration of virtual servers, one

needs to provide large shared storage systems that are accessible for all the

physical servers that are used in the cloud. This is an important reason why the

demand for storage capacity has increased rapidly during the last years.

One problem with traditional disk drives is that data losses are common due

to hardware errors. A solution to this is Redundant Array of Independent Disks

(RAID) storage. RAID storage systems can automatically manage faulty disks

without losing data, and scale by attaching new disk drives. However, the

scalability of RAID is too limited for large cloud systems; this limitation is the

main reason for using distributed storage systems.

Distributed storage systems should be capable of sustaining rapidly growing

storage demands, avoid loss of data in case of hardware failure, and they should

provide efficient distribution of the stored content [2]. Two examples of

distributed storage systems are OpenStack’s Swift and Gluster. We have

evaluated the performance of three distributed storage systems: Compuverde,

30

OpenStack’s Swift, and Gluster. Openstack’s Swift and Gluster are both open-

source distributed storage systems that are available for downloading and

testing.

Some distributed storage systems use Distributed Hash Tables (DHTs) for

mapping data to physical servers. In the DHT approach file names and addresses

are run through a hashing function in order to indentify the nodes that have the

requested data. Two examples of systems that use DHTs are Gluster and

OpenStack’s Swift [22]. An alternative approach to using DHTs is to use

multicasting where data requests are sent to multiple storage nodes and the

nodes that have the requested data answer. Compuverde uses the multicast

approach. The architectural advantage of DHTs compared to multicasting is that

we do not need to broadcast requests; the hash table gives us the address of the

nodes that store the requested data and we avoid communication overhead.

However, the obvious disadvantage with DHTs is that we need to run a hash

function to obtain the address of the data, which introduces processing overhead.

This means that the architectural decision, whether to use DHTs or multicasting

will introduce different kinds of overhead: processing overhead for DHTs and

communication overhead for multicasting. Using DHTs or multicasting is a key

architectural decision in distributed storage systems for Cloud Computing and

this performance evaluation will give important insights regarding the

performance implications of this decision.

4.2 Background

In distributed storage systems, the most common interfaces are Web Service

APIs (Application Programming Interface) like Internet Small Computer System

Interface (iSCSI) [25]; REpresentational State Transfer (REST)-based [23, 24]

and Simple Object Access Protocol (SOAP)-based [27]. REST is a HTTP-based

architectural style to build networked applications that allows access to stored

objects by an Object Identifier (OID), i.e., no file or directory structures are

supported [4]. We will refer to object-based storage systems as unstructured

storage systems.

There are other access methods like Network File System (NFS) and

Common Internet File System (CIFS) which are used for accessing storage on a

private network or LAN and Web-based Distributed Authoring and Versioning

(WebDAV) which is based on HTTP. These APIs are file-based (variable-size)

and use a path to identify the data; we denote these as structured storage

systems. The architecture of structured storage systems is similar to Network

Attached Storage (NAS) which provide file system functionality, i.e., structured

storage systems support variable file and directory structures [3, 21].

31

The most well-known distributed storage systems are Amplistor [5, 30],

Caringo’s CAStor[6, 31], Ceph [7], Cleversafe, Compuverde , EMC Atmos [8],

Gluster [9], Google File System [10], Hadoop [11, 20], Lustre [12], OpenStack’s

Swift [19], Panasas [13], Scality and Sheepdog. Some of the distributed file

systems could be used by other applications, i.e., BigTable is a distributed

storage for structured data and it uses GFS to store log and data files [36].

As shown in Table 4.1 AmpliStor, CAStor, Ceph, Cleversafe and Scality are

unstructured distributed storage systems. Amplistor is designed to work with

HTTP/REST. Just as in Amplistor, CAStor’s Simple Content Storage Protocol

(SCSP) is based on HTTP using a RESTful architecture [34]. Ceph provides an

S3-compatible REST interface that allows applications to work with Amazon’s

S3 service. Cleversafe provides an iSCSI device interface, which enables users

to transparently store and retrieve files as if they were using a local hard drive.

EMC Atmos is a structured distributed storage system that provides CIFS

and NFS interfaces, as well as web standard interfaces such as SOAP and REST.

Other distributed file systems such as Google File System, Hadoop Distributed

File System (HDFS), Lustre and Panasas provide a standard POSIX API.

Sheepdog is the only distributed storage system which is based on Linux

QEMU/KVM and is used for virtual machines.

Some of the distributed file systems are also used for computing purposes,

e.g., the Hadoop Distributed File System (HDFS) which distributes storage and

computation across many servers. HDFS stores file system metadata and

application data separately and users can reference files and directories by paths

in the namespace (a HTTP browser can be used to browse the files of an HDFS

instance) [35]. Lustre is an object-based file system used mainly for computing

purposes. The Lustre architecture is designed for High Performance Computing

(HPC). Panasas is also used for computing purposes and similar to Lustre, it is

designed for HPC.

Scality uses a ring storage system which is based on a Distributed Hashing

Mechanism with transactional support and failover capability for each storage

node. The Sheepdog architecture is fully symmetric and there is no central node

such as a meta-data server (Sheepdog uses the Corosync cluster engine [32] to

avoid metadata servers). Sheepdog provides an object (variable-sized) storage

and assigned a global unique id to each object. In Sheepdog’s object storage,

target nodes calculated based on consistent hashing algorithm which is a schema

that provides hash table functionality and each object is replicated to 3 nodes to

avoid data loss [33].

The remaining distributed storage systems in Table 4.1 are Compuverde,

Gluster and OpenStack’s Swift. We have ported these three systems to the same

hardware platform (see Section 4.3), thus making it possible to compare their

3
2

Table 4.1 : Overview of different distributed storage systems

INTERFACE SOLUTION REPLICATION METADATA

Unstructured Structured

D
H

T

M
u

lticast

C
o

p
y

in
g

S
trip

in
g

C
en

tralized

D
istrib

u
ted

Web Service
APIs (REST,

SOAP)

Block-based

APIs (iSCSI)

File-based
APIs (CIFS,

NFS)

Other APIs
(WebDAV, FTP,

Proprietary API)

AmpliStor X - - - - - - X X

Caringo’s

CAStor
X - X - - X X - X -

Ceph X - - - X - - X - X

Cleversafe - X - - - - - X X -

Compuverde X - X X - X X - - X

EMC Atmos X - X - X - - X - X

Gluster - - X X X - X - - -

Google File

System (GFS)
X - X - - - - X X -

Hadoop - - X - X - - X X -

Lustre - - X - X - - X X -

OpenStack’s

Swift
X - - - X - X - - X

Panasas - - X - - - - X - X

Scality X - - - X - X - - X

SheepDog - X - - X - X - - X

33

performance (see sections 4.4 and 4.5). In subsections 4.2.1, 4.2.2, and 4.2.3, we

discuss these three systems in detail.

Distributed storage systems use either multicasting or Distributed Hash

Tables (DHTs). Data redundancy is obtained by either using multiple copies of

the stored files or by so called striping using Reed-Solomon coding [1]. When

using striping the files are split into stripes and a configurable number of extra

stripes with redundancy information are generated. The stripes (in case of

Striping) and file copies (in case of Copying) are distributed to the storage nodes

in the system.

4.2.1 Compuverde

Compuverde has no separate metadata. The system uses its own proprietary

caching mechanism (SSD Caching that employs Write-back policy) [26] in the

storage nodes. The solution uses multicasting, and supports geographical

dispersion, heartbeat monitoring, versioning, self-healing and self-configuring.

Compuverde supports a flat 128 bit addresses space (for unstructured storage)

and NFS/CIFS (for structured storage). The system supports both Linux and

Windows. Compuverde’s storage solution consists of two parts: The first part is

unstructured and it contains all storage nodes (clusters). The other part is the

structured part of the storage solution. This part contains gateways (this

corresponds to what OpenStack calls proxy servers) to communicate with

storage nodes. The communication is based on TCP unicast and UDP multicast

messages. Structured data storage is achieved by storing information about the

structure in envelopes. An envelope is an unstructured file that is stored on the

storage nodes and contains information about other envelopes and other files.

The storage cluster provides mechanisms for maintaining scalability and

availability of the structured data by replicating the envelopes a (configurable)

number of times within the cluster as well as providing access to them by the use

of IP-multicast technology.

The communication between the structured and the unstructured layers starts

with an IP-multicast of a key from the gateway; this key identifies the requested

envelope. All nodes that have the requested envelope reply with information

about the envelope and what other nodes contain the requested envelope, with

the current execution load on the storage node. The gateway collects this

information and waits until it has received answers from more than 50% of the

listed storage nodes that contains the identifier before it makes a decision on

which one to select for retrieval of the file.

34

4.2.2 Gluster

Gluster is a structured distributed storage system. Storage servers in Gluster
support both NFS and CIFS. Gluster does not provide a client side cache in the
default configuration [28]. Gluster only provides redundancy at the server level,
not at the individual disk level. For data availability and integrity reasons Gluster
recommends RAID 6 or RAID 5 for general use cases. For high-performance
computing applications, RAID 10 is recommended. Distribution over mirrors
(RAID 10) is one common way to implement Gluster. In this scenario, each
storage server is replicated to another storage server using synchronous writes. In
this strategy, failure of a single storage server is transparent, and read operations
are spread across both members of the mirror.

Gluster uses the Elastic Hash Algorithm (EHA). EHA determines where the
data are stored and is a key to the ability to function without metadata. A
pathname/filename is run through the hashing algorithm. After that, the file is
placed on the selected storage. When accessing the file, the Gluster file system
uses load balancing to access replicated instances. Gluster offers automatic self-
healing [9, 14].

4.2.3 OpenStack’s Swift

OpenStack’s Swift is an unstructured distributed storage system. A number

of “zones” are organized in a logical ring which represents a mapping between

the names of entities stored on disk and their physical location. Swift is

configurable in terms of how many copies (called “replicas”) that are stored, as

well as how many zones that are used. The system tries to balance the writing of

objects to storage servers so that the write and read load is distributed. The

mapping of objects to zones is done using a hash function. Swift does not do any

caching of actual object data but Swift-proxys can work with a cache

(Memcached1) to reduce authentication, container, and account calls [29]. In

Swift, there are separate rings for accounts, containers, and objects. When other

components need to perform any operation on an object, container, or account,

they interact with the appropriate ring to determine its location in the cluster.

OpenStack’s Swift’s rings are responsible for determining which devices to use

in failure scenarios [15, 16, 17, 18, 19].

OpenStack’s Swift divides the storage space into partitions. In our case, 18

bits of the GUID are used to decide on which partition a certain file should be

stored, i.e., there are 218 = 262 144 partitions. These partitions are divided into 6

zones. Zone 0 is mapped to storage nodes 0 to 3, zone 1 is mapped storage nodes

4 to 7, and zone 5 is mapped to storage nodes 20 to 23. Storage nodes 0 to 7 are

1 Memcached is a distributed memory object caching system

35

handled by one switch, nodes 8 to 15 by one switch and nodes 16 to 23 by one

switch (see Figure 4.1). There are 24*16 = 384 disks in the system and the

262 144 partitions are spread out with 682 or 683 partitions on each disk

(262144/384 = 682.666…). If a file is stored on partition X, the two extra copies

of the file (there are three copies of each file) are stored on partitions (X + 87

381) mod 262 144, and (X + 2 * 87 381) mod 262 144 (262 144 / 3 =

87 381.333…).

4.3 Experimental Setup

4.3.1 Test Configurations

Four different storage system configurations have been evaluated:

1. Compuverde Unstructured

2. Compuverde Structured

3. OpenStack’s Swift (an unstructured storage system)

4. Gluster (a structured storage system)

The measurements use two load generating clients (see Figure 4.1). We use

the same load for each configuration; the only part that has been changed is the

interface. The clients work synchronously and report the result to the master

controlling the clients (see Figure 4.1), which is responsible for monitoring the

throughput.

In the configurations 1 and 2, Compuverde 0.9 has been installed on CentOS

6.2. In the configuration 3, version 1.4.3 of the OpenStack’s Swift (release

name: Diablo) has been installed on Linux Ubuntu 10.04 and in the

configuration 4, Gluster 3.2.5 has been installed on CentOS 6.2.

The same hardware is used in each configuration. The storage system

consists of 24 storage nodes, each containing sixteen 2 TB disks, i.e., a total of

32 TB for each node and 768 TB storage for all 24 nodes. With the exception of

configuration 1 (Compuverde Unstructured), all accesses to the storage system

are routed through four proxy (gateway) servers. In configuration 1 the clients

communicate directly with the storage system.

Each proxy server has an Intel Quad processor, 16 GB RAM, and two 10

Gbit network cards. Each storage node has an Intel Atom D525 processor, 4 GB

RAM, and a 1 Gbit network card. All storage nodes and proxy servers run the

Linux operating system. There are four switches that are used to transmit data

36

from four proxy servers and two load generating clients to the 24 storage nodes.

The central switch is a Dell 8024F and the other three switches are Dell 7048Rs.

Four proxy servers are connected to the central switch via four 20 Gbit fibers.

Two load generating clients are connected to a central switch via two 10 Gbit

fibers and the central switch is connected to the other three switches via three 40

Gbit fibers.

The four test configurations will now be described.

4.3.1.1 Compuverde Unstructured

In this configuration three copies of each file are created. The proxy

servers are not used, and the load generating clients communicate directly with

the storage nodes.

4.3.1.2 Compuverde Structured

In this case two copies of each file are created. The reason for this is that

this case will be compared with Gluster, and Gluster only supports two copies of

each file. The two load generating clients communicate with two proxy servers

each. The communication protocol between the load generating clients and the

proxy servers is NFS/CIFS.

4.3.1.3 OpenStack’s Swift

OpenStack’s Swift has three copies of each file, and the two load generating

clients communicate with two proxy servers each.

4.3.1.4 Gluster

Gluster dedicates a volume to the lock file. In Gluster the storage nodes

are arranged in pairs to obtain fault tolerance. This means that there are only two

copies of each file. The communication protocol between the load generating

clients and the proxy servers is NFS/CIFS.

4.3.2 Test Cases

Two kinds of tests are considered in this study: performance tests and

recovery tests.

4.3.2.1 Performance Tests

In these test cases the read, write and delete performance are measured:

37

There are four test cases for each test configuration:

1. We measure write performance. In these tests, a number of clients

(implemented as full speed threads, i.e., as threads that issue write

requests in a tight loop without any delay and with only minimal

processing done between each request) running on two servers (see

Figure 4.1) create files of size 0 KB, 10 KB, 100 KB, 1 MB and 10 MB,

respectively. Writing 0 KB corresponds to creating a file and will be

reported separately. We vary the number of clients using the steps 2, 4,

8, 16, 32, 64, 128, and 256 clients. A write operation is a combination of

Open, Write and Close. We measure MB/s and operations/s.

2. We measure read performance. In these tests, a number of clients

(implemented as full speed threads) running on two servers (see Figure

4.1) read files of size 0 KB, 10 KB, 100 KB, 1 MB and 10 MB,

respectively. Reading 0 KB corresponds to opening a file and will be

reported separately. We vary the number of clients using the steps 2, 4,

8, 16, 32, 64, 128, and 256 clients. A read operation is a combination of

Open, Read and Close. We measure MB/s and operations/s.

3. We measure delete performance. In these tests, a number of clients

(implemented as full speed threads) running on two servers (see Figure

4.1) delete files of size 10 KB, 100 KB, 1 MB and 10 MB, respectively.

We vary the number of clients using the steps 2, 4, 8, 16, 32, 64, 128,

and 256 clients. We measure operations/s.

4. For the structured storage case, we use the SPECsfs2008 performance

evaluation tool. The tool can be configured to issue a number of I/O

Operations per Second (IOPS), and it then measures the actual achieved

throughput in terms of IOPS and the average response time.

The performance tests for small file sizes (0 KB and 10 KB) have been done

by writing/reading/deleting 1,000,000 files to/from the storage nodes, but for

larger file sizes (100 KB, 1 MB and 10 MB) the test has been continued by

writing/reading/deleting files (between 50,000 and 100,000 files) until the results

become stable.

Gluster and OpenStack’s Swift do not use caching. In order to get fair

results, the test has been done for Compuverde for two cases: caching and No

Caching (NC). We limited the NC tests to 1 MB files

4.3.2.2 Recovery Tests

In these tests we measure how long it takes for the storage system to

reconfigure itself after a node failure. We measure recovery performance by

reformatting one storage node. When a storage node is reformatted the file

38

copies stored on that node are lost. We measure the time until the system has

created new copies corresponding to the copies that were lost.

4.4 Read and Write Performance

In this section we look at the read and write performance of each of the four

configurations. In Section 4.5 we compare the different configurations.

4.4.1 Compuverde Unstructured

Figures 4.2(a) and 4.2(b) show that the throughput is low when number of

clients and the size of the files are small; the throughput increases when number

of clients and the size of the files increase. It can also be noted that the

performance in case of using cache in the storage nodes, e.g., 1 MB files, does

not differ much compared to the case that using NC, i.e., 1 MB (NC).

4.4.2 Compuverde Structured

Figures 4.3(a) and 4.3(b) show that the data transfer rate is low when the

number of clients and the size of the files are small and it increases when

number of clients and size of files increase. It can also be noted that the

performance difference between using caching in the storage nodes, e.g., 1 MB

files, and using NC, i.e., 1 MB (NC), is approximately a factor of 1.5 when

writing; there is no significant difference between caching and NC when

reading.

4.4.3 OpenStack’s Swift

Figures 4.4(a) and 4.4(b) show that in cases of writing/reading the files of

large size (10 MB), the data transfer rate increases rapidly when the number of

the clients increases. While in case of writing files with size of 1 MB and less

the curve is quite stable.

4.4.4 Gluster

Figures 4.5(a) and 4.5(b) show that the data transfer rate for large files

increases when the number of clients increases. However, for smaller files the

transfer rate does not increase so much when the number of clients increases.

In fact, when the number of clients exceeds a certain values the transfer rate

starts to decrease. The reason for this is probably that Gluster contains

contention bottlenecks internally. According to the performance test results, the

39

utilization for the storage nodes never exceeds 50% for Gluster. For the other

test configurations we get much higher utilization values. This is an indication

that there are internal performance bottlenecks in Gluster.

Figure 4.1. The physical structure of the test configuration

4.5 Comparing the Distributed Storage Systems

We have evaluated two unstructured storage systems (OpenStack’s Swift and
Compuverde Unstructured) and two structured storage systems (Gluster and
Compuverde Structured). In Section 4.5.1 we compare the performance of the
two unstructured systems and in Section 4.5.2 we compare the performance of the
two structured systems. In Section 4.5.3 we compare the time to recreate all the
file copies in a storage system in case one of the storage nodes fails.

4.5.1 Compuverde Unstructured vs. OpenStack’s Swift

We talked to several cloud storage providers and it turned out that most of

their users store small files with an average size of 1 MB. Therefore, the

performance tests are compared only for 1 MB. Figure 4.6(a) shows that the

write performance of Compuverde Unstructured for 256 clients (both when

40

using caching and NC) was roughly 800 MB/s, while for OpenStack’s Swift it

was around 200 MB/s. Figure 4.6(b) shows that the read performance of

Compuverde Unstructured for 256 clients (both when using caching and NC)

was 1600 MB/s to 1900 MB/s, while for OpenStack’s Swift it was around 600

MB/s. Figure 4.6(c) shows that the create files performance of Compuverde

Unstructured for 256 clients was 10118 operations/s in case of caching and 6500

operations/s in case of NC; for OpenStack’s Swift it was 600 operations/s.

Figure 4.6(d) show that the open files performance of Compuverde Unstructured

for 256 clients was 11153 operations/s in case of caching and 12826 operations/s

in case of NC; for OpenStack’s Swift it was 4500 operations/s. The delete files

performance test has been done by deleting files with a size of 1 MB. Figure

4.6(e) shows that the delete files performance of Compuverde Unstructured for

256 clients was 9956 operations/s in case of caching and 8145 operations/s in

case of NC; for OpenStack’s Swift it was 498 operations/s.

4.5.2 Compuverde Structured vs. Gluster

The write/read/delete performance tests have been done for 1 MB file size.

Figure 4.7(a) shows that the write performance of Compuverde Structured for

256 clients was 655 MB/s in case of caching and 450 MB/s in case of NC; for

Gluster it was 164 MB/s. Figure 4.7(b) shows that the read performance of

Compuverde Structured for 256 clients was 780 MB/s in case of caching and

821 MB/s in case of NC; for Gluster it was 270 MB/s. Figure 4.7(c) shows that

the performance for Compuverde Structured for 256 clients was 7370

operations/s in case of caching and 1239 operations/s in case of NC; for Gluster

it was 241 operations/s. Figure 4.7(d) shows that the performance for

Compuverde Structured for 256 clients was 11116 operations/s in case of

caching and 12458 operations/s in case of NC; for Gluster it was 1029

operations/s. The delete files performance test has been done by deleting files of

1 MB size. Figure 4.7(e) shows that the performance for Compuverde Structured

for 256 clients was 3548 operations/s in case of caching and 3367 operations/s in

case of NC; for Gluster it was 441 operations/s.

The test results using the Spec2008sfs tool are shown in Figures 4.8(a) and

4.8(b). Figure 4.8(a) shows that both Compuverde Structured and Gluster meet

the number of requested IOPS for 3000 IOPS and 4000 IOPS. However, when

the requested numbers of IOPS increased to 5000 and above, Compuverde

Structured delivered a number of IOPS relatively near to the requested one,

while Gluster delivers a number of IOPS that is significantly lower than the

requested number. Figure 4.8(b) shows the result of response time test that has

been obtained using the Spec2008sfs performance evaluation tool.

Compuverde’s response time is in the range of 3.5 ms to 17 ms, while for

Gluster the response time is between 10.1 ms and 33.3 ms.

41

4.5.3 Recovery Test

We did the recovery test for all four different configurations. The same

recovery test has been run twice for each configuration.

Table 4.2: Recovery Test Results

Compuverde

Unstructured
19 minutes (1140 s) 18 minutes (1080 s)

Compuverde Structured 22 minutes (1320 s) 22 minutes (1320 s)

OpenStack 9 hours 27 minutes (34020 s) 10 hours 16 minutes (36960 s)

Gluster 18 hours 27 minutes (66420 s) 18 hours 29 minutes (66540 s)

As shown in Table 4.2, the recovery time for Compuverde Unstructured

was 18-19 minutes and the recovery time for OpenStack’s Swift was

approximately 10 hours. This means that the recovery time for Compuverde

Unstructured is approximately 30 times faster than that of OpenStack’s Swift.

One reason for this difference is that Compuverde uses multicasting whereas

OpenStack’s Swift uses DHT. Another reason could be that OpenStack uses the

rsync2 command that is responsible for maintaining object replicas, consistency

of objects and perform update operations. It seems that using rsync command

introduces a significant overhead which causes a performance decrease. The

situation is similar for Compuverde Structured with a recovery time of 22

minutes compared to Gluster with recovery time of approximately 18.5 hours.

Compuverde Structured recovery time is thus approximately 50 times faster than

Gluster recovery time. As discussed before, Gluster uses DHTs instead of

multicasting. Gluster also uses rsync for replication. Another reason for the low

performance of Gluster compare to Compuverde Structured is the architecture

that is used by Gluster for replication. In Gluster the proxy servers are doing the

self-healing while in Compuverde Structured storage nodes are performing the

self-healing by themselves without involving any proxy servers which results in

a many-to-many replication pattern.

4.6 Discussion and Related Work

Compared to conventional centralized storage systems, a distributed storage

system allows for not only increased performance and redundancy, but also

affords improved energy efficiency and lowering the carbon footprint of the

2 rsync is a file transfer program for Unix-like systems.

42

system. For instance, by removing the need for a central, high-powered storage

controller and replacing it with low wattage storage nodes, such as the ones used

in the experiments presented in this paper. Furthermore, a distributed storage

system built from standard hardware components also makes it possible to

exchange the individual nodes with nodes with a lower carbon footprint as

technology advances. Reducing the carbon footprint and enabling green

computing are two important aspects of Cloud Computing.

In recent years, many research, and development efforts have been done in

cloud computing, specifically on distributed file systems. In [37] the authors

have done a performance comparison between several distributed file systems

such as Hadoop, MooseFS (MFS) and Lustre. They have compared

functionalities as well as I/O performance of these three file systems.

In [38] the authors have done a performance comparison between Google

File System (GFS) and MFS in terms of reliability, file performance and

scalability. According to their comparison GFS and MFS are both reliable since

resource files are backed up. But they found a single point of failure in master on

GFS while it does not exist on MFS. In MFS there is a need for manual back up

after a problem has occurred. Their comparison of the file performance indicates

that GFS is used for large GB file size while MFS supports small files better.

4.7 Conclusion

We have compared two unstructured storage systems for Cloud Computing

(Compuvede Unstructured and Openstack’s Swift) and two structured storage

systems for Cloud Computing (Compuverde Structured and Gluster).

Compuverde uses multicasting and Openstack’s Swift and Gluster use

Distributed Hash Tables (DHTs). The architectural advantage of DHTs

compared to multicasting is that we do not need to broadcast requests; the hash

table gives us the address of the nodes that store of the requested data and we

avoid communication overhead. However, the obvious disadvantage with DHTs

is that we need to run a hash function to obtain the address of the data, which

introduces processing overhead. This means that the architectural decision,

whether to use DHTs or multicasting will introduce different kinds of overhead:

processing overhead for DHTs and communication overhead for multicasting.

We have compared the performance using a large storage system and

realistic workloads, including the well-known Spec2008sfs test tool. Our

experiments show that Compuverde has higher performance than the two

systems that use DHTs. The performance advantage of Compuverde is

particularly clear when the number of clients that issue simultaneous accesses to

the system is high, which is typical in Cloud Computing. The performance

advantage of Compuverde is not a result of caching in the storage nodes, i.e., the

43

performance of Compuverde using NC is still significantly higher than that of

the other two systems. We believe that the main reason for the higher

performance is that Compuverde uses multicast instead of DHTs. The

communication overhead introduced by multicasting does obviously not affect

the performance as negatively as the processing overhead introduced by DHTs.

The recovery tests show that Compuverde recovers from a storage node

failure much faster than OpenStack’s Swift and Gluster. Again, we believe that

the use of multicast instead of DHTs is the main reason. However, this cannot be

the only reason for the significant difference in recovery times. One additional

reason for Gluster to perform slower than Compuverde Structure could be that

Gluster involves proxy servers in self-healing while Compuverde uses the many-

to-many replication pattern and only involves storage nodes in self-healing.

Another reason could be that Compuverde has built its own recovery protocol

from scratch, whereas OpenStack’s Swift and Gluster base their protocols on

existing applications (e.g., rsync). Moreover, the processor utilization for Gluster

never exceeds 50%, even for high loads. This indicates that there are internal

performance bottlenecks in Gluster, which probably contributes to the relatively

long time for self-healing.

4
4

a. Write Performance Test Results (Compuverde

Unstructured)

b. Read Performance Test Results (Compuverde

Unstructured)

Figure 4.2: In figures (a) and (b) the y-axis denotes the data transfer rate in MB/s, while the x-axis denotes the

number of clients that are writing/reading simultaneously.

4
5

a. Write Performance Test Results (Compuverde

Structured)

b. Read Performance Test Results (Compuverde

Structured)

Figure 4.3: In figures (a) and (b) the y-axis denotes the data transfer rate in MB/s, while the x-axis denotes the

number of clients that are writing/reading simultaneously.

4
6

a. Write Performance Test Results (Openstack)

b. Read Performance Test Results (Openstack)

Figure 4.4: In figures (a) and (b) the y-axis denotes the data transfer rate in MB/s, while the x-axis denotes the

number of clients that are writing/reading simultaneously.

4
7

a. Write Performance Test Results (Gluster)

b. Write Performance Test Results (Gluster)

Figure 4.5: In figures (a) and (b) the y-axis denotes the data transfer rate in MB/s, while the x-axis denotes the

number of clients that are writing/reading simultaneously.

4
8

a. Write Performance Compuverde Unstructured vs.

Openstack’s Swift

b. Read Performance Compuverde Unstructured vs.

Openstack’s Swift

Figure 4.6: Comparison between the performance of Compuverde Unstructured and OpenStack’s Swift for files of 1

MB.

4
9

c. Create Files Performance Compuverde Unstructured

vs. Openstack’s Swift

d. Open Files Performance Compuverde Unstructured

vs. Openstack’s Swift

Figure 4.6: Comparison between the performance of Compuverde Unstructured and OpenStack’s Swift for files of 1

MB.

5
0

e. Delete Files Performance Compuverde Unstructured vs. Openstack’s Swift

Figure 4.6: Comparison between the performance of Compuverde Unstructured and OpenStack’s Swift for files of 1

MB.

5
1

a. Write Performance Compuverde Structured vs.

Gluster

b. Read Performance Compuverde Structured vs. Gluster

Figure 4.7: Comparison between the performance of Compuverde Structured and Gluster for files of 1 MB.

5
2

c. Create Files Performance Compuverde Structured vs.

Gluster

d. Open Files Performance Compuverde Structured vs.

Gluster

Figure 4.7: Comparison between the performance of Compuverde Structured and Gluster for files of 1 MB.

5
3

e. Delete Files Performance Compuverde Structured vs. Gluster

Figure 4.7: Comparison between the performance of Compuverde Structured and Gluster for files of 1 MB.

5
4

a. Performance Evaluation Compuverde Structured vs.

Gluster

b. Performance Evaluation Compuverde Structured vs.

Gluster

Figure 4.8: Comparison between the performance of Compuverde Structured and Gluster when using the

Spec2008sfs tools.

55

4.8 References

[1] William Geisel, “Tutorial on Reed–Solomon Error Correction Coding”,

Technical Memorandum, NASA, TM-102162, August, 1990.

[2] Liuis Pamies I Juarez, “On the Design and Optimization of Heterogeneous

Distributed Storage Systems”, University Rovira in Virgili, Department of

Engineering Information in Mathematic, PHD thesis, July, 2011.

[3] Garth A. Gibson, Rodney Van Meter, “Network Attached Storage

Architecture”, Magazine, Communications of the ACM, New York,

November, 2000.

[4] Michael Factor, Kalman Meth, Dalit Naor, Ohad Rodeh, Julian Satran,

”Object storage: The future building block for storage systems”, published

in: in 2nd International IEEE Symposium on Mass Storage Systems and

Technologies, Sardinia,2005.

[5] Santa Clara, “Amplidata Demonstrates Highly Scalable and Reliable

Storage Solutions for Massive Cloud Deployments at Intel Development

Forum”, Article at PRNewswire, Calif., September, 2011.

[6] Caringo CAStor (2011, September 15). ”Castor the Market Leading

Object Storage Engine” [Online]. Available:

http://www.caringo.com/downloads/datasheets/Caringo-CAStor-Object-

Storage.pdf

[7] Scott A. Brandt, Darrell D. E. Long, Carlos Maltzahn, Ethan L. Miller,

Sage A. Weil, “Ceph: A Scalable, High-Performance Distributed File

System”, University of California, Santa Cruz, Appeared in Proceeding of

the 7th Conference on Operating Systems Design and Implementation

(OSDI’06), November, 2006.

[8] EMC Atmos, “EMC Atmos Cloud Optimize Storage for Web Services”

Whitepaper, April, 2010.

[9] Gluster Inc. “An Introduction to Gluster Architecture” Whitepaper, 2011.

[10] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. ”The Google

File System”, Appeared in 19th ACM Symposium on Operating Systems

Principles, Lake George, NY, October, 2006.

[11] Robert Chansler, Hairong Kuang, Sanjay Radia, Konstantin

Shvachko,“The Hadoop Distributed File System”, Yahoo! Sunnyvale,

California USA, 2010.

[12] Sarp Oral, Galen Shipman, Feiyi Wang, “Understanding Lustre

FileSystem Internals”, OAK RIDGE, 2009.

[13] Zainul Abbasi, Garth Gibson, Brian Mueller, Jason Small, Marc

Unangst, Brent Welch, Jim Zelenka, Bin Zhou. “Scalable Performance of

The Panasas Parallel File System”, FAST’08 proceedings of the 6th

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19900019023_1990019023.pdf
http://en.wikipedia.org/wiki/NASA

56

USENIX Conference on File and Storage Technologies, USENIX

Assosiation Berkeley, CA, USA, 2008.

[14] Drew Robb, “Gluster Brings Open Source to Unstructured Data”, Storage

Technology Features Article Published, August, 2010.

[15] OpenStack, “OpenStack Compute Admin Manual”, Manual, November,

2011.

[16] Joe Arnold, Dr. Jaesuk Ahn, Dr. Jinkyung Hwang, “Commercialization of

OpenStack: Object Storage”, OpenStack conference commercialization of

object storage, Korea, April, 2010.

[17] Pepple Ken,”Deploying OpenStack”. O’Reilly Media. ISBN 1449311059,

August, 2011.

[18] OpenStack, “OpenStack Object Storage: An Overview” white paper,

2010.

[19] OpenStack, LLC, “Welcome to Swift’s documentation!”, Swift v1.4.8-dev

documentation, 2011.

[20] Shunsuke Mikami, Kazuki Ohta, Osamu Tatebe, ”Using the Gfarm File

System as a POSIX Compatible Storage Platform for Hadoop MapReduce

Applications”, Published in: GRID’11 Proceedings of the 2011

IEEE/ACM 12th International Conference on Grid Computing, IEEE

Computer Society Washington, DC, USA, 2011.

[21] Lei Chai, Ranjit Noronha, Dhabaleswar K. Panda, Thomas

Talpey,”Designing NFS with RDMA for Security, Performance and

Scalability”, Technical Report OSU-CISRC-6/07-TR47, The Ohio State

University, 2007.

[22] Julian Dymcek, ”Survey of Distributed Hash Tables”, Lane Department

of Computer Science and Electrical Engineering, West Virginia

University, Morgantown WV, 2011.

[23] Roy T. Fielding, Richard N. Taylor, “Principles design of the modern

Web architecture”, published in ICSE’00 Proceedings of the 22nd

international conference on software engineering, ACM New York, NY,

USA, 2000.

[24] Michael Jakl, ”REST: Representational State Transfer”, University of

Technology Vienna, 2008.

[25] Wang, P., “IP SAN- from iSCSI to IP-addressable Ethernet disks”

Appears in: Mass Storage Systems and Technologies. Proceedings, 20th

IEEE/11th NASA Goddard Conference, 2003.

[26] Angelos Bilas, Michail D. Flouris, Yannis Klonatos, Thanos Makatos,

Manolis Marazkis, “Using transparent compression to improve SSD-based

I/O Caches”,Published in EuroSys’10 Proceedings of the 5th European

conference on Computer systems, ACM NewYork, NY, USA, 2010.

57

[27] Curbera F., Duftler M., Khalaf R., Mukhi N., Nagy W., Weerawarana S.

“Unraveling the Web services web: an introduction to SOAP, WSDL,

and UDDI”, published in Internet Computing, IEEE, NY, USA, 2002.

[28] Dhabaleswar K. Panda, Ranjit Noronha, “IMCa: High Performance

Caching Front-end for GlusterFS on InfiniBand” Network-Based

Computing Laboratory, Computer Science and Engineering, The Ohio

State University, 2008.

[29] OpenStack Object Storage Admin Manual, OpenStack, “Consideration

and Tunning”, 2011.

[30] Amplidata,“Amplistor: Unbreakable Object Storage for Petabyte-Scale

Unstructured Data” Whitepaper, April, 2011.

[31] Caringo CAStor, “CAStor: The Market Leading Object Storage Engine”

Product Brief, September, 2011.

[32] Andrew Beekhof. Christine Caulfield, Steven C. Dake, “The Corosync

Cluster Engine”, Proceedings of the Linux Symposium, Ottawa, Ontrio,

Canada, July, 2008.

[33] George Parisis, “DHTbd: A Reliable Block-based storage system for High

Performance clusters”, Proceedings of the IEEE/ACM CCGRID, UK,

2011.

[34] Roberto Lucchi, Michel Millot, “Resource Oriented Architecture and

REST”, JRC Scientific and Technical Reports, European Communities,

Luxembourg, 2008.

[35] Bin Fan, Garth Gibson, Wittawat Tantisiriroj, Lin Xiao, ”DiskReduce:

Replication as a Prelude to Erasure Coding in Data-Intensive Scalable

Computing”, Parallel Data Laboratory, Carnegie Mellon University,

Pittsburgh, 2011.

[36] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M.

Burrows, T. Chandra, A. Fikes, R. E. Gruber, “BigTable: A Distributed

Storage System for Structured Data”, Journal: ACM Transactions on

Computer Systems (TOCS), New York, USA, June, 2008.

[37] Wu Hao, Bai Songlin, “The Performance Study on Several Distributed

File Systems”. Proceedings of the International Conference on Cyber-

Enabled Distributed Computing and Knowledge Discovery, Beijing,

China, pp 226-229, 2011.

[38] Ping Chen, Xuerong Gou, Jianwei Li,”Research of Distributed File

System Based on Massive Resource and Application in the Network

Teaching System”. Proceedings of the International Conference on

Advanced Intelligence and Awareness Internet, pp 154-158, Beijing,

China, 2011.

58

5 Performance Comparison of KVM, VMware and

XenServer using a Large Telecommunication

Application

Abstract

One of the most important technologies in cloud computing is virtualization.

This paper presents the results from a performance comparison of three well-

known virtualization hypervisors: KVM, VMware and XenServer. In this study,

we measure performance in terms of CPU utilization, disk utilization and

response time of a large industrial real-time application. The application is

running inside a virtual machine (VM) controlled by the KVM, VMware and

XenServer hypervisors, respectively. Furthermore, we compare the three

hypervisors based on downtime and total migration time during live migration.

The results show that the Xen hypervisor results in higher CPU utilization and

thus also lower maximum performance compared to VMware and KVM.

However, VMware causes more write operations to disk than KVM and Xen, and

Xen causes less downtime than KVM and VMware during live migration. This

means that no single hypervisor has the best performance for all aspects

considered here.

5.1 Introduction

Virtualization has many advantages over non-virtualized solutions, e.g.,
flexibility, cost and energy savings [19][34]. As a more specific example,
consider the cost associated with test hardware used during professional software
development. This includes the initial price for purchasing the equipment, as well
as operational costs in the form of maintenance, configuration and consumed
electricity. For economic reasons, organizations often choose to use virtualized
test servers, so that the test hardware can be shared and maintained in a cost-
effective way [20]. In order to provide maximum resource utilization, there
should be no restrictions on the mapping of VMs to physical computers, i.e., it
should be possible to run a VM on any physical server. In order to balance the
load, it is desirable that a VM running on a physical host could be restarted on
another physical host, i.e., there is a need for migrating VMs from one physical
server to another [21][22][23]. There is support for migration in many commonly
used virtualization systems, e.g., KVM Live Migration [16], VMware’s vMotion
[18] and XenServers’s XenMotion [17].

There are three different approaches to VM migration: cold migration, hot
migration and live migration. When cold migration is used the guest Operating

59

System (OS) is shut down, the VM is moved to another physical server and then
the guest OS is restarted there. Hot migration suspends the guest OS instead of
shutting it down. The guest OS is resumed after the VM is moved to the
destination host. The benefit of hot migration is that application running inside
the guest OS can preserve most of their state after migration (i.e., they are not
restarted from scratch). In the live migration approach [13], the VM keeps
running while its memory pages are copied to a different host. Live migration
reduces the downtime dramatically for applications executing inside the VM.
Live migration is thus suitable for high-availability services.

In this paper, we compare the performance of KVM, VMware and XenServer,
for two different scenarios: when no VM is migrated, and when a VM is migrated
from one physical server to another. The work load is, for both scenarios, a large
real-time telecommunication application. In the case when no VM is migrated,
we measure the CPU utilization, the disk utilization (the number of write
operations), and the average application response time. When a VM is migrated
we measure the CPU utilization, the disk utilization (the number of write
operations), and the down time due to live migration.

The rest of the paper is organized as follows. In Section 5.2 the state of the art
is summarized. Section 5.3 describes the experimental setup for the different
hypervisors, and, in Section 5.4, we compare and analyze the results for KVM,
VMware and XenServer. Finally, related work is discussed in Section 5.5.
Section 6.5 concludes the paper.

5.2 State of The Art

5.2.1 Virtualization

In its simplest form, virtualization is a mechanism for several virtual OS
instances on a single physical system. This is typically accomplished using a
Hypervisor or Virtual Machine Monitor (VMM), which lies between the
hardware and the OS. Virtualization is often beneficial for environments
consisting of a large number of servers (e.g., a datacenter).

A virtualization solution relies on several components, such as CPU
virtualization, memory virtualization, I/O virtualization, storage virtualization,
and so on. In this paper we focus specifically on CPU and memory virtualization.

Current approaches to virtualization can be classified into: full virtualization,
paravirtualization and hardware assisted virtualization [11][12].

Full virtualization uses binary translation which translates the kernel code so
that privileged instructions can be converted to user-level instructions during run-

60

time. Detection and translation of privileged instructions typically carries a large
performance penalty. KVM and VMware support this approach.

Paravirtualization attempts to alleviate the performance of full virtualization
by replacing privileged instructions with specific function calls to the hypervisor,
so called hypercalls. This requires changes to the guest OS source code, which is
not always possible. In particular, access to the source code of commercial OSs is
heavily restricted. Both XenServer and KVM support paravirtualization.

Recent innovations in hardware, particularly in CPU, Memory Management
Unit (MMU) and memory components (notably the Intel VT-x and AMD-V
architectures [12]), provide some direct platform-level architectural support for
OS virtualization. Hardware assisted virtualization offers one key feature: it
avoids the need to trap and emulate privileged instructions by enabling guests to
run at their native privilege levels. VMware and KVM support this approach.

5.2.2 Live Migration

Live migration is a mechanism that allows a VM to be moved from one host
to another while the guest OS is running. This type of mobility provides several
key benefits, such as fault tolerance, hardware consolidation, load balancing and
disaster recovery. Users will generally not notice any interruption in their
interaction with the application, especially in the case of non-real-time
applications. However, if the downtime becomes too long, users of real-time
applications, in particular interactive ones may experience serious service
degradation [4].

To achieve live migration, the state of the guest OS on the source host must be
replicated on the destination host. This requires migrating processor state,
memory content, local storage and network state. The focus of our study is on
network state migration.

Pre-copy is the memory migration technique adopted by KVM live migration,
vMotion and XenMotion [13][28][27][32]. With this approach, memory pages
belonging to the VM are transferred to the destination host while the VM
continues to run on the source host. Transferred memory pages that are modified
during migration are sent again to the destination to ensure memory consistency.
When the memory migration phase is done the VM is suspended on the source
host, and then any remaining pages are transferred, and finally the VM is
resumed on the destination host [8]. The pre-copy technique captures the
complete memory space occupied by the VM (dirty pages), along with the exact
state of all the processor registers currently operating on the VM, and then sends
the entire content over a TCP connection to a hypervisor on the other host.
Processor registers at the destination are then modified to replicate the state at the
source, and the newly moved VM can resume its operation [7][27][31].

61

The Kernel-based Virtual Machine (KVM) is a bare-metal (Type 1)
hypervisor. The approach that KVM takes is to turn the Linux kernel into a VMM
(or hypervisor). KVM provides a dirty page log facility for live migration, which
provides user space with a bitmap of modified pages since the last call [5][6].
KVM uses this feature for memory migration.

VMware is bare-metal (Type 1) hypervisor that is installed directly onto a
physical servers without requiring a host OS. In VMware vSphere, vCenter
Server provides the tools for vMotion (also known as Live Migration). vMotion
allows the administrator to move a running VM from one physical host to another
physical host by relocating the contents of the CPU registers and memory [9][10].

XenServer is bare-metal (Type 1) hypervisor and runs directly on server
hardware without requiring host OS. XenMotion is a feature supported by
XenServer, which allows live migration of VMs. XenMotion works in
conjunction with Resource Pools. A Resource Pool is a collection of multiple
similar servers connected together in a unified pool of resources. These connected
servers share remote storage and common networking connections [1][15][30].

KVM, VMware and XenServer aim to provide high utilization of the
hardware resources with minimal impact on the performance of the applications
running inside the VM. In this study, we compare their performance by
measuring downtime and total migration time during live migration as well as
their CPU utilization, when running large telecommunication applications in the
VMs.

5.3 Experimental Setup

Two HP DL380 G6x86 hosts have been used to test the performance of KVM
and VMware ESXi 5.0. On top of the VMware ESXi 5.0, RedHat Enterprise
Linux, Version 6.2 has been installed as a guest OS. The same hardware was used
to test the performance of Xen for Linux Kernel 3.0.13 running as part of the
SUSE Linux Enterprise Server 11 Service Pack 2. Each server is equipped with
24 GB of RAM, two 4-core CPUs with hyperthreading enabled in each core (i.e.,
a total of 16 logical cores) and four 146 GB disk. Both servers are connected via
1 Gbit Fibre Channel (FC) to twelve 400 GB Serial Attached SCSI (SAS) storage
units. All devices are located in a local area network (LAN) as shown in Figure
5.1.

5.3.1 Test Configurations

Three different test setups were evaluated:

• KVM-based setup

62

• VMware-based setup

• XenServer-based setup

In each setup, two VMs are created inside hypervisor1 and hypervisor2,
resulting in a total of four VMs (see Figure 5.1). One large industrial real-time
telecommunication application is installed in the VMs. The application, referred
to as server in the reminder of this paper, handles billing related requests. The
server instances running on the VMs controlled by hypervisor1 are active in the
sense that they are the primary consumers of the requests. The remaining two
VMs under the control of hypervisor2 are running one passive instance of the
server.

Figure 5.1. Network Plan

Each active server is clustered together with one passive server. Thus, two
clusters are created. Both the active and the passive server in a cluster can receive
requests. However, all traffic received by the passive server is forwarded to the
corresponding active server. The active server then sends the response back to the
passive server.

Finally, the passive server sends the response to the requesting system. Traffic
going directly to the active server is handled without involving the passive server.

Another separate server runs a simulator that impersonates a requesting
system in order to generate load towards the servers running in the clusters. The
simulator is also located in the same LAN, but is not shown in Figure 5.1.

5.3.2 Test Cases

Two kinds of tests are considered in this study: performance tests and live
migration tests.

63

5.3.2.1 Performance tests

In these tests, we vary the number of CPU cores (logical cores) in the VMs as
well as the load towards the application.

We have three different core configurations: 6, 12 and 16 cores. For test cases
with 12 cores and 16 cores the RAM for the VM is set to 24 GB, but for test case
with 6 cores, the RAM size set to 14 GB for each of the VMs. This is an
application specific setting that is recommended by the manufacturer. A single
cluster is used for the case with 12 and 16 cores, respectively. Both clusters are
used when testing the 6 cores configuration in order to assess the performance
of two 6-core systems versus the performance a single 12-core system.

There are five load levels used in this test: 500, 1500, 3000, 4300, and 5300
incoming requests per second (req/s).

For each setup the following metrics are measured: CPU utilization, disk
utilization and response time.

CPU utilization and disk utilization are measured inside the hypervisor on
both servers using the commands presented in Table 5.1. For disk utilization, we
consider only write operations to the shared storage shown in Figure 5.1. The
response time is measured inside the simulator as the duration from the instant a
request is sent from the simulator to the application until the simulator receives
the corresponding reply.

5.3.2.2 Live Migration tests

In these tests, we measure CPU and disk utilization during live migration.
Four VMs with 6 cores CPU and 14 GB of RAM were created. For each
configuration, a single VM (active server, e.g., VM1 on Hypervisor1 in Figure
5.1) is migrated from the source host to the destination host while the simulator
creates a load of 100 req/s for the VM. At the same time the other VM (e.g. VM2
on Hypervisor1 in Figure 5.1) on the source host is receiving 1500 req/s. The
other VMs (VM1 and VM2 on Hypervisor2 in Figure 5.1) on the destination host
receive negligible traffic in the form of 100 req/s and thus are not completely idle.

Table 5.1. CPU and disk utilization command API

Virtualization

System
Command Interface

CPU Utilization Disk Utilization

KVM ssh + sar ssh + iostat

VMware
vCenter Server-

performance graphs

vCenter Server-

performance graphs

XenServer ssh + xentop ssh + iostat

Non-virtualized

Server
ssh + sar ssh + iostat

64

The application manufacturer considered this as a realistic example when one
would like to migrate a VM to load-balance the system.

In addition to CPU and disk utilization, we measure the downtime and the total
migration time. The total migration time is obtained from the hypervisor for
KVM and XenServer, and from vCenter for VMware (see Table 5.1). Downtime
is defined as the time from the instant when the VM is suspended on the source
host (Hypervisor1 in Figure 5.1) until the VM is restarted on the destination host
(Hypervisor2 in Figure 5.1). We measured the downtime inside the simulator and
our results indicate that it corresponds to the maximum response time of the
application.

5.4 Comparison between KVM, VMware and XenServer

In Section 5.4.1, the KVM, VMware and XenServer virtualization systems are
compared in terms of CPU utilization (6 cores, 12 cores, and 16 cores), disk
utilization and response time. These values have been measured for different
loads (500, 1500, 3000, 4300, 5300 req/s) except for XenServer, which could not
handle the highest load (5300 req/s).In Section 5.4.2, we compare the CPU
utilization and the disk utilization during live migration, and in Section 5.4.3, we
compare the total migration time and downtime of the VMs during live migration
for the KVM, VMware and Xen Server setups, respectively.

5.4.1 CPU, Disk Utilization and Response Time (6 cores, 12 cores, 16

cores)

CPU and disk utilization are measured inside the hypervisors. We also
performed the same measurements on the non-virtualized (target) server in order
to establish a baseline for our results (see

Table). The response time is measured in the simulator.

As shown in Figure 5.2, Xen has the highest CPU utilization (approximately
80%) in the test case with 16 cores. Because of this high CPU utilization the
application failed for traffic loads higher than 4300 req/s. KVM and VMware
CPU utilization increases proportional to the load with an increase rate similar to
that of the target. In Figure 5.3, we can observe that again Xen CPU utilization is
significantly higher compared to VMware, KVM and the target in case of 12
cores. As shown in Figure 5.4, KVM, VMware and the target CPU utilization in
case of 6 cores, are almost identical while Xen CPU utilization is the highest and
at the highest point is around 70% which is the 20% higher CPU utilization
compared to KVM, VMware and the target.

In Figure 5.5, we can observe that in case of 16 cores, VMware has the
highest disk utilization, up to 25000 KB/s. KVM and Xen the disk utilization is

65

linearly increasing with a rate similar to that of the disk utilization of the target.
However, for KVM’s and Xen’s disk utilization is always around 2000 KB/s
higher compared to the target. As shown in Figure 5.6, in case of 12 cores, Xen
and KVM disk utilization is 5000 KB/s higher compared to the target while disk
utilization for VMware is the highest, with a maximum around 30000 KB/s. In
Figure 5.7, we can observe that VMware has the highest disk utilization
compared to KVM and Xen, which show 34000 KB/s at the highest point. Xen’s
disk utilization in case of 6 cores is higher than KVM. The maximum disk
utilization for Xen is around 25000 KB/s while the maximum KVM disk
utilization is around 20000 KB/s. That is 5000 KB/s higher compared to the
target but still the lowest compared to other virtualization systems.

Figure 5.8 shows that the response time of the application when using Xen is
the highest for all traffic loads except for loads higher than 4300 req/s. Since for
loads higher than 4300 req/s the application failed when using Xen, KVM has the
highest response time after Xen, and at the highest point is around 25 ms in case
of 16 cores. The response times of the application when using VMware is similar
to the response times we had on the target. As shown in Figure 5.9, the response
time of the application when using Xen reaches 26 ms at the highest point. In
case of KVM the application has also high response times with a maximum of
around 20 ms, which is higher than VMware’s. The application response times
when using VMware is similar to the response times of the application on the
target. In Figure 5.10, we can observe that response time of the application when
using Xen at the highest point is more than 25 ms, which is twice the application
response time in case of the non-virtualized target. In the case of the 6 cores
configuration using KVM the response time increases with a similar rate to the
case when using VMware. However, for KVM and VMware the response times
are around 5 ms higher compared to the target.

5.4.2 CPU, Disk Utilization and ResponseTime during Live Migration

CPU utilization is measured inside the hypervisors on both the source and the
destination servers, during the live migration. Disk utilization is also measured
inside both hypervisors. We initiate a migration after the system has been running
for 15 minutes.

As shown in Figure 5.12, KVM’s CPU utilization on the source is around
26% before the live migration begins. The CPU utilization on the destination is
around 6%. After the live migration has been started, the CPU utilization first
increases to 35% and then decreases to 18% on the source. However, on the
destination server the CPU utilization settles around 13% after the live migration.
As shown in Figure 5.12, VMware’s CPU utilization before live migration is
around 20% on the source hypervisor and around 4% on the destination
hypervisor. When the live migration has been started, the CPU utilization on
source increases to about 34% and remains at that level during the live migration.
On the destination, the CPU utilization becomes around 15% after the live

66

migration has started. After the live migration has stopped, the CPU utilization
decreases to around 15% on the source hypervisor and to around 10% on the
destination hypervisor. In Figure 5.12, we can observe that the Xen CPU
utilization before live migration is around 34% on the source hypervisor and
around 7% on the destination hypervisor. In the beginning of the live migration,
the CPU utilization on source increases to around 40% and on the destination the
Xen CPU utilization increases to around 13%. After the live migration is
completed, the CPU utilization on the source decreases to around 29%, while on
the destination’s CPU utilization increases to 15%.

As shown in Figure 5.13, KVM’s disk utilization on the source is around
10000 KB/s before live migration. On the destination, the disk utilization is
around 6000 KB/s before live migration. After the live migration has started, the
disk utilization on the source decreases to 9000 KB/s, while on the destination’s
disk utilization increases to 7000 KB/s. As shown in Figure 5.13, VMware’s disk
utilization is around 15000 KB/s on the source before live migration while on the
destination the disk utilization is around 7000 KB/s. After the live migration, the
disk utilization on the source decreases to around 13000 KB/s and on the
destination it increases to around 9000 KB/s. In Figure 5.13 we can observe that
the Xen disk utilization before the live migration is around 13000 KB/s on the
source and around 6000 KB/s on the destination. When the live migration has
started, the disk utilization increases to around 30000 KB/s on the source and to
around 23000 KB/s on the destination. After the live migration has completed,
the disk utilization on the source decreases to around 9000 KB/s and on the
destination the disk utilization increases to around 10000 KB/s.

5.4.3 Downtime and Total Migration Time

The downtime has been obtained from the maximum response time, which is
measured inside simulator during the live migration. Downtime corresponds to
the time that application is not available and the VM is suspended.

As shown in Figure 5.11, the response time of the application when using
KVM as hypervisor is around 1 ms before the live migration is started, but when
the VM is suspended the response time increases to 700 ms. So the application
was down for less than 700 ms. In Figure 5.11, we can observe that the response
time of the application when using VMware as hypervisor is around 1 ms, but
when the VM is totally down the application response time increases to 3000 ms.
So the application downtime was around 3000 ms. As shown in Figure 5.11,
before the live migration starts the application response time when using Xen is
around 4 ms. When the live migration begins, the response time increases to 280
ms. So the application was down for less than 4 ms.

The total migration time is calculated inside the source hypervisor. It
corresponds to the time that the VM started to be migrated until the complete VM

67

state has been transferred to the destination hypervisor (see Figures 5.12-5.13).
The total migration time for VMware, KVM and Xen is around 2 minutes.

5.5 Related Work

In recent years, there have been several efforts to compare different live
migration technologies. Xiujie et al. [1] compare the performance of vMotion and
XenMotion under certain network conditions defined by varying the available
bandwidth, link latency and packet loss. Their results show that vMotion
produces less data traffic than XenMotion when migrating identical VMs.
However, in networks with moderate packet loss and delay, which are typical in a
Virtual Private Network (VPN), XenMotion outperforms vMotion in total
migration time.

Tafa et al. [2] compare the performance of three hypervisors: XEN-PV, XEN-
HVM and Open-VZ. They simulated the migration of a VM using a warning
failure approach. The authors used a CentOS tool called “Heartbeat” that
monitors the well-being of high-availability hosts through periodic exchanges of
network messages. When a host fails to reply to messages the tool issues a failure
notification that causes the hypervisor to migrate the VM from the “dead” host to
one that is “alive”. Further, they compared CPU usage, memory utilization, total
migration time and downtime. The authors have also tested the hypervisor’s
performance by changing the packet size from 1500 bytes to 64 bytes. From these
tests they concluded that Open-VZ has a higher CPU usage than XEN-PV, but
the total migration time is smaller for Open-VZ (3.72 seconds for packet size of
64 bytes) than for XEN-PV (5.12 seconds for packet size of 64 bytes). XEN-
HVM has lower performance than XEN-PV; especially regarding downtime.
XEN-HVM had16 ms downtime while XEN-PV had 9 ms downtime for packet
size of 64 bytes compared to our results with the large application we have got
300 ms downtime for Xen and total migration time of around 2 minutes.

In Chierici et al. [3] and Che et al. [29] present a quantitative and synthetically
performance comparison between Xen, KVM and OpenVZ. They used several
benchmarks (NetIO, IOzone, HEP-Spec06, Iperf and bonnie++) to measure CPU,
network and disk accesses. According to their measurements, the OpenVZ has
the best performance; also Xen hypervisor offers good performance while KVM
has apparently low performance than OpenVZ and Xen.

There has been a similar study to our work carried out by Hicks, et al. [14], in
which the authors focused only on memory migration and storage migration in
the KVM, XenServer, VMware and Hyper-V virtualization systems. However,
they did not consider CPU utilization of hypervisor during live migration in their
study.

Clark et al. [27] introduced a method for the migration of entire operating
system when using Xen as a hypervisor. They have tested different applications

68

and recorded the service downtime and total migration time. Their results show
210 ms downtime for SPECweb99 (web-server) and 60 ms downtime for Quake3
(game server) during the migration.

Du et al. [24] proposed new method called Microwiper which makes less dirty
pages for live migration. They implemented their method on the pre-copy based
live migration in Xen hypervisor. They’ve tested two different programs with one
with fixed memory writes and the other one with very quick memory writes.
They compared the downtime and total migration time when using their method
(Microwiper) versus the original Xen live migration (XLM). Their results show
the original Xen live migration gets 40 ms downtime for VM memory size of
1024 MB when running quick memory writes program and total migration time
of 11 seconds while their technique (Microwiper) decreases the downtime so it
became around 10 ms but they got the same total migration time.

Web 2.0 application [33] has been evaluated by Voorsluys et al. [25] in terms
of downtime and total migration time during live migration. They run XenServer
as a hypervisor on their VM hosts. According to their experiments downtime of
their system when serving 600 concurrent users is around 3 seconds and their
total migration time is around 44 seconds which is much higher compared to our
results because of the application that they’ve used also their setup is different.

Jo et al. [26] implemented a technique to reduce the duplication of data on the
attached storage. They used different applications, RDesk I and II, Admin I, etc.
and they measured the down time and total migration time during live migration
when using XenServer as hypervisor. Their experiment shows 350 seconds total
migration time for the original Xen live migration when the maximum network
bandwidth is 500 megabits per second while using their proposed technique
reduces this number to 50 seconds when duplication ratio is up to 85 percent.

5.6 Conclusion and Future Work

The results of the performance tests for different configurations of number of
CPU cores show that KVM and VMware CPU utilization is almost identical and
similar to CPU utilization on the target machine (non-virtualized) while
XenServer has the highest CPU utilization with a maximum around 80%. In
terms of disk utilization, the results indicate that KVM and Xen have similar disk
utilization while VMware has the highest disk utilization (around 30000 KB/s for
the highest load). The response time of the application is the highest when using
Xen as hypervisor showing around 25 ms at the highest point. For KVM and
VMware, the response time is almost similar (around 20 ms).

In general, KVM and VMware perform better in terms of CPU utilization
while Xen CPU utilization is the highest. In terms of disk utilization KVM and
Xen have similar performance while VMware has the highest disk utilization.

69

Further, in terms of response time Xen has the longest response times compared
to KVM and VMware.

As the results have shown, the CPU utilization during live migration is lower
for KVM than for VMware while Xen had the highest CPU utilization during live
migration. The disk utilization when KVM is used is 1000 KB/s lower compared
to VMware during the migration.

For VMware, the downtime is measured to 3 seconds during live migration.
For KVM and Xen the measured downtime are only 0.7 seconds and 0.3 seconds,
respectively.

In general, the results presented in this study show that both VMware and
KVM perform better in terms of application response time and CPU utilization
for a configuration of two VMs with 6 cores each, compared to a configuration
with a single VM with 16 or 12 cores. Xen’s performance is below that of the two
other virtualization systems tested. However, Xen’s live migration technology,
XenMotion, performs better than VMware’s vMotion and KVM live migration
technology in terms of downtime.

7
0

Figure 5.2. KVM, VMware and Xen CPU utilization for

16 cores

Figure 5.3. KVM, VMware and Xen CPU utilization for 12

cores

7
1

Figure 5.4. KVM, VMware and Xen CPU utilization for 6

cores

Figure 5.5. KVM, VMware and Xen disk utilization for 16

cores

7
2

Figure 5.6. KVM, VMware and Xen disk utilization for 12

cores

Figure 5.7. KVM, VMware and Xen disk utilization for 6

cores

7
3

Figure 5.8. KVM, VMware and Xen response time for 16

cores

Figure 5.9. KVM, VMware and Xen response time for 12

cores

7
4

Figure 5.10. KVM, VMware and Xen response time for 6

cores

Figure 5.11. KVM , VMware and Xen response time during

live migration

7
5

Figure 5.12. KVM , VMware and Xen CPU utilization during live migration

7
6

Figure 5.13. KVM , VMware and Xen disk utilization during live migration

77

5.7 References

[1] F. Xiujie, T. Jianxiong, L. Xuan, and J. Yaohui, “A Performance Study of

Live VM Migration Technologies: vMotion vs XenMotion,” Proceedings

of the International Society for Optical Engineering, Shanghai, China,

2011, pp. 1-6.

[2] I. Tafa, E. Kajo, A. Bejleri, O. Shurdi, and A. Xhuvani, ”The Performance

between XEN-HVM, XEN-PV And OPEN-VZ During Live Migration,”

International Journal of Advanced Computer Science and Applications,

2011, pp. 126-132.

[3] A. Chierici and R. Veraldi, “A Quantitative Comparison between Xen and

KVM,” 17th International Conference on Computing in High Energy and

Nuclear Physics, Boston, 2010, pp. 1-10.

[4] D. Huang, D. Ye, Q. He, J. Chen, and K. Ye, “Virt-LM: a benchmark for

live migration of virtual machine,” ACM SIGSOFT Software Engineering

Notes, USA, 2011, pp. 307-316.

[5] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, ”KVM: the

linux virtual machine monitor,” OLS, Ottawa, 2007, pp. 225-230.

[6] Red Hat. (2009). “KVM- Kernel based virtual machine,”[Online].

Available from:http://www.redhat.com/rhecm/rest-

rhecm/jcr/repository/collaboration/jcr:system/jcr:versionStorage/5e7884ed

7f00000102c317385572f1b1/1/jcr:frozenNode/rh:pdfFile.pdf , 2014-03-

10

[7] M.R. Hines and K. Gopalan, “Post-copy based live virtual machine

migration using adaptive pre-paging and dynamic self-ballooning,”

international conference on virtual execution environments, USA, 2009,

pp. 51-60.

[8] P. Svärd, B. Hudzia, J. Tordsson, and E. Elmorth, ”Evaluation of delta

compression techniques for efficient live migration of large virtual

machines,” 7th ACM SIGPLAN/SIGOPS International conference on

Virtual execution environments, USA, 2011, pp. 111-120.

[9] S. Lowe, “Mastering VMware vSphere 5,” Book, 2011.

[10] E. L. Haletky, “VMware ESX and ESXi in the Enterprise:Planning

Deployment of Virtualization Servers,” Upper Saddle River, NJ: Prentice

Hall, 2011.

[11] A.Kovari and P.Dukan, ”KVM & OpenVZ virtualization based IaaS Open

Source Cloud Virtualization Platform,” 10th Jubilee International

Symposium on Intelligent Systems and Informatics, Serbia, 2012, pp.

335-339.

http://www.redhat.com/rhecm/rest-rhecm/jcr/repository/collaboration/jcr:system/jcr:versionStorage/5e7884ed7f00000102c317385572f1b1/1/jcr:frozenNode/rh:pdfFile.pdf
http://www.redhat.com/rhecm/rest-rhecm/jcr/repository/collaboration/jcr:system/jcr:versionStorage/5e7884ed7f00000102c317385572f1b1/1/jcr:frozenNode/rh:pdfFile.pdf
http://www.redhat.com/rhecm/rest-rhecm/jcr/repository/collaboration/jcr:system/jcr:versionStorage/5e7884ed7f00000102c317385572f1b1/1/jcr:frozenNode/rh:pdfFile.pdf

78

[12] A.J. Younge, R. Henschel, and J.T. Brown, “Analysis of Virtualization

Technologies for High Performance Computing Environments,” 4th IEEE

International Conference on Cloud Computing, Washington, DC, 2011,

pp. 9-16.

[13] A. Warfield, et al., ”Live Migration of Virtual Machines,” Proceedings of

the 2nd conference on Symposium on Network Systems Design and

Implementation, USA, 2005, pp. 273-286.

[14] A. Hicks, et al., “A Quantitative Study of Virtual Machine Live

Migration,” Proceedings of the ACM Cloud and Autonomic Computing

Conference, USA, 2013, pp. 1-10.

[15] J. Wang, L. Yang, M. Yu, and S. Wang, ”Application of Server

Virtualization Technology Based on Citrix XenServer in the Infromation

Center of the Public Security Bureau and Fire Service Department,”

Proceedings of the Computer Science and Society, Kota Kinabalu, 2011,

pp. 200-202.

[16] KVM. [Online]. Available from: http://www.linux-kvm.org/page/Main_Page ,

2014-03-10

[17] XenServer. [Online]. Available from:

http://www.citrix.com/products/xenserver/overview.html , 2014-03-10

[18] VMware. [Online]. Available from: http://www.vmware.com/ , 2014-03-10

[19] Ch. Cai and L. Yuan, ”Research on Energy-Saving-Based Cloud

Computing Scheduling Strategy,” Journal of Networks, 2013, pp. 1153-

1159.

[20] E.Michael and F. Janos, “A Survey of Desktop Virtualiztion in Higher

Education: An Energy-and Cost-Savings Perspective,” 19th Americas

conference on Information Systems, 2013, pp. 3139-3147.

[21] X. Li, Q. He, J. Chen, K. Ye, and T. Yin, “Informed Live Migration

Strategies of Virtual Machines for Cluster Load Balancing” Proceedings

of the 8th IFIP International Conference, 2011, pp. 111-122.

[22] Z. Wenyu, Y. Shaoubao, F.Jun, N. Xianlong, and S. Hu, “VMCTune: A

Load Balancing Scheme for Virtual Machine Cluster Based on Dynamic

Resource Allocation” Proceedings of the 9th International Conference on

Grid and Cloud Computing, 2010, pp. 81-86.

[23] P. Riteau, C. Morin, and T. Priol, “Shrinker: Efficient Live Migration of

Virtual Machines” Concurrency and Computation: Practice and

Experience, 2013, pp. 541-555.

[24] Y. Du, H. Yu, G. Shi, J. Chen, and W. Zheng, ”Microwiper: Efficient

Memory Propagation in Live Migration of Virtual Machines,” 39th

International Conference on Parallel Computing, 2010, pp. 141-149.

http://www.linux-kvm.org/page/Main_Page
http://www.citrix.com/products/xenserver/overview.html
http://www.vmware.com/

79

[25] W. Voorsluys, J. Broberg, S.Venugopal, and R. Buyya, “Cost of Virtual

Machine Live Migration in Clouds: A Performance Evaluation,”

Proccedings of the 1st International Conference on Cloud Computing,

2009, pp. 254-265.

[26] Ch. Jo, E. Gustafsson, J. Son, and B. Egger, “Efficient Live Migration of

Virtual Machines Using Shared Storage,” Proceedings of the 9th

International Conference on Virtual Execution Environments, 2013, pp.

41-50.

[27] C. Clark, et al., “Live Migration of Virtual Machines,” Proceedings of the

2nd symposium on Networked Systems Design and Implementation,

2005, pp. 273-86.

[28] S. Akoush, R. Sohan, A. Rice, A.W. Moore, and A. Hopper, “Predicting

the Performance of Virtual Machine Migration,” Proceedings of the 18th

IEEE/ACM international symposium on Modelling, Analysis and

Simulation of Computer and Telecommunication Systems, 2010, pp. 37-

46.

[29] J. Che, Y. Yu, C. Shi, and W. Lin, “A Synthetical Performance Evaluation

of OpenVZ, Xen and KVM,” Proceedings of the IEEE conference on

Asia-Pacific Services Computing, 2010, pp. 587-594.

[30] S. Kikuchi and Y. Matsumoto, “Impact of Live Migration on Multi-tier

Application Performance in Clouds,” Proceedings of the 5th IEEE

international conerence on Cloud Computing, 2012, pp. 261- 268.

[31] H. Liu, H. Jin, Ch. Xu, and X. Liao, “Performance and Energy Modelling

for Live Migration of Virtual Machines,” Proceedings of the conference

on Cloud Computing, 2013, pp. 249-264.

[32] S. Kikuchi and Y. Matsumoto, “Performance Modelling of Concurrent

Live Migration Operations in Cloud Computing Systems using PRISM

Problemabilistic Model Checker,” Proceedings of the IEEE 4th

international conference on Cloud Computing, 2011, pp. 49-56.

[33] L. Wang, et al., “Cloud Computing: a Prespective Study,” Proceedings of

the New Generation Computing conference, 2010, pp. 137-146.

[34] J. Che, Q. He, Q. Gao, and D. Huang, “Performance Measuring and

Comparing of Virtual Machine Monitors,” Proceedings of the 5th

interantional conference on Embedded and Ubiquitous Computing, 2008,

pp. 381-386.

80

6 Performance Implications of Over-Allocation of Virtual

CPUs

Abstract

A major advantage of cloud environments is that one can balance the load by

migrating virtual machines (VMs) from one server to another. High performance

and high resource utilization are also important in a cloud. We have observed that

over-allocation of virtual CPUs to VMs (i.e. allocating more vCPUs to VMs than

there CPU cores on the server) when there are many VMs running on one host

can reduce performance. However, if we do not use any over-allocation of virtual

CPUs we may suffer from poor resource utilization after VM migration. Thus, it

is important to identify and quantify performance bottlenecks when running in

virtualized environment. The results of this study will help virtualized

environment service providers to decide how many virtual CPUs should be

allocated to each VM.

6.1 Introduction

There has been many studies on resource allocation in virtualized

environments [1]. A virtual machine (VM) is usually configured with a number

of virtual CPUs (vCPUs). One can decide to use the physical CPU cores in

different ways, e.g., one can have a small number of VMs with a large number of

vCPUs each, or a large number of VMs with a small number of vCPUs each.

Previous studies show that different ways of using the physical CPU cores

resources affects system performance [10]. If we sum up the number of vCPUs in

all VMs on a physical server, we could end up in three situations: the total

number of vCPUs exceeds the number of physical CPU cores (over-allocation),

the total number of vCPUs is the same as the number of physical CPU cores

(balanced allocation), or the number of vCPUs is smaller than the number of

physical cores (under-allocation). Under-allocation clearly results in sub-optimal

resource utilization since some physical cores are not used. One reason for over-

allocating resources in virtualized environments is live migration. In modern data

centers virtual machines migrate from host to host based on the pre-defined rules

without involving a human operator. This type of fully automatic load balancing

can provide high and even resource utilization over a cluster of physical servers,

e.g., VMware’s Distributed Resource Scheduler (DRS) [11]. One important

challenge in such automatic environments is efficient resource utilization. If we

do not use over-allocation, we may not be able to use all the physical cores after

live migration. E.g., assume there are two hosts each with 24 CPU cores, and

there are four virtual machines running on each host and each VM has 6 virtual

81

CPUs (vCPUs), i.e., balanced allocation. If one VM is migrated to the other host,

the total number of VMs on the source host becomes three, and they will only

have a total number of 18 vCPUs, i.e., six of the physical CPU cores will not be

used. However, if each VM had 24 vCPUs allocated to it, there would be enough

vCPUs to utilize the physical cores. There is a risk of achieving poor performance

due to over-allocation of resources. One reason for this is that when we use over

allocation the VMs will time share the CPU resources; in the case of no

overallocation there is no or very little time sharing. Time sharing increases the

number of context switches between VMs. The overhead due to excessive context

switching between VMs, and other contention related activities, will decrease

performance. These performance bottlenecks should be identified, quantified, and

avoided. We have built a testbed using VMware. We have tested and analyzed

vCPU over-allocation as well as no over-allocation scenarios; we have also

compared the performance of a small number of VMs with many vCPUs with a

larger number of VMs with fewer vCPUs each. In this study we have used a large

industrial telecommunication application and measured the performance of the

application under different conditions. The results of this study will help virtual

environment service providers to decide how many virtual CPUs should be

allocated to each VM.

6.2 Related Work

Over-allocating of resources has been used to increase the application

performance during worst case demand. However, since servers operate most of

the time at very low utilization level, most of these resources become wasted in

non-peak times. Zhu et al. [12] and Liu et al. [13] designed resource controllers to

modify CPU cycles in order to control CPU utilization of VMs. Padala et al. [14]

studied over-allocation of the CPU resources on virtualized servers and build a

model to control the CPU allocation dynamically to the individual VM. Espadas

et al. [4] establish measurements for under and over provisioning of virtualized

resources. They have also proposed a resource allocation mechanism in order to

deploy Software-as-a-Service (SaaS) applications. Our work is distinct from their

experiment in terms of the application that we have used; we have used a real-

time telecommunication application while they have used web applications. Yu et

al. [5] proposed try-before-buy technique which is a thin-provisioning approach

for resource allocation on the Xen hypervisor. In their approach, the try-step is

when a minor share of physical resources will be allocated to the VM and

performance will be measured. Then according to the conducted results, in the

buy-step the amount of allocated resources will be increased if necessary. Watson

et al. [15] proposed a probabilistic performance model which can based on

performance measurements on the application, predicts how much CPU resources

needs to be allocated to VMs to get better performance. Both [5] and [15], have

used the Xen hypervisor while we have used VMware. Garg et al. [16] have

considered resource allocation, and proposed a model in a datacenter that runs

82

different type of applications. However, none of their applications were real-time

telecommunication applications. Wang et al. [17] investigate the impact of

software resource allocation such as thread pool size on throughput in various

servers (e.g., Apache web server). Later, Li et al. [18] designed an algorithm to

find the best software resource allocations. Heo et al. [19] studied memory over-

allocation and presented their experimental results. Pooja et al. [1] provided

performance measurements of memory intensive applications under different

conditions, e.g., size of the memory allocated to each virtual machine changes

under the given load, using windows server 2008 R2 and 2012. Their results

indicate that when the number of page faults per second becomes constant,

allocating more memory will not improve performance. In our experiment we

have used a CPU intensive application. Larcheveque and Dubois [20] proposed

an algorithm to keep the CPU utilization of a physical machine at 66% and when

a physical machine becomes overloaded they migrate VMs to balance the load.

6.3 Experimental Setup

6.3.1 Testbed

Eight servers have been used as the hosts. On these hosts we run VMware

ESXi 5.5.0. On top of VMware, RedHat Enterprise Linux, version 6.2 has been

installed as the guest OS. Each server is equipped with 128 GB of RAM, two 6-

core CPUs (2x Intel XEON 2.0 GHz) with hyperthreading enabled in each core

(i.e., a total of 24 logical cores) [21][22][23].

In order to reduce the time for live migration one would like that all servers in

a cluster share the same disk; in this case no files need to be moved during a live

migration of a VM. Having one large physical disk (or disk array) for a large

cluster can, however, become a single point of failure and a performance

bottleneck. A strong trend in virtualization and cloud computing is to use the so

called distribute storage systems.

In a distributed storage system the disks are physically distributed to the

servers in the cluster, thus avoiding the single point of failure and performance

bottleneck problems. However, a software layer creates an image of one shared

virtual disk, thus avoiding the need to migrate files during live migration. One

high performing distributed storage systems is the Compuverde system [24].

All servers in our cluster are connected to Compuverde distributed storage
system. As shown in Figure 6.1, the distributed storage system consists of two
components: 1) Compuverde software, that is installed inside a VM and 2) data
storage which consists of SSD cache (7x Intel 330 60 GB (RAID 10+hotspare))
and disk persistent storage (8x Intel 330 60 GB (RAID 5(7+1))). As shown in

83

Figure 6.1. Compuverde storage system. The numbers (1-3) indicate the order in

which an access to disk is handled. 1) a VM makes a disk access. 2) the

hypervisor forwards the request to the Compuverde software that runs in a VM.

3) the Compuverde software makes the actual disk access possibly including

accesses to multiple distributed disks. In case of a read, the result is returned

back to the requesting VM in reversed order.

Figure 6.2, all Compuverde VMs communicate with each other in order to
maintain and share information about stored data.

The Compuverde software is responsible for managing distribution of data
between all storage nodes in different hosts and it has been designed so that it
treats all the SSD caches and disks as a virtual Network Attached Storage
(vNAS). E.g., during write process, each virtual machine will write data to
VMware ESXi, VMware communicates with the Compuverde software through
the NFS protocol, and then the Compuverde software will communicate with
other Compuverde instances on the other hosts in order to distribute data, and
finally it will send data to the storage which is combination of SSD cache and
disk storage (see steps 1-3 on the Hypervisor 1 in Figure 6.1).

The same large real-time telecommunication application is installed in all
VMs. The application, referred to as telecom server in the reminder of this paper,
handles billing related requests. It consists of several hundreds of thousands lines
of code.

Another separate server runs a simulator that impersonates a requesting
system in order to generate load towards the telecom servers. The simulator is not
shown in Figure 6.2. All communications are through Ethernets (Intel X520
SFP+ 10 GB). All clusters are monitored using VMware vCenter (see Figure 6.2).

84

Figure 6.2. Testbed setup

For both the over-allocation and the no over-allocation test cases we used two
VMware ESXi hosts and on each host we have created various numbers of VMs.
As discussed previously, there are eight physical servers in the cluster, and all
these servers contain disks and SSDs that are used by the distributed storage
system, i.e., all eight servers are potentially involved in disk accesses. However,
in these measurements we only run the application workload on two of the
servers.

Each host has 128 GB RAM in total, for both over-allocation and no over-
allocation test cases we have allocated 14 GB RAM to each virtual machine; 14
GB RAM is the minimum RAM that is recommended for the application.

On each host 24 cores are available, in order to avoid any interference
between the virtual machine that contains the Compuverde software and other
VMs, we have created two resource pools, one with 4 cores and the other one
with 20 cores. The VM containing Compuverde software was bound to the
resource pool with 4 cores and the other VMs are bound to the resource pool that
contains 20 cores.

6.3.2 Test cases

We have measured CPU utilization, disk utilization and average response time
for cases with and without over-allocation (see Table 6.1 for CPU and disk
utilization and response time command API).

85

6.3.2.1 No over-allocation

There are 20 CPU cores available for virtual machines on each host. For the
case with no over-allocation we have divided 20 vCPUs equally between the
VMs. Here we defined two test cases: one with a small (two) number of VMs and
one with many (five) VMs.

6.3.2.1.1 Two Virtual Machines

In this case we have allocated 10 vCPUs to each virtual machine.

6.3.2.1.2 Five Virtual Machines

In this case we have allocated 4 vCPUs to each virtual machine.

6.3.2.2 Over-allocation

In this case we have allocated 10 or 20 vCPUs to each virtual machine.

6.3.2.2.1 Two Virtual Machines

In this case we have allocated 20 vCPUs to each virtual machine.

6.3.2.2.2 Five Virtual Machines

In this case we have allocated 10 vCPUs to each virtual machine.

6.3.2.2.3 Five Virtual Machines

In this case we have allocated 20 vCPUs to each virtual machine; we have
called this case, massive over-allocation.

6.4 Experimental Results

Figure 6.3 shows the CPU utilization on the hypervisor level for all five cases.
The CPU utilization on the hypervisor level shows how much the VMs are using
the CPU resources that are available on the physical machine. In addition, we
have measured CPU usage inside VMs, and we have observed that for the case
with no over-allocation (solid blue line in Figure 6.3), CPU usage inside VMs
and CPU utilization on the hypervisor level were more or less identical, which
was expected since there was no over-allocation in this case. In the case with
over-allocation (dashed green line in Figure 6.3) the average CPU usage inside
VMs was roughly half of the CPU utilization on hypervisor level, which was also
expected since there were twice as many vCPUs as physical cores in this case.

86

Also for the case with massive over-allocation (dashed blue line in Figure 6.3) the
CPU utilization on hypervisor was roughly four times higher than the average
CPU usage inside VMs, and in this case there were four times as many vCPUs as
physical cores.

If we compare the two red lines (solid and dashed) in Figure 6.3, we see that,
in both cases (over-allocation and no over-allocation), the CPU utilizations are
almost identical. However, the case with over-allocation has slightly higher CPU
utilization for the same workload. When we compare two blue lines (solid and
dashed), we see that the CPU utilization when there is over-allocation is much
higher compare with the case with no over-allocation (see Figure 6.3). Figure 6.3
also shows that the dashed green line is roughly in the middle between the solid
blue line and the dashed blue line. One reason that we could not reach higher load
than 5600 req/s in case of five virtual machines and 20 vCPUs could be the high
CPU utilization on hypervisor, because when the load is 5600 req/s the CPU
utilization is already 82%. If we compare the case with less over-allocation
(dashed green line), we can observe that the CPU utilization is less than the case
with massive over-allocation (dashed blue line), therefore it reaches the limit
(82%) later so we could increase the load up to 6125 req/s.

In Figure 6.4, the write rate to disk is measured on the hypervisor level; we
have measured the write rate towards the NFS shared storage. For each VM, the
application itself will add an extra write on disk even if there is no load coming in
to the telecom application. The extra write for each VM can be observed in the
graph and this explains the difference between red lines and the blue/green lines
(red lines are representing the cases with two virtual machines while blue/green
lines are representing the cases with five virtual machines).

Table 6.1. Command API used for performance measurements

VMware

Virtualization

System

Command Interface

CPU Utilization

(%)

Disk Utilization

(kb/s)

Response Time

(ms)

Inside
Hypervisor

vCenter Server-

performance

graphs

vCenter Server-

performance

graphs

Write Latency
from vCenter

Server-

performance
graphs

Inside

Virtual Machine
ssh + sar ssh + iostat

Inside the

application

The application is designed so that when the disk write latency is low (when
writing to the disk is fast), it writes more frequently and may write the same data
several times (the application keeps track of the write latency and throttles the
write frequency according to that). If we compare the two red lines in Figure 6.4,
we see that for the case with no over-allocation, the VMs write around 2000 kb/s

87

more compared to the case with over-allocation. The reason is that the write
latency is lower in the case of no over-allocation. The higher write latency in case
of over-allocation is probably due to the fact that the two VMs time share the
physical cores (in the case of no over-allocation, there is no or very little time
sharing). Time sharing and overhead for context switching increase the write
latency.

The same happened when we had five VMs. When comparing the two blue
lines (dashed line with solid line), we see that when we had no over-allocation the
write rate was higher compared to the case with over-allocation. The same
discussion applies for the case with five VMs and 10 vCPUs (dashed green line);
if we compare this case with the case with five virtual machines and 20 vCPUs
(dashed blue line), we see that they are almost identical. While we expect the
green dashed line with less over-allocation to be higher than the case with
massive over-allocation (dashed blue line). The reason for this behavior is the
disk write latency. We have measured the disk write latency and observed that for
all three cases when we had over-allocation the write latency is higher compared
to other cases with no over-allocation.

This means that the write latency decreases when we have five VMs
compared to having two VMs. When there are only two VMs the load is divided
between those two VMs, e.g., when the load is 3000 req/s and we have two VMs,
each VM will receive 1500 req/s. However, when there are five VMs the same
load will be distributed equally between these five VMs, i.e., when the load is
3000 req/s and we have five virtual machines, each VM will receive 600 req/s.
Figure 6.4 shows that the write latency is smaller for many VMs with lower load
on each VM compared to few VMs with higher load on each VM. Also, Figure
6.4 shows that the cases with no over-allocation (the solid lines) have smaller
write latency compare to the cases with over-allocation.

Figure 6.5 shows the average response time of the application. If we compare
the cases with five VMs with the cases with two VMs, we see that for five VMs
the average response time is a bit lower than the cases with two VMs except for
the case with less over-allocation (dashed green line), the response time is lower
that all other cases. However, the response time differences are rather limited.

6.5 Conclusion

In this paper, we have presented a detailed comparison between over-
allocation and no over-allocation of vCPU resources to the VMs and how it
affects the performance. We have measured the performance in terms of CPU and
disk utilization inside hypervisor as well as response time of the large industrial
telecommunication application.

By allocating more virtual CPUs (vCPUs) than there are physical processor
cores to the VMs we can allow live migration of VMs without ending up in a

88

situation where there are less vCPUs than physical cores on some server, i.e., by
having over-allocation we can avoid under-allocation after live migration.
However, we have shown that over-allocation of vCPU can result in significant
CPU overhead. The overhead increases with the degree of over-allocation. Our
measurements show that the cases with 2.5 and 5 times over-allocation results in
more overhead compared to the case with 2 times more vCPUs compared to
physical cores.

The reason for the increased overhead is that when we have over-allocation
the VMs need to time-share the physical cores. In the case of a balanced
allocation (or under-allocation) a physical core can be permanently allocated to a
VM. Time sharing of physical cores results in context switches, and context
switches result in overhead.

In this paper, we have quantified the cost of having different amounts of over-
allocation. Providers of virtualized service can use this quantification in order to
do a balanced trade-off between the flexibility offered by over-allocation and the
performance penalty. Our results indicate that it is in many cases wise to use a
moderate level of over-allocation (not exceeding a factor of two) which gives
some flexibility at a very modest performance cost.

Our measurements also show that the write latency decreases with the number
of VMs sharing the physical server (seen indirectly as by considering that the
amount of writes to disk increases with the number of VMs sharing the same
physical server - due to write throttling in the application). Over-allocation
increases the write latency (seen indirectly as by considering that the amount of
writes to disk increases with over-allocation - due to write throttling in the
application). There was no clear connection between the application level
response time with neither the number of VMs nor with the degree of over-
allocation.

8
9

Figure 6.1. CPU utilization inside the hypervisor Figure 6.2. Write-Rate inside the hypervisor

9
0

Figure 6.3. Average response time of the application

91

6.6 References

[1] P. Pooja, A. Pandey, “Impact of Memory Intensive Applications on

Performance of Cloud Virtual Machine,” Published in: Engineering and

Computational Sciences conference, 2014, pp 1-6.

[2] A. Kandalintsev, R. Lo Cigno, D. Kliazovich, P. Bouvry, “Profiling Cloud

Applications with hardware Performance Counters,” Published in:

Information Networking Conference, 2014, pp 52-57.

[3] M. Guzek, D. Kliazovich, P. Bouvry, “A Holistic Model for Resource

Representation in Virtualized Cloud Computing Data Centers,” Published

in: Cloud Computing Technology and Science, 2013, pp 590-598.

[4] J. Espades et al. ”A tenant-based resource allocation model for scaling

Software-as-a-Service applications over cloud computing infrastructures,”

Published in journal of Future Generation Computer Systems, 2013, pp

273-286.

[5] R. Yu et al. “Resource Allocation in Virtualized Systems Based on Try-

Before-Buy Approach,” Published in 2nd International conference on

Challenges in Environmental Science and Computer Engineering, 2011,

pp 193-199.

[6] F. Diaz, E. Doumith, M. Gagnaire, “Impact of Resource Over-Reservation

(ROR) and Dropping Policies on Cloud Resource Allocation,” Published

in Cloud Computing Technology and Science conference, 2011, pp 470-

476.

[7] M. Mithani and S. Rao, “Improving Resource Allocation in Multi-Tier

Cloud Systems,” Published in Systems conference, 2012, pp 1-6.

[8] W. Dawoud, I. Takouna, C. Meinel, “Elastic VM for Rapid and Optimum

Virtualized Resources Allocation,” Published in Systems and

Virtualization Management academic workshop, 2011, pp 1-4.

[9] T. Wo, Q.Sun, B. Li, C. Hu, “Overbooking-based Resource Allocation in

Virtualized Data Center,” Published in Object/Component/Service-

Oriented Real-Time Distributed Computing workshops, 2012, pp 142-

149.

[10] S. Shirinbab, L. Lundberg, D. Ilie, ”Performance Comparison of KVM,

VMware and XenServer using a Large Telecommunication Application,”

Published in the fifth International Conference on Cloud Computing,

GRIDs, and Virtualization, 2014, pp 114-122.

[11] K. Lazri, S. Laniepce, J. Ben-Othman, ”When Dynamic VM Migration

Falls under the Control of VM Users,” Published in 5th International

Conference on Cloud Computing Technology and Science, 2013, pp 395-

402.

92

[12] X. Zhu, Z. Wang, S. Singhal, “Utility-Driven Workload Management

using Nested Control Design,” Proceedings of the American Control

Conference, 2006, pp 6033-6038.

[13] X. Liu, X. Zhu, S. Singhal, M. Arlitt, “Adaptive entitlement control of

resource partitions on shared servers,” 9th International Symposium on

Integrated Network Management, 2005, pp 163-176.

[14] P. Padala et al. “Adaptive Control of Virtualized Resources in Utility

Computing Environments,” Proceedings of the ACM Conference on

Computer Systems, 2007, pp 289-302.

[15] B. Watson et al. “Probabilistic Performance Modeling of Virtualized

Resource Allocation,” Published in 7th International conference on

Autonomic Computing, 2010, pp 99-108.

[16] S. Garg, S. Gopalaiyengar, R. Buyya, ”SLA-Based Resource Provisioning

for Heterogeneous Workloads in a Virtualized Cloud Datacenter,”

Published in proceedings of the 11th international conference on

Algorithms and Architectures for Parallel Processing, 2011, pp 371-384.

[17] Q. Wang, S. Malkowski, Y. Kanemasa, D. Jayasinghe,”The Impact of

Soft Resource Allocation on n-Tier Application Scalablity,” Published in:

Parallel and Distributed Processing Symposium (IPDPS), 2011, pp 1034-

1045.

[18] J. Li, Q. Wang, D. Jayasinghe, S. Malkowski,”Profit-Based Experimental

Analysis of IaaS Cloud Performance: Impact of Software Resource

Allocation,” Published in: Services Computing (SCC), 2012, pp 344-351.

[19] J. Heo, X. Zhu, P. Padala, Z. Wang, ”Memory Overbooking and Dynamic

Control of Xen Virtual Machines in Consolidated Environments,”

Published in: Integrated Network Management Conference, 2009, pp 630-

637.

[20] L. Dubois and H. Larcheveque, “Optimizing Resource Allocation while

Handling SLA Violations in Cloud Computing Platforms,” Published in

Parallel and Distributed Processing conference, 2013, pp 79-87.

[21] VMware, ESXi 5.5, vCenter Server 5.5, “vSphere Resource

Management,” VMware’s Technical Document, available at:

http://pubs.vmware.com/vsphere-

55/topic/com.vmware.ICbase/PDF/vsphere-esxi-vcenter-server-55-

resource-management-guide.pdf.

[22] S. Lowe, “Best Practices for Oversubscription of CPU, Mamory and

Storage in vSphere Virtual Environments,” VMware’s White paper,

available at:

https://communities.vmware.com/servlet/JiveServlet/previewBody/21181-

102-1-28328/vsphere-oversubscription-best-practices[1].pdf .

http://pubs.vmware.com/vsphere-55/topic/com.vmware.ICbase/PDF/vsphere-esxi-vcenter-server-55-resource-management-guide.pdf
http://pubs.vmware.com/vsphere-55/topic/com.vmware.ICbase/PDF/vsphere-esxi-vcenter-server-55-resource-management-guide.pdf
http://pubs.vmware.com/vsphere-55/topic/com.vmware.ICbase/PDF/vsphere-esxi-vcenter-server-55-resource-management-guide.pdf
https://communities.vmware.com/servlet/JiveServlet/previewBody/21181-102-1-28328/vsphere-oversubscription-best-practices%5b1%5d.pdf
https://communities.vmware.com/servlet/JiveServlet/previewBody/21181-102-1-28328/vsphere-oversubscription-best-practices%5b1%5d.pdf

93

[23] S. Patel, R. Bhujade, A. Sinhal, S. Kathortia, ”Resource Optimization and

Cost Reduction by Dynamic Virtual Machine Provisioning in Cloud,”

Published in Advances in Computing, Communication and Informatics,

2013, pp 857-861.

[24] S. Shirinbab, L. Lundberg, D. Erman, ”Performance evaluation of

distributed storage systems for cloud computing”, Published in

International Journal of Computers and their applications, 2013, pp 195-

207.

94

7 Comparing Automatic Load Balancing using VMware

DRS with a Human Expert

Abstract

In recent years, there has been a rapid growth of interest in dynamic

management of resources in virtualized systems. Virtualization provides great

flexibility in terms of resource sharing but at the same time it also brings new

challenges for load balancing using automatic migrations of virtual machines. In

this paper, we have evaluated VMware’s Distributed Resource Scheduler (DRS)

in a number of realistic scenarios using multiple instances of a large industrial

telecommunication application. We have measured the performance on the hosts

before and after the migration in terms of CPU utilization, and compared DRS

migrations with human expert migrations. According to our results, DRS with the

most aggressive threshold gave us the best results. It could balance the load in

40% of cases while in other cases it could not balance the load properly. DRS did

completely unnecessary migrations back and forth in some cases.

7.1 Introduction

There are number of benefits with virtualization. One of the advantages of
virtualization is dynamic migration of virtual machines (VMs) on a cluster of
physical machines. VM migrations [1][2] can be used for balancing the utilization
of server host resources in order to avoid having heavily loaded hosts while
lightly loaded are available [3]. Load balancing helps to maximize resource by
optimizing the mapping of VMs to hosts [4].

Virtualization technologies such as VMware [6][7] try to address load
balancing issues. VMware’s Distributed Resource Scheduler (DRS) is a tool
provided by VMware to automatically balance resource utilization across
hardware resources.

7.1.1 Distributed Resource Scheduler (DRS)

VMware’s DRS [6][7] is a tool that monitors utilization of system resources
and migrates VMs to balance the load using VMware VMotion commands. In
order for DRS to balance the entire system, all hosts should be added to a DRS
cluster. VMware Virtual Center (vCenter) continuously monitors CPU and
memory usage for all hosts and VMs in the cluster. DRS migrates VMs within
the cluster ensuring an even distribution of load among the hosts. When the
utilization of a physical machine is beyond a fixed threshold, the machine is

95

deemed overloaded, and DRS will automatically select a VM on that physical
machine to be moved to a lightly loaded physical machine [8].

DRS takes resource management decisions according to metrics related to
VMs, hosts and cluster both for memory and CPU (network and storage not taken
into consideration). According to different levels of aggressiveness for DRS the
threshold for migration will change. VMware defines five DRS aggressiveness
levels, namely: conservative (level 1), moderately conservative (level 2),
moderate (default) (level 3), moderately aggressive (level 4), and aggressive
(level 5). In this paper, we have built a testbed with number of VMs using
VMware virtualization technology. In order to trigger VM migrations we did one
or more load shifts were we used load generators to change the work that each
WM is doing. We have compared migrations triggered by DRS algorithm with
human expert migration decisions. In this study we have used a large industrial
telecommunication application and measured the performance of the application
in different conditions; before load shift when DRS is turned off, after migration
when DRS is still turned off, after DRS is tuned on and after human expert
migration.

This paper is organized as follows: in Section 7.2 we present some related
works. In Section 7.3, we present our experimental setup and different test
scenarios configurations. Section 7.4 is the core part of the paper, in which we
present our results and make a comparison. Section 7.5 concludes the paper.

7.2 Related Work

Arzuaga and Kaeli [5] propose an algorithm for load-balancing and compared
their algorithm with VMware’s DRS. Their results indicate that they can
outperform VMware’s DRS and improve performance up to 5%.

 In [7], the authors tested the effectiveness of VMware’s DRS algorithm. The
difference between their test cases and our test cases is that here we have used a
more complex application and run our tests using three hosts with more complex
load scenarios; while in their work they have only tested the VMware’s DRS
algorithm during one test case (when they add a new host to the VMware’s DRS
cluster).

Lazri et al. [8] did experiments on how an attacker can influence the resource
management system to make it trigger VM migrations using VMware’s DRS.
Parts of their study related to VMware’s DRS analysis are similar to our study.
However, they have only considered live migrations from a security perspective
while in our work we have looked at performance and focused on comparison
between human expert decisions and live migrations triggered by DRS.

Lu et al. [9] proposed a performance management tool and compared it with
VMware’s DRS. The authors only considered resource settings at the individual

96

VM level or at the resource pool level. Our work differs from their work; we have
compered how smart the VMware’s DRS algorithm is compared to human expert
migration decisions.

In [10], the authors proposed an approach which automatically finds
thresholds close to the optimal, i.e., threshold which yields an optimal number of
VM migrations. However in their experiment they have done their experiment
using UML (User Mode Linux) VMs while we have used VMware.

In [11], the authors proposed an algorithm for automated VM migration in
order to balance the load. Kochut and Beaty [11], also presented an analytical
model of virtual machine migration. The authors did their experiments using
VMware and XenServer hypervisors. However, none of them considered
VMware’s DRS.

In [13], the authors explain that a physical host needs to have a higher
remaining capacity in order to accommodate incoming VMs; therefore they have
designed their migration metric based on maximizing the variance of remaining
capacities of the physical servers and also consider the cost of migration. Their
work is very similar to [5], one difference is that in [13], they have considered
cost of migration.

In addition to these studies, there are several DRS products and projects that
have been developed by research institutions, like: Entropy [14], Sandpiper [15],
Smart-DRS [16] and so on.

7.3 Experimental Setup

7.3.1 Testbed Setup

The experimental setup is shown in Figure 7.4. It consists of three physical
hosts running VMware ESXi 5.5.0. On top of VMware ESXi 5.5.0, RedHat
Enterprise Linux, Version 6.2 has been installed as a guest OS. Each host is
equipped with 128 GB of RAM, two 6-core CPUs (2x Intel XEON 2.0 GHz) with
hyperthreading enabled in each core (i.e., a total of 24 logical cores). These hosts
create a DRS cluster. All hosts in our DRS cluster are connected to the
Compuverde [17] distributed storage system which provides 2.55 terabyte (TB)
vNAS storage. The Compuverde distributed storage system consists of two
components, 1) Compuverde software, that is installed inside a virtual machine
and 2) data storage which consists of SSD cache (7x Intel 330 60 GB (RAID
10+hotspare)) and disk persistent storage (8x Intel 330 60 GB (RAID 5(7+1))).

A large industrial real-time telecommunication application is installed in all
the VMs. The application handles billing related requests in a telecommunication

97

system. The application works as an active-passive cluster which means that each
active server is clustered together with one passive

server (in Figure 7.4, VM 1-1 and VM 1-2 are one application cluster, VM 1-1 is
the active server and VM 1-2 is the passive server, and same pattern used for the
rest of the VMs). Both the active and the passive server can receive requests.
However, all traffic received by the passive server is forwarded to the
corresponding active server. The active server then sends the response back to the
passive server. Finally, the passive server sends the response to the requesting
system. Traffic going directly to the active server is handled without involving
the passive server. A separate host runs a simulator that generates load towards
the servers running in the clusters. The simulator is located in the same LAN, but
is not shown in Figure 7.4. All communications are done using Ethernet (Intel
X520 SFP+ 10 GB). All hosts in the DRS cluster are monitored using VMware
Virtual Center 5.5.0.

We have created 12 VMs. Inside these VMs we have installed our application,
i.e., in total we have 6 active-passive application clusters. We have allocated 10
vCPU and 14 GB RAM (14 GB RAM is the minimum that is recommended for
the application) to each of these VMs. Inside each host 24 vCPUs are available.

Figure 7.4: Experimental Setup

In order to avoid any interference between the VM that contains the
Compuverde software and other VMs, we have created two different resource
pools, one with 4 vCPUs and the other one with 20 vCPUs. The VM containing

98

the Compuverde software has been bound to the resource pool with 4 vCPUs and
the rest of the VMs are bound to the resource pool that contains 20 vCPUs.

7.3.2 Test Scenarios

We have designed our test scenarios in such a way that there is always a good
solution to balance the load. Here are our test scenarios:

1. There are three hosts and each host contains 4 VMs. All VMs receive

the same number of requests per second (700, 500, and 300).

Suddenly we increase the load on one VM (up to 2100, 1500, and 900

req/s).

2. There are three hosts and each host contains 4 VMs. All VMs receive

the same number of requests per second (600, 500, and 300).

Suddenly we increase the load on two VMs on two different hosts (up

to 2500, 2000, and 900 req/s).

3. There are two hosts and each host contains 6 VMs. All VMs receive

the same number of requests per second (600, 500 and 300). Suddenly

we add a new empty host to the DRS cluster.

4. There are three hosts and each host contains 4 VMs. All VMs receive

the same number of requests per second (700, 500 and 300). Suddenly

we decrease the load on one VM and increase the load on another

VM, on two different hosts. This test scenario simulates the situation

when one VM stops working. As we have mentioned earlier the

application works as an active-passive cluster, so if the active server

stops working the passive server will become active and handle all

requests.

5. There are three hosts and each host contains 4 VMs. All VMs receive

the same number of requests per second (700, 500 and 300). Suddenly

we place one of the hosts in maintenance mode.

For all test scenarios, we have used the DRS automatic placement and
repeated each test for three different levels of aggressiveness, level 1
(conservative), level 3 (default/moderate), and level 5 (most aggressive).

We have measured the CPU utilization for each test scenario. The
measurements were done during four different states:

1. Sending the same amount of load to all virtual machines while DRS is

turned off.

99

2. Shifting the load on one or two VMs (depending on the scenario)

while DRS is still turned off.

3. After having turned on DRS (using three different levels of

aggressiveness).

4. After a human expert has done the migrations manually.

For test scenarios 3 and 5, there was no second state (load shift); we have only
measured the performance at states 1, 3, and 4.

7.4 Comparing VMware’s DRS Migrations with Human

Expert Migrations

7.4.1 Test Case 1

In this case, there are four VMs inside all three hosts. All VMs receive the
same number of requests per second, then suddenly we increase the load on one
of the VMs (VM 1-1) on Host 1 (ESXi Server 1) and send two times higher load
to this VM. We have done this test for three different load scenarios and three
different DRS migration threshold levels.

As seen in Table 7.1, after the load shift, DRS only performed migration in
two of the cases (500 and 300 req/s) with migration threshold set to level 5
(aggressive). In both cases only one VM was migrated, and it migrated from Host
1 to Host 3. Table 7.2 shows that for the lowest load (300 req/s), the CPU
utilization is around 27% before load shift on all three hosts. After the increase of
the load on VM 1-1 to 600 req/s, the CPU utilization on the Host 1 (ESXi Server
1) increases to 34%. Since the passive server (VM 1-2) is running on Host 2
(ESXi Server 2), Table 7.2, shows that the CPU utilization on Host 2 has
increased to 28%. For level 5, and 500 and 300 req/s, a human expert would do
the same as DRS (migrate one VM from Host 1 to Host 3) (see Table 7.1). So, in
this case DRS did a good job.

For the case of medium load (500 req/s), Table 7.2 shows that when the load
was the same on all VMs, the CPU utilization was around 38% on all three hosts.
After we increased the load on VM 1-1 to 1000 req/s, the CPU utilization on Host
1 and Host 2 increased to 49% and 40%, respectively. Then we have enabled
DRS with its threshold set to level 1, and then we have changed migration
threshold to level 3 (moderate/default) and level 5 (aggressive). DRS only started
the migration when the threshold was set to the level 5 (aggressive) (see Table
7.1). In this case, same as previous case (low load 300 req/s), DRS migrated one
VM from Host 1 to Host 3 (see Table 7.1). If we compare the CPU utilization on
three hosts, we can observe that after DRS migration CPU utilization on Host 1

100

has been decreased to 44% and CPU utilization on Host 3 has been increased up
to 44%, while CPU utilization on Host 2 remained unchanged. As we have
discussed earlier this is similar to what human expert would do in this situation.
Therefore, the CPU utilization on all hosts after human expert migration is
identical with the CPU utilization after DRS migration (see Table 7.2) in this
case.

However, when the load was high (700 req/s), DRS did not migrate any of the
VMs (see Table 7.1) which was unexpected, because as it can be observed from
Table 7.2, CPU utilization on the Host 1 was very high, 67%, while on Host 3 the
CPU utilization was quiet low 49%, so obviously one VM should have been
migrated from Host 1 to Host 3. In this case, a human expert would migrate one
VM from Host 1 to Host 3 (see Table 7.1), to balance the CPU utilization across
all hosts; so CPU utilization became around 57% on Host 3, 58% on Host 1 and
52% on Host 2 (see Table 7.2). The reason why DRS did not migrate any VM
could be that the DRS system did not find any “good” host for receiving a VM,
i.e., it did not find any host with a low enough load. However, in this case DRS
did not do a very good job.

7.4.2 Test Case 2

In Test case 2, we do a more complex load shift. In this case, we have
increased the load on two VMs running on two different hosts at the same time,
while all other VMs are receiving the same amount of load. In this case, all hosts
could not support our previous high load which was 700 req/s, therefore we
needed to decrease the high load to 600 req/s, but the other load scenarios are
remained unchanged. As seen in Table 7.3, VMware’s DRS performed the
migration only for migration threshold level 5 (aggressive). For the case with
high load (600 req/s), after we have increased the load on two VMs (VM 1-1 and
VM 2-1), up to 1800 req/s, and turned on the DRS, we have observed that DRS
started to migrate one VM from Host 1 to Host 2 and after some time it started to
migrate another VM from Host 2 back to Host 1 (see Table 7.3), we call this the
“ping-pong” effect. DRS repeated this behavior for a while and at the end we
concluded that it had difficulties to balance the load. Here we should mention that
nothing happened when we have selected DRS migration threshold level 1
(conservative) and level 3 (moderate) (see Table 7.3). In this case a human expert
would migrate one VM from Host 1 to Host 2 (e.g., VM 3-2) and one VM from
Host 3 to Host 2 (e.g., VM 6-2) (see Table 7.3). It can also be observed from
Table 7.4, that the CPU utilization after DRS migration did not change, while
after human expert migration the CPU utilization became around 62% on all
hosts. For the case with medium load (500 req/s), DRS had the same behavior, it
migrated VMs back and forth, i.e., the “ping-pong” effect (see Table 7.3). As can
be seen in Table 7.4, the CPU utilization remained unchanged after DRS
migration while after human expert migration the CPU utilization became around
53%. In these cases, DRS did not do a very good job.

101

For the case with low load (300 req/s), we have increased the load on both
VM 1-1 and VM 2-1) to 900 req/s. DRS performed a migration only when the
migration threshold was set to level 5 (aggressive); in this case it migrated one
VM from Host 1 to Host 2 but no migration from/to Host 3 (see Table 7.3). In
this case we can say that DRS did a reasonably good job but it only could balance
part of the load. As can be seen in Table 7.4, the CPU utilization after the DRS
migration became 34% on both Host 1 and Host 2 while it was still high (38%)
on Host 3. In order to balance the load completely DRS should have migrated a
VM from Host 3 to Host 2 in addition to the previous migration, which was what
a human expert would do in this situation (see Table 7.3). As can be observed
from Table 7.4, after the human expert migrations, the CPU utilization on all
hosts became around 34%.

7.4.3 Test Case 3

In Test case 3, we had two hosts and each host contained six VMs; we sent the
same load to all VMs, so there was no load shift in this case, instead we have
added an empty server. (Similar to the previous case, we could not reach 700
req/s, so instead we have used 600 req/s as the high load.)

In this case for the highest load (600 req/s), when the migration threshold for
DRS was level 3 (moderate/default) it started to migrate two VMs from Host 1 to
Host 3 and two VMs from Host 2 to Host 3, and at the end it migrated back one
of the VMs from Host 3 to Host 2, i.e., the “ping-pong” effect (see Table 7.5). As
can be seen in Table 7.5, the CPU utilization of Host 1, Host 2, and Host 3 after
DRS migration became 36%, 53%, and 48% when the threshold for migration
was set to moderate (level 3). The human expert migrations were two VMs from
Host 1 to Host 3 and two VMs are migrated from Host 2 to Host 3 (see Table
7.5). At the end we can observe that the CPU utilization has been evenly
distributed to all hosts after human expert migration (see Table 7.6). For the same
load (600 req/s), when the DRS migration threshold has been set to level 5
(aggressive), DRS migrated two VMs from Host 1 to Host 3 and two VMs from
Host 2 to Host 3, but after sometime migrated back one of the VMs from Host 3
to Host 2, i.e., the “ping-pong” effect (see Table 7.5).

In the case with medium load (500 req/s), when the DRS migration threshold
was set to level 3 (moderate/default), DRS migrated two VMs from Host 1 to
Host 3 and one VM from Host 2 to Host 3 (see Table 7.5). Table 7.6 shows that
after DRS migration the CPU utilization on Host 1 decreased to 31% while on
Host 2 it became 47% and on Host 3 it became 42%. If we compare this with
what a human expert would do, we can observe that after human expert migration
the CPU utilization will become around 40% on all hosts. For the same load (500
req/s) and the DRS migration threshold, level 5 (aggressive), DRS migrated two
VMs from Host 1 to Host 3 and one VM from Host 2 to Host 3. After some time
DRS migrated one more VM from Host 2 to Host 3 (see Table 7.5).

102

So at the end we can observe from the Table 7.6, that CPU utilization on the
Host 1 became 37% while on the Host 2 and the Host 3, CPU utilization became
41%. Although DRS migration was different from what human expert would
migrate, DRS could almost balance the CPU utilization on all hosts (see Table
7.6). If we compare DRS migration with human expert migration, we can say that
after human expert migration the CPU utilization on all three hosts became
around 40% which was slightly better than DRS.

For the case of low load (300 req/s), when the migration threshold was set to
level 3 (moderate), DRS only migrated two VMs to Host 3, one VM from Host 1
and one VM from Host 2 (see Table 7.5). As it can be observed from Table 7.6,
the CPU utilization after DRS migration became 33% on Host 1, 34% on Host 2
and 20% on Host 3. So DRS migration did not balance the CPU utilization
properly. As seen in Table 7.6, after human expert migration the CPU utilization
on all hosts became around 28%. For the same load (300 req/s) and the DRS
migration threshold, level 5 (aggressive), we have observed that DRS migrated
two VMs from Host 1 to Host 3 and two VMs from Host 2 to Host 3 (see Table
7.5). Although DRS migrated two VMs from each host to Host 3 which is the
same decision that a human expert would make the result was slightly different.
The reason was that DRS migrated one active server and one passive server from
Host 1 to Host 3 and at the same time two active servers from Host 2 to Host 3,
while a human expert would migrate one active and one passive server from each
hosts to Host 3 to balance the load (see Table 7.5). Therefore, at the end we can
observe from Table 7.6 that, after human expert migration the CPU utilization
became around 28% on all hosts while after the DRS migration, CPU utilization
on Host 3 is different.

7.4.4 Test Case 4

In Test case 4, we have simulated the scenario where one VM (the active
server in an application cluster) stops working and the passive server becomes
active and handles all requests. So, in our test environment we have turned off
VM 1-1, in this way all requests will be forwarded to VM 1-2.

For the case with high load, 700 req/s, and when we set the threshold level to
the most aggressive (level 5), DRS migrated one VM from Host 2 to Host 1 (see
Table 7.7). Table 7.8 shows that after we have turned off VM 1-1 on Host 1, the
CPU utilization became 40% on Host 1 and 63% on Host 2. After the DRS
migration, the CPU utilization became 48% on Host 1 and 55% on Host 2. A
human expert would migrate one active server from Host 2 to Host 1 and one
passive server from Host 1 to Host 2 (see Table 7.7). If we compare the results of
human expert migrations and DRS, we see that after human expert migrations the
CPU utilization on all hosts became around 52% while after DRS migrations, the
CPU utilization on Host 2 was still higher than the two other hosts (see Table
7.8). Although DRS was not able to balance the load completely, we see that
DRS could balance the load to some extent. For the case with medium load (500

103

req/s), when the DRS migration threshold was set to level 5 (aggressive), DRS
migrated one active server from Host 2 to Host 1 and one passive server from
Host 1 to Host 2, which was the same as what human expert would do in this
situation (see Table 7.7). Table 7.8 shows that the CPU utilization on all hosts
after both the human expert and the DRS migration became around 40%. For the
case with low load, 300 req/s, DRS did not migrate any VM for all three different
migration threshold levels (see Table 7.4). In this case, as it can be observed from
the Table 7.8, that CPU utilization on all hosts after the load shift is remained
unchanged. While after human expert migration we can observe from the Table
7.8 that the CPU utilization became around 29% on all hosts. Here we should
mention that DRS was not able to make proper decisions comparing to human
expert decisions in most of the cases with different migration threshold levels.
Only in one of the cases it worked when the load was medium (500 req/s) and the
migration threshold level was 5 (aggressive).

7.4.5 Test Case 5

In Test case 5, we wanted to put Host 3 in maintenance mode. In this scenario
all VMs on Host 3 should be migrated to other hosts.

In the case with high load (700 req/s), after we have turned on the DRS and
set the migration threshold to level 1 (conservative), it started to migrate two
VMs from Host 3 to Host 1 and two VMs from Host 3 to Host 2. DRS migrated
the same VMs to the same hosts for other levels of aggressiveness (level 3 and
level 5) (see Table 7.9). For the case with medium load (500 req/s), DRS
migrated again the same VMs to the same hosts for all three different levels of
aggressiveness (see Table 7.9). In both of these cases we can say that DRS did a
good job and made the same decision as a human expert. As seen in Table 7.10,
after DRS migration the CPU utilization on both Host 1 and Host 2 became the
same.

However, when the load was low (300 req/s), after we have turned on the
DRS and set the migration threshold to level 1 (conservative) and level 3
(moderate), DRS migrated three VMs from Host 3 to Host 2 and one VM from
Host 3 to Host 1 (see Table 7.9). Table 7.10 shows that after DRS migration the
CPU utilization on Host 2 is 47% and the CPU utilization on Host 1 is 38%. This
means that DRS could not distribute the load between the hosts equally and DRS
migration was not successful in this case. However, when the migration threshold
was set to level 5 (aggressive) for the same load (300 req/s), we see that DRS
migrated two VMs from Host 3 to Host 1 and two VMs from Host 3 to Host 1,
similar to what a human expert would do (see Table 7.9). From Table 7.10, it can
be seen that the CPU utilization both after DRS migration and after human expert
migration became around 40%. Although DRS decisions did not work in two of
the cases, we see that in the other cases, DRS was able to make good decisions.

104

7.5 Conclusions

In this study, our goal was to compare VMware’s DRS migrations versus
human expert migrations using various test scenarios. The test scenarios were
designed so that there are always optimal solutions for balancing the load all over
the hosts; we wanted to see how close DRS migrations are compared to human
expert migrations.

We considered five test cases, and three different loads for each of these test
cases. For each load and test case we tested three different levels of
aggressiveness in DRS. This means that we looked at 5*3*3 = 45 cases. In 23 of
these cases DRS did nothing. In 11 cases it did (more or less) the same decision
as a human expert. In 7 cases DRS could balance the load to some extent, but in 4
cases DRS suffered from the “ping-pong” effect and did completely unnecessary
migrations back and forth.

When the migration threshold was set to level 1 (conservative) or level 3
(moderate/default) DRS did not migrate any virtual machine in most of the cases
(Test cases 1, 2, and 4). However, in Test case 5, DRS starts to migrate virtual
machines even when the migration threshold was set to level 1 (conservative).
One reason could be that VMware have considered similar test scenarios when
they have designed the DRS algorithm (evacuating a physical machine for
maintenance is a very common scenario); however for some more complex test
scenarios VMware’s DRS was unreliable, according to our results (e.g., Test case
2). Overall if we compare the system performance after DRS migration we can
observe that we have obtained better results - more close to human expert
migrations - with the aggressive threshold (level 5). In the 15 cases were we uses
level 5, we got no migrations in two cases, good (human expert quality)
migrations in 7 cases, reasonably good migrations in three cases, and the
undesirable “ping-pong” effect in three cases. So even if the migrations are better
in general using level 5, the risk of suffering from the “ping-pong” effect is also
considerably higher compared to the other levels of aggressiveness.

Our study shows that there is still considerable room for improvement of
VMware’s state-of-the-art DRS load balancing systems. In particular the load
balancing needs to be more robust in the sense that completely unnecessary
migrations such as the “ping-pong” effect should be avoided.

1
0

5

Table 7.1. Summary of the Results of the Test Case 1

Load (req/s) Level of Aggresivness
Human Expert

All VMs One VM Level 1 Level 3 Level 5

700 1400 - - -

VM 2-2 from Host 1 to Host 3 500 1000 - - VM 2-2 from Host 1 to Host 3

300 600 - - VM 5-2 from Host 1 to Host 3

Table 7.2. Test Case 1 Results, CPU Utilization

CPU Utilization (%)

a. Low Load (300req/s) b. Medium Load (500req/s) c. High Load (700req/s)

Same

Load

Load

Shift

DRS

Migration

Human

Expert

Same

Load

Load

Shift

DRS

Migration

Human

Expert

Same

Load

Load

Shift

DRS

Migration

Human

Expert

Host 1 27 34 31 31 38 49 44 44 49 67 67 58

Host 2 27 28 28 28 38 40 40 40 49 51 51 52

Host 3 26 26 30 30 37 38 44 44 48 49 49 57

1
0

6

Table 7.3. Summary of the Results of the Test Case 2

Load (req/s) Level of Aggresivness
Human Expert

All VMs Two VMs Level 1 Level 3 Level 5

600 1800 - -

VM 3-2 from Host 1 to Host 2

VM 5-2 from Host 2 to Host 1
(ping-pong)

VM 3-2 from Host 1 to Host 2

VM 6-2 from Host 3 to Host 2
500 1500 - -

VM 3-2 from Host 1 to Host 2

VM 5-2 from Host 2 to Host 1

(ping-pong)

300 900 - - VM 2-2 from Host 1 to Host 2

Table 7.4. Test Case 2 Results, CPU Utilization

CPU Utilization (%)

a. Low Load (300req/s) b. Medium Load (500req/s) c. High Load (600req/s)

Same
Load

Load
Shift

DRS
Migration

Human
Expert

Same
Load

Load
Shift

DRS
Migration

Human
Expert

Same
Load

Load
Shift

DRS
Migration

Human
Expert

Host 1 28 38 34 34 40 60 60 54 46 72 72 63

Host 2 28 29 34 36 40 41 41 53 47 47 47 62

Host 3 27 38 38 34 39 59 59 51 46 72 72 62

1
0

7

Table 7.5. Summary of the Results of the Test Case 3

Load (req/s) Level of Aggresivness Human Expert

All VMs Level 1 Level 3 Level 5

600 -

VM 2-1 from Host 2 to Host 3
VM 1-1 from Host 1 to Host 3
VM 4-1 from Host 2 to Host 3
VM 3-1 from Host 1 to Host 3
VM 4-1 from Host 3 to Host 2

(ping-pong)

VM 2-2 from Host 1 to Host 3
VM 6-1 from Host 2 to Host 3
VM 1-1 from Host 1 to Host 3
VM 2-1 from Host 2 to Host 3
VM 2-2 from Host 3 to Host 2

(ping-pong)

VM 1-2 from Host 2 to Host 3
VM 2-1 from Host 2 to Host 3
VM 5-1 from Host 1 to Host 3
VM 6-2 from Host 1 to Host 3

500 -
VM 5-1 from Host 1 to Host 3
VM 2-1 from Host 2 to Host 3
VM 1-1 from Host 1 to Host 3

VM 1-1 from Host 1 to Host 3
VM 3-1 from Host 1 to Host 3
VM 2-1 from Host 2 to Host 3
VM 3-2 from Host 2 to Host 3

300 -
VM 3-1 from Host 1 to Host 3
VM 2-1 from Host 2 to Host 3

VM 6-1 from Host 2 to Host 3
VM 3-1 from Host 1 to Host 3
VM 2-1 from Host 2 to Host 3
VM 6-2 from Host 1 to Host 3

Table 7.6. Test case 3 results, CPU utilization

CPU Utilization (%)

a. Low Load (300req/s) b. Medium Load (500req/s) c. High Load (600req/s)

Same

Load

DRS

Migration

(moderate)

DRS

Migration

(aggressive)

Human

Expert

Same

Load

DRS

Migration

(moderate)

DRS

Migration

(aggressive)

Human

Expert

Same

Load

DRS

Migration

(moderate)

DRS

Migration

(aggressive)

Human

Expert

Host 1 43 33 29 28 64 31 37 41 73 36 46 46

Host 2 44 34 24 29 63 47 41 40 73 53 42 45

Host 3 3 20 34 28 4 42 41 39 4 48 49 44

1
0

8

Table 7.7. Summary of the Results of the Test Case 4

Load (req/s) Level of Aggresivness Human Expert

All VMs Level 1 Level 3 Level 5

700 - - VM 4-2 from Host 2 to Host 1

VM 6-1 from Host 2 to Host 1
VM 2-2 from Host 1 to Host 2

500 - -
VM 3-1 from Host 2 to Host 1
VM 1-1 from Host 1 to Host 2

300 - - -

Table 7.8. Test Case 4 Results, CPU Utilization

CPU Utilization (%)

a. Low Load (300req/s) b. Medium Load (500req/s) c. High Load (700req/s)

Same
Load

Load
Shift

DRS
Migration

Human
Expert

Same
Load

Load
Shift

DRS
Migration

Human
Expert

Same
Load

Load
Shift

DRS
Migration

Human
Expert

Host 1 28 22 22 29 40 31 40 40 53 40 48 52

Host 2 28 34 34 29 39 49 41 41 51 63 55 52

Host 3 27 27 27 28 38 38 38 38 51 50 50 51

1
0

9

Table 7.9. Summary of the Results of the Test Case 5

Load (req/s) Level of Aggresivness Human Expert

All VMs Level 1 Level 3 Level 5

700

VM 3-2 from Host 3 to Host 2
VM 6-2 from Host 3 to Host 1
VM 2-1 from Host 3 to Host 1
VM 5-1 from Host 3 to Host 2

VM 3-2 from Host 3 to Host 2
VM 6-2 from Host 3 to Host 1
VM 2-1 from Host 3 to Host 1
VM 5-1 from Host 3 to Host 2

VM 3-2 from Host 3 to Host 2
VM 6-2 from Host 3 to Host 1
VM 2-1 from Host 3 to Host 1
VM 5-1 from Host 3 to Host 2

VM 3-2 from Host 3 to Host 2
VM 6-2 from Host 3 to Host 1
VM 2-1 from Host 3 to Host 1
VM 5-1 from Host 3 to Host 2

500

VM 3-2 from Host 3 to Host 2
VM 6-2 from Host 3 to Host 1
VM 2-1 from Host 3 to Host 1
VM 5-1 from Host 3 to Host 2

VM 3-2 from Host 3 to Host 2
VM 6-2 from Host 3 to Host 1
VM 2-1 from Host 3 to Host 1
VM 5-1 from Host 3 to Host 2

VM 3-2 from Host 1 to Host 2
VM 5-2 from Host 2 to Host 1
VM 5-2 from Host 1 to Host 2
VM 3-2 from Host 2 to Host 1

300

VM 3-2 from Host 3 to Host 2
VM 6-2 from Host 3 to Host 1
VM 2-1 from Host 3 to Host 2
VM 5-1 from Host 3 to Host 2

VM 3-2 from Host 3 to Host 2
VM 6-2 from Host 3 to Host 1
VM 2-1 from Host 3 to Host 2
VM 5-1 from Host 3 to Host 2

VM 3-2 from Host 3 to Host 2
VM 6-2 from Host 3 to Host 1
VM 2-1 from Host 3 to Host 1
VM 5-1 from Host 3 to Host 2

Table 7.10. Test Case 5 Results, CPU Utilization

CPU Utilization (%)

a. Low Load (300req/s) b. Medium Load (500req/s) c. High Load (700req/s)

Same
Load

DRS Migration
(level 1 and 3)

DRS Migration
(aggressive)

Human
Expert

Same
Load

DRS
Migration

Human
Expert

Same
Load

DRS
Migration

Human
Expert

Host 1 28 38 42 42 40 63 63 52 85 85

Host 2 28 47 38 38 40 63 63 51 85 85

Host 3 27 4 4 4 39 4 4 50 4 4

110

7.6 References

[1] C. Clark, et al., “Live migration of virtual machines,” 2nd symposium on

Networked Systems Design and Implementation, 2005, pp 273-286.

[2] S. Sotiriadis, N. Bessis, P. Gepner, N. Markatos, “Analysis of

Requirements for virtual machine migrations in dynamic clouds,” 12th

IEEE International conference on Parallel and Distributed Computing,

2013, pp 116-123.

[3] C. A. Waldspurger, “Memory resource management in vmware esx

server,” SIGOPS Oper.Sys.Rev., vol36, 2002, pp 181-194.

[4] H. Nagamani and P. Jayarekha, “Load balancing with optimal cost

scheduling algorithm,” International conference on Computation of

Power, Energy, Information and Communication, 2014, pp 24-31.

[5] E. Arzuaga, and D. Kaeli, “Quantifying load imbalance on virtualized

enterprise servers,” proceedings of the first international conference on

Performance engineering, 2010, pp 235-242.

[6] VMware Inc. Resource Management with VMware DRS.

http://www.vmware.com/pdf/vmware_drs_wp.pdf

[7] VMware Inc. DRS Performance and Best Practices.

https://www.vmware.com/files/pdf/drs_performance_best_practices_wp.p

df

[8] K. Lazri, S. Laniepce, J. Ben-Othman, ”When Dynamic Vm Migration

Falls Under the Control of VM Users,” IEEE international conference on

Cloud Computing Technology and Science, 2013, pp 395-402.

[9] Lei Lu, et al., “Application-driven dynamic vertical scaling of virtual

machines in resource pools,” IEEE Network Operations and Management,

2014, pp 1-9.

[10] H. W. Choi, H. Kwak, A. Sohn, K. Chung, “Autonomous learning for

efficient resource utilization of dynamic vm migration,” 22nd annual

international conference on Supercomputing, 2008, pp 185-194.

[11] J. Park, J. Kim, H. Choi, Y. Woo, “Virtual machine migration in self-

managing virtualized server environments,” 11th International conference

on Advanced Communication Technology, 2009, pp 2077-2083.

[12] A. Kochut, K. Beaty, “On strategies for dynamic resource management in

virtualized server environments,” 15th International symposium on

Modeling, Analysis, and Simulation of Computer and Telecommunication

Systems, 2007, pp 193-200.

[13] G. Khanna, K. Beaty, G. Kar, A. Kochut, ”Application performance

management in virtualized server environments,” 10th IEEE conference

on Network Operations and Management, 2006, pp 373-381.

111

[14] F. Hermenier, et al. “Entropy: a Consolidation Manager for Clusters,”

Proceedings of the ACM international conference on virtual execution

environments, 2009, pp 41-50.

[15] T. Wood, P. Shenoy, A. Venkataramani, M. Yousif, “Black-box and

Gray-box Strategies for Virtual Machine Migration,” Proceedings of the

4th USENIX conference on Networked systems design and

implementation, 2007, pp 1-14.

[16] L. Xu, W. Chen, Z. Wang, Sh. Yang, “Smart-DRS: Astrategy of Dynamic

Resource Scheduling in Cloud Data Center,” Proceedings of the IEEE

international conference on Cluster Computing Workshops, 2012, pp 120-

127.

[17] S. Shirinbab, L. Lundberg, D. Erman,” Performance evaluation of

distributed storage systems for cloud computing,” Published in

International Journal of Computers and their applications, 2013, pp 195-

207.

112

8 Performance Implications of Resource Over-Allocation

During the Live Migration

Abstract

As the number of cloud users are increasing, it becomes essential for cloud

service providers to allocate the right amount of resources to virtual machines,

especially during live migration. In order to increase the resource utilization and

reduce waste, the providers have started to think about the role of over-allocating

the resources. However, the benefits of over-allocations are not without inherent

risks. In this paper, we conducted an experiment using a large telecommunication

application that runs inside virtual machines, here we have varied the number of

vCPU resources allocated to these virtual machines in order to find the best

choice which at the same time reduces the risk of under-allocating resources after

the migration and increases the performance during the live migration. During

our measurements we have used VMware’s vMotion to migrate virtual machines

while they are running. The results of this study will help virtualized environment

service providers to decide how much resources should be allocated for better

performance during live migration as well as how much resource would be

required for a given load.

8.1 Introduction

Live migration is the process of moving a virtual machine from one physical
machine to another physical machine, while the virtual machine is executed with
(almost) no interruption [9]. Live migration is an essential feature in virtual
environments. Load balancing, online maintenance, fault tolerance and energy
reduction are all dependent on live migration of virtual machines [8]. This feature
is supported by VMware (vMotion), Xen (XenMotion), Microsoft Hyper-V and
Redhat KVM [10]. There are several studies comparing live migration in
VMware, KVM, Xen and Hyper-V [5] [19].

The common approach for live virtual machine migration is pre-copy [9].
During the pre-copy process in VMware vMotion, a shadow virtual machine
created on the destination host, and then each used memory page (known as dirty
pages) is copied from the source to the destination. , as each round takes some
time and in the meantime the virtual machine is still running on the source host,
some pages may be dirtied and have to be re-sent, so this iterative memory
copying is continued until no changed pages remain, at this point the last stage is
stopping the virtual machine on the source and resume it on the destination [11].

113

Live migration cost is classified into performance overhead on the physical
machine and live migration execution cost [18]. In order to measure the
performance overhead on the physical machine, there are a number of parameters
that need to be considered, such as CPU and disk utilization, and network
bandwidth. Execution costs are total migration time and migration downtime. The
total migration time is the time it takes from when the migration initiated for a
virtual machine on the source host until the virtual machine is resumed on the
destination host, while the downtime is the time it takes for the source host to
suspend execution of virtual machine until the destination host resumes it [9].

In data centers, migrations are based on pre-defined rules and without
involving a human operator. VMware’s Distributed Resource Scheduler (DRS)
[11] is one example of automatic load balancing which can provide high and even
resource utilization over a cluster of physical servers. Although live virtual
machine migration is generally fast, it is highly resource-intensive; therefore it
can affect the application performance and resource usage of the migrating virtual
machine as well as other virtual machines which are sharing the same physical
hardware [15]. One important challenge in modern data centers where virtual
machines migrate from host to host all the time is efficient resource utilization.

One solution could be to over-allocate resources to the virtual machines in a
way such that after live migration we still are able to use all physical resources,
E.g., assume there are two hosts each with 24 CPU cores, and there are four
virtual machines running on each host and each VM has 6 virtual CPUs (vCPUs).
If one VM is migrated to the other host, the total number of VMs on the source
host becomes three, and they will only have a total of 18 vCPUs, i.e., six of the
virtual CPU cores will not be used. However, if each VM had 24 vCPUs
allocated to it, there would be enough vCPUs to utilize the physical cores.

An important issue in data centers is management of virtual machines, in
terms of resource allocation and de-allocation, and virtual machine migration.
The system administrator in a data center has control over executing applications
and resource requirements. Therefore the system administrator has a good
opportunity to make sure that different virtual machines meet their performance
and service level objectives while hardware resources are utilized effectively
[14].

The system administrator can benefit from over-allocation of resources by
allocating more resources to the virtual machines than they required, so in this
way the virtual machine will still perform well even after migration.

As we have discussed there are some advantages with over-allocation of
resources especially during live migration. However, there is a risk of achieving
poor performance which we have discussed in our previous study [12]. In [12],
we have quantified the cost of having different amounts of over-allocation.
According to our results, using a moderate level of over-allocation gives some

114

flexibility at a very modest performance cost. In our previous study we did not
consider the effect of over-allocating resources on the live migration overhead.

In this paper, we have built a testbed containing ten virtual machines hosted
on two physical servers and varied the number of virtual CPUs allocated to the
virtual machines. We have used a large industrial telecommunication application
to run inside these virtual machines and we have measured the performance in
terms of CPU utilization, downtime and total migration time of the application
during the live migration.

This paper is organized as follows: in Section 8.2 we present some related
works. In Section 8.3, we present our experimental setup and different test cases
configurations. Section 8.4 is the core part of the paper, in which we present our
results and discuss the impact of over-allocation during live migration. And
Section 8.5 concludes the paper.

8.2 Related Work

In [1], the authors developed a new technique for resource allocation in
virtualized data centers. However they did not consider the over-allocation of
resources.

M. Elsaid and C. Meinel [7] studied the impact of live migration on the
datacenter. The authors have considered network resources and power
consumption. In our work we have focused on CPU utilization, migration down
time and total migration time.

Both Xiao et al. [16] and Vishnupriya et al. [17] have used virtual machine
live migration for dynamic resource allocation in a virtualized environment. They
did not consider the over-allocation.

Elsaid and Meinel [18] have done some experiments using different migration
cost models for VMware vMotion. Their focus was to predict the live migration
CPU and network overhead.

However, little research has been done in considering the over-allocation of
resources during the live migration. Therefore, in this study we will investigate
the effect of resource over-allocation on the down time and total migration time
of a large industrial real-time application.

8.3 Experimental Setup

In this section, we present our experimental setup and test cases.

115

8.3.1 Testbed setup

Two servers have been used as hosts to test the performance of VMware ESXi
5.5.0. On top of VMware, RedHat Enterprise Linux, version 6.2 has been
installed as the guest OS. Each server is equipped with 128 GB of RAM, two 6-
core CPUs (2x Intel XEON 2.0 GHz) with hyperthreading enabled in each core
(i.e., a total of 24 logical cores [2] [3] [4]).

In order to reduce the time for live migration one would like that all servers in
a cluster share the same disk; in this case no files need to be moved during a live
migration of a VM. Having one large physical disk (or disk array) for a large
cluster can, however, become a single point of failure and a performance
bottleneck. The latest trend in virtualization and cloud computing is that one uses
so called distribute storage systems. In a distributed storage system the disks are
physically distributed to the different servers in the cluster, thus avoiding the
single point of failure and performance bottleneck problems. Based on the
physically distributed disks, a software layer creates an image of one shared
virtual disk, thus avoiding the need to migrate files during a live migration. One
of the high performing distributed storage systems is the Compuverde system [5]
[6].

All servers in our cluster are connected to the Compuverde distributed storage
system which provides vNAS storage. The Compuverde distributed storage
system consists of two components, 1) Compuverde software, that is installed
inside a virtual machine and 2) data storage which consists of SSD cache (7x
Intel 330 60 GB (RAID 10+hotspare)) and disk persistent storage (8x Intel 330
60 GB (RAID 5(7+1))). All virtual machines containing Compuverde software
are communicating with each other in order to maintain and share information
about data. The Compuverde software is responsible for managing distribution of
data between all storage nodes in different hosts and it has been designed so that
it treats all the SSD caches and disks as a virtual Network Attached Storage
(vNAS).

The same large industrial real-time telecommunication application is installed
in all the VMs. The application, referred to as telecom server in the reminder of
this paper, handles billing related requests in a telecommunication system.

The application consists of several hundreds of thousands lines of code and it
works as an active-passive cluster. Each active telecom server is clustered
together with one passive telecom server. Both the active and the passive telecom
servers in a cluster can receive requests. However, all traffic received by the
passive telecom server is forwarded to the corresponding active telecom server.
The active telecom server then sends the response back to the passive telecom
server. Finally, the passive telecom server sends the response to the requesting
system. Traffic going directly to the active telecom server is handled without
involving the passive telecom server.

116

Another separate server runs a load generator that impersonates a requesting
system in order to generate load towards the telecom servers running in the
clusters. The load generator is also located in the same LAN. All communications
are done through Ethernets (Intel X520 SFP+ 10 GB). The two hosts are
configured in a cluster that is managed by VMware vCenter.

8.3.2 Test configurations

For different live migration and over-allocation test cases we used two
VMware ESXi hosts and on each host we have created five virtual machines. As
discussed previously, these two physical servers contain disks and SSDs that are
used by the distributed storage system. Each host has 128 GB RAM in total and
we have allocated 14 GB RAM to each virtual machine; 14 GB RAM is the
minimum RAM that is recommended for the application.

In addition, allocating a lot of RAM resources to the virtual machines could
affect the total performance, since the hypervisor may not get enough RAM. Over
provisioning of RAM resources is not the focus of this study. Inside each host 24
vCPUs are available, in order to avoid any interference between the virtual
machine that contains the Compuverde software and other virtual machines, we
have isolated them by creating two different resource pools, one with 4 vCPUs
and the other one with 20 vCPUs. The virtual machine containing Compuverde
software has been bound to the resource pool with 4 vCPUs and the rest of the
virtual machines are bound to the other resource pool that contains 20 vCPUs.

8.3.3 Test cases

We have measured performance during live migration in terms of migration
downtime and total migration time, as well as, CPU utilization (see Table for
CPU utilization, downtime/response time and total migration command APIs).
Our goal was to measure how different allocations of vCPUs to each virtual
machine affect the performance during live migration. We also measure how
other virtual machines are affected during migration of one virtual machine. In
order to measure these aspects, we defined six different test cases (see Table) and
for each test case, we varied the number of vCPUs allocated to each virtual
machine and measured the performance during live migration of one virtual
machine.

In addition, we varied the load that is sent to each virtual machine (here we
only sent the load to the active telecom servers). So one scenario was when we
sent low load (100 req/s) to one virtual machine (one active telecom server) and
higher load (1900 req/s) to other virtual machines (another active telecom
servers) and then migrate the virtual machine with the low load (100 req/s) from
the source host to the destination host. Another scenario was when we sent heavy
load (1900 req/s) to one virtual machine and lower load (1000 req/s) to the other
virtual machines and migrate the virtual machine with the heavy load (1900 req/s)

117

from the source host to the destination host. As it can be observed from Table ,
we varied the number of vCPUs allocated to each virtual machine (5, 10, 20
vCPUs) and repeated the two different load scenarios for each case.

8.3.3.1 Test case 1

Here we allocated 5 vCPUs to each virtual machine, in total we have allocated
25 vCPUs which is higher than number of vCPUs that we have available (20
vCPUs). So here we have little over-allocation. And we tested two different load
scenarios,

Table 8.1. Command API used for performance measurements

V
M

w
a

r
e

V
ir

tu
a
li

za
ti

o
n

S
y

st
e
m

Command Interface

CPU Utilization

(%)

Downtime/

Maximum Response

Time (ms)

Total Migration

Time (ms)

In
si

d
e

H
y

p
er

v
is

o
r

vCenter Server-

performance

graphs

Inside the
application

vCenter Server-

performance

graphs

In
si

d
e

V
ir

tu
al

M
ac

h
in

e

ssh + sar
Inside the

application
-

Table 8.2: Test cases

Test ID
Load Scenarios (req/s)

vCPUs One Virtual

Machine

Other Virtual

Machines

1.1 1900 1000
5 vCPUs

1.2 100 1900

2.1 1900 1000
10 vCPUs

2.2 100 1900

3.1 1900 1000
20 vCPUs

3.2 100 1900

8.3.3.1.1 Test case 1.1

In this case we sent 1900 req/s to one virtual machine and 1000 req/s to the
other virtual machines and we migrated the virtual machine with 1900 req/s load
from the source host to the destination host.

118

8.3.3.1.2 Test case 1.2

In this case we sent 100 req/s to one virtual machine and 1900 req/s to the
other virtual machines and we migrated the virtual machine with 100 req/s load
from the source host to the destination host.

8.3.3.2 Test case 2

Here we allocated 10 vCPUs to each virtual machine, in total we have
allocated 50 vCPUs which is higher than number of vCPUs that we have
available (20 vCPUs). So here we have medium over-allocation. And we tested
two different load scenarios,

8.3.3.2.1 Test case 2.1

 In this case we sent 1900 req/s to one virtual machine and 1000 req/s to the
other virtual machines and we migrated the virtual machine with 1900 req/s load
from the source host to the destination host.

8.3.3.2.2 Test case 2.2

 In this case we sent 100 req/s to one virtual machine and 1900 req/s to the
other virtual machines and we migrated the virtual machine with 100 req/s load
from the source host to the destination host.

8.3.3.3 Test case 3

Here we allocated 20 vCPUs to each virtual machine to in total we have
allocated 100 vCPUs which is higher than number of vCPUs that we have
available (20 vCPUs). So here we have massive over-allocation. And we tested
two different load scenarios,

8.3.3.3.1 Test case 3.1

 In this case we sent 1900 req/s to one virtual machine and 1000 req/s to the
other virtual machines and we migrated the virtual machine with 1900 req/s load
from the source host to the destination host.

8.3.3.3.2 Test case 3.2

 In this case we sent 100 req/s to one virtual machine and 1900 req/s to the
other virtual machines and we migrated the virtual machine with 100 req/s load
from the source host to the destination host.

119

8.4 Impact of over-allocation during live migration

8.4.1 Experimental Results

The CPU utilization for the test cases 1.1 and 2.1 and 3.1 are shown in Figure
8.1.a, c and e. From the Figure 8.1.a, it can be observed that, the CPU utilization
on both the source and the destination host is around 50% before the migration
starts. Since the load on the virtual machine that is going to be migrated to the
other host is around 100 req/s the difference between CPU utilization on the
source and the destination host is not significant. During the virtual machine
migration it can be observed from the Figure 8.1.a that the CPU utilization is
increased to around 65% both on the source and the destination host. After the
migration is completed, we can see that the CPU utilization on the source host
decreases again to around 50%, while it increases on the destination host to
around 55%. The reason for the higher CPU utilization on the destination host is
that one virtual machine has been added, so there are in total six virtual machines
running on the destination host and four virtual machines are remained on the
source host. If we compare this figure with two other figures (Figure 8.1.c and e),
it can be observed that the CPU utilization before the migration starts is higher
for the

Table 8.3: Downtime and Total migration time results

Test ID
Downtime/ Maximum

Response Time (sec)

Total Migration

Time (sec)

1.1 2.214 30

1.2 4.013 38

2.1 2.166 48

2.2 4.938 52

3.1 2.923 48

3.2 4.482 53

cases with 10 vCPU (60%) and 20 vCPU (65%) compared with the case with 5
vCPU (50%) and the reason for that is the amount of over-allocation that we have
and the variation is the cost of this over-allocation. After the migration completed
CPU utilization on the source host became around 55% (Figure 8.1.c) and 60%
(Figure 8.1.e), while on the destination host it became around 63% (Figure 8.1.c)
and 68% (Figure 8.1.e). In Figure 8.1.b we can observe that the CPU utilization
before the migration starts is higher on the source host than on the destination
host.

The variation is caused by the load (around 1900 req/s) that we are sending to
the virtual machine that we are going to migrate to the other host. As it can be
observed from Figure. 8.1.b, after the migration is completed the CPU utilization
on the source host decreases to 30% while it increases on the destination host
(becomes around 55%). Comparing Figure. 8.1.a and b, we can observe that

120

when the virtual machine is heavily loaded (Figure. 8.1.b), the CPU utilization
has more fluctuation compare to a low loaded VM.

The same testing sequence has been followed for all other test cases with the
different number of vCPU allocation and different load scenarios. In general, it
can be observed after comparison between Figure 8.1.a, c and e, that the CPU
utilization on the source host has not been changed dramatically after the
migration for the test case 1.1, because the over-allocation is medium and after
the migration four virtual machines with 5 vCPUs allocated to each are remained
which will use in total 20 vCPUs and that is all the vCPUs that we have available
in the source host. However, for test case 2.1 and 3.1, the difference becomes
more noticeable, around 5% after the migration has finished, which still is not
very significant (see Figure 8.1.c and e). So the conclusion would be that when
there is a need to migrate a low loaded virtual machine, there is no dramatic
difference between having 5vCPU, 10vCPU or 20vCPUs allocated to virtual
machines.

Table shows that, for the cases with little over-allocation (Test cases 1.1 and
1.2), when the load increases it effects both the downtime and the total migration
time. The downtime was increased by 2 seconds and the total migration time was
increased by 8 seconds. For the cases with medium and massive over-allocation,
Table shows that, in general, the total migration time and downtime is higher for
both the low and heavy loaded VM. However, in the case with medium over-
allocation, the total migration time was increased by only 4 seconds for the heavy
load and which is half of the time increase compared to the case with little over-
allocation. This means that the case medium over-allocation has improved the
live migration performance which is very important for the real-time applications.
While the downtime has not highly affected by the heavy load, it has been
increased by only 2.7 seconds. For the case with the massive over-allocation
(Test cases 3.1 and 3.2), the results of total migration time and downtime for both
heavy and low loaded VM is very similar to the case with medium over-
allocation.

8.5 Conclusion

In this study, we have measured the performance in terms of CPU utilization,
migration down time and total migration time of a large telecommunication
application during the live migration. We have built a testbed containing ten
virtual machines hosted on two physical servers and varied the number of virtual
CPUs allocated to the virtual machines. We have designed six different test cases
in order to figure out how different allocation of vCPUs to each virtual machine
will affect the performance during live migration, also how other virtual
machines in the background are affected during the live migration of one virtual
machine from the source host to the destination host.

121

According to our results, over-allocation has a small effect on the CPU
utilization of the low loaded VMs, while it highly effects the downtime and total
migration time. However, once we have reached a certain amount of over-
allocation, then having more over-allocation does not have noticeable effect even
on the downtime and the total migration time. This means that in the case of low
loaded VMs it would be possible to have a massive over-allocation. Having
massive over-allocation gives more flexibility in terms of number of VMs that
can be migrated and also reduce the risk of ending up in the situation when there
is an under-allocation of resources.

However, according to our results, for the test cases with heavy loaded VMs,
CPU utilization fluctuation is a lot for both before and after the live migration.
Except for one of the test cases with heavy loaded VM and small amount of over-
allocation (Test DI 1.2), for two other test cases with medium and high over-
allocation we have got lots of request failures due to the very long downtime.
This means that live migration of a heavy loaded VM is not recommended when
the amount of over-allocation is medium or massive and there is a very high risk
of getting request failures especially for large real-time applications.

1
2

2

a.

c.

e.

b.

d.

f.

Figure 8.1. CPU utilization on the source host and the destination host before and after the live migration: Test cases 1.1 and

1.2 are shown in a and b. Test cases 2.1 and 2.2 are shown in c and d, Test cases 3.1 and 3.2 are shown in e and f.

123

8.6 References

[1] W. Zhang et al. “Autonomic Resource Allocation in Virtualized Data

Centers,” Published in: Parallel and distributed Processing with

Applications, 2012, pp 192-198.

[2] X. Liu, X. Zhu, S. Singhal, M. Arlitt, “Adaptive entitlement control of

resource partitions on shared servers,” Published in: 9th International

Symposium on Integrated Network Management, 2005, pp 163-176.

[3] VMware, ESXi 5.5, vCenter Server 5.5, “vSphere Resource

Management,” VMware’s Technical Document, available at:

http://pubs.vmware.com/vsphere-

55/topic/com.vmware.ICbase/PDF/vsphere-esxi-vcenter-server-55-

resource-management-guide.pdf.

[4] B. Watson et al. “Probabilistic Performance Modeling of Virtualized

Resource Allocation,” Published in: 7th International conference on

Autonomic Computing, 2010, pp 99-108.

[5] S. Shirinbab, L. Lundberg, D. Ilie, ”Performance Comparison of KVM,

VMware and XenServer using a Large Telecommunication Application,”

Published in: the fifth International Conference on Cloud Computing,

GRIDs, and Virtualization, 2014, pp 114-122.

[6] S. Shirinbab, L. Lundberg, D. Erman,”Performance evaluation of

distributed storage systems for cloud computing,” Published in:

International Journal of Computers and their applications, 2013, pp 195-

207.

[7] M. Elsaid, C. Meinel, “Live Migration Impact on Virtual Datacenter

Performance: VMware vMotion Based Study,” Published in: Future

Internet of Things and Cloud, 2014, pp 216-221.

[8] A. Strunk, “Costs of Virtual Machine Live Migration: A Survey,”

Published in: Services, 2012, pp 323-329.

[9] C. Clark et al., “Live Migration of Virtual Machines,” Published in: 2nd

conference on Networked Systems Design and Implementation, 2005, pp

273-286.

[10] W. Hu et al., “A Quantitative Study of Virtual Machine Live Migration,”

Published in: Cloud and Autonomic Computing conference, 2013, pp 1-

10.

[11] VMware, Inc. “VMware vSphere vMotion Architecture, Performance and

Best Practices in VMware vSphere 5,” Technical Paper, 2011, pp 1-26.

[12] S. Shirinbab, L. Lundberg, “Performance Implications of Over-allocation

of Virtual CPUs,” Published in: International Symposium on Networks,

Computers and Communications, 2015, pp 1-6.

http://pubs.vmware.com/vsphere-55/topic/com.vmware.ICbase/PDF/vsphere-esxi-vcenter-server-55-resource-management-guide.pdf
http://pubs.vmware.com/vsphere-55/topic/com.vmware.ICbase/PDF/vsphere-esxi-vcenter-server-55-resource-management-guide.pdf
http://pubs.vmware.com/vsphere-55/topic/com.vmware.ICbase/PDF/vsphere-esxi-vcenter-server-55-resource-management-guide.pdf

124

[13] K. Lazri, S. Laniepce, J. Ben-Othman, “When Dynamic VM Migration

Falls under the Control of VM Users,” Published in 5th International

Conference on Cloud Computing Technology and Science, 2013, pp 395-

402.

[14] R. Birke, A. Podzimek, L.Y. Chen, E. Smirni, “State-of-the-Practice in

Data Center Virtualization: Towards a Better Understanding of VM

Usage,” Published in: Dependable Systems and Networks, 2013, pp 1-12.

[15] Y. Wu, M. Zhao, “Performance Modeling of Virtual Machine Live

Migration,” Published in: Cloud Computing Conference, 2011, pp 492-

499.

[16] Z. Xiao, W. Song, Q. Chen, “Dynamic Resource Allocation Using Virtual

Machines for Cloud Computing Environment,” Published in: IEEE

Transactions on Parallel and Distributed Systems, 2013, pp 1107-1117.

[17] S. Vishnupriya, P. Saranya, P. Suganya, “Effective Management of

Resource Allocation and Provisioning Cost Using Virtualization in

Cloud,” Published in: Advanced Communication Control and Computing

Technologies, 2014, pp 1726-1731.

[18] M. Elsaid, C. Meinel, “Live Migration Impact on Virtual Datacenter

Performance,” Published in: Future Internet of Things and Cloud, 2014,

pp 216-221.

[19] W. Hu et al., “A Quantitative Study of Virtual Machine Live Migration,”

Published in: ACM Cloud and Autonomic Computing Conference, 2013,

pp 1-10.

125

9 Performance Evaluation of Container and Virtual

Machine Running Cassandra Workload

Abstract

Today, scalable and high-available NoSQL distributed databases are largely

used as Big Data platforms. Such distributed databases typically run on a

virtualized infrastructure that could be implemented using Hypervisor-based

virtualization or Container-based virtualization. Hypervisor-based virtualization

is a mature technology but imposes overhead on CPU, memory, networking, and

disk. Recently, by sharing the operating system resources and simplifying the

deployment of applications, container-based virtualization is getting more

popular. Container-based virtualization is lightweight in resource consumption

while also providing isolation. However, disadvantages are security issues and

I/O performance. As a result, today these two technologies are competing to

provide virtual instances for running big data platforms. Hence, a key issue

becomes the assessment of the performance of those virtualization technologies

while running distributed databases.

This paper presents an extensive performance comparison between VMware

and Docker container, while running Apache Cassandra as workload. Apache

Cassandra is a leading NoSQL distributed database when it comes to Big Data

platforms. As baseline for comparisons we used the Cassandra’s performance

when running on a physical infrastructure. Our study shows that Docker had

lower overhead compared to the VMware when running Cassandra. In fact, the

Cassandra’s performance on the Dockerized infrastructure was as good as on the

Non-Virtualized.

9.1 Introduction

Hypervisor-based virtualization began in 1960s and since then it has been
widely used in Cloud Computing. Hypervisors, also called Virtual Machine
Monitors (VMM) share the hardware resources of a real machine between
multiple Virtual Machines (VMs). By virtualizing system resources such as
CPUs, memory and interrupts, it became possible to run multiple Operating
Systems (OS) concurrently. Most commonly used hypervisors are Kernel Virtual
Machine (KVM), Xen Server, VMware and Hyper-V. Hypervisor-based
virtualization enables new features such as performance management, elastic
resource scaling, and reliability services to be applied without requiring
modifications to applications or operating systems. It also enables virtual machine
migration for load balancing to eliminate hotspots and consolidation to improve
resource utilization and energy efficiency. However hypervisor level

126

virtualization introduce performance overheads as studied in [4][5][6][7][8] and
still limits it from being used in performance critical domains [1][2][3].

Recently, container-based virtualization has gained more popularity than
hypervisor-based virtualization. A container is a light weight operating system
running inside the host system. An application running in a container has an
unshared access to a copy of the operating system. In other words, containers
virtualize the operating system while hypervisors virtualize the hardware
resources. Therefore, container-based virtualization is well-known for providing
savings in resource consumption without the overhead of hypervisor-based
virtualization while also providing isolation [9]. The main difference between
Virtual Machine and Container architecture is that, for the virtual machines, each
virtualized application includes an entire guest operating system and necessary
Binaries/Libraries, while for the containers; the Container engine contains just the
application and its dependencies (Binaries/Libraries).

The Container-based virtualization is not a new concept; it has been offered
before by FreeBSD Jails (available since 2000) and Solaris Zones (available since
2004). In the beginning of 2008 a new Linux kernel was released replacing the
earlier variations in the form of Linux container (LXC) [10][11][12]. Other
alternatives to Linux-based containers are Open VZ [13][14][15] and Docker
[16][17][18]. Recently, there have been several studies on performance of
container-based virtualization technologies, especially Docker containers
[19][20]. Docker containers are designed to run a single application per container
while LXC containers are more like virtual machines with a fully functional
operating system [16]. The Container-based architecture is rapidly becoming a
popular development and deployment paradigm because of advantages such as
low overhead and portability. Disadvantages in using containers are: security
issues (which will not be the focus in this study [21]); the limitations of not being
able to run a different OS or kernels; and the maturity level of management tools
(e.g. for live migration, snapshotting and resizing) is lower than for virtual
machines.

Since both containers and hypervisors have their set of benefits and drawbacks,
one of the key point to select the proper virtualization technology for big data
platforms is to assess the performance of virtualized or containerized databases
and how this relates to physical ones [22]. This paper answer to this need
providing a detailed performance comparison running a distributed database on a
cluster of physical server, on a VMware cluster of virtual machine, and on a
Docker cluster. As database, we selected Apache Cassandra [23][24][25] an
open-source NoSQL distributed database widely adopted by companies using
Docker and VMware for production and widely used in Big Data applications.
Cassandra is a leading transactional, scalable, and highly-available. It is known to
manage some of the world’s largest datasets on clusters with many thousands of
nodes deployed across multiple data centers. Also, Cassandra Query Language
(CQL) is user-friendly and declarative [26][27].

127

Our experimental results show that the Dockerized version had lower overhead
compared to the VMware Virtualized. In fact, the performance of the Dockerized
version was as good as Non-Virtualized.

The presented work is organized as follows: In Section 9.2 we discuss related
work. Section 9.3 describes the experimental setup and test cases. Section 9.4
presents the experimental results and we conclude our work in Section 9.5.

9.2 Related Work

Virtual machine is a mature technology which was introduced by IBM
mainframes in the 70s [28]. Virtual Machines have benefited from decades of
hardware and software optimizations. Hypervisor-based cloud computing
platforms such as KVM, VMware, Xen, and Hyper-V introduce an overhead
which has been well-studied [4][5][6][7][8].

Recently, container-based virtualization technologies such as, Docker and
Linux Container (LXC) have gained a lot of interest [29][30][31]. The major
advantage of container is in achieving near-native performance. There are a
number of studies comparing hypervisor-based virtualization versus container-
based virtualization. In [32] the authors compared the performance of KVM and
Xen hypervisors with Docker container on the ARM architecture. According to
their results containers had better performance in CPU bound workloads and
request/response networking, while hypervisors had better performance in disk
I/O operations (because of the hypervisor’s caching mechanisms) and TCP
streaming benchmark. Similarly, in [33] and [34], the authors compared the
performance of container-based virtualization with hypervisor-based
virtualization for HPC. According to their result, container-based solution
delivered better performance than hypervisor-based solution. Our work has some
similarities to these works however in our study we considered performance of
the Cassandra a distributed NoSQL database.

In [35] the authors characterized the performance of three common hypervisors
KVM, Xen, VMware ESXi and an open source container LXC across two
generations of GPUs and two host microarchitectures, and across 3 sets of
benchmarks. According to their results KVM achieved 98-100% of the base
system’s performance while VMware and Xen achieved only 96-99%. The
difference between their work and our work is that we considered performance of
Cassandra database in terms of CPU utilization, disk utilization and latency while
they were more interested in performance of different generations of GPUs. In
[13] the authors compared the performance of an open source container
technology OpenVZ and Xen hypervisor. According to their results, container-
based virtualization outperforms hypervisor-based virtualization. Their work is
similar to our study. However, they considered Wide-Area Motion Imagery
(WAMI), Full Motion Video (FMV), and text data, while in our case study we
were more interested in the performance of the Cassandra database. Also in our

128

study, we used KVM as a hypervisor-based virtualization and as a container-
based virtualization we considered Docker and LXC which are different from
what they have considered in their study.

In [2] the authors compared the execution times of AutoDock3 (a scientific
application) for both Docker container and in virtual machines created using
OpenStack. According to their results, the overall execution times for container-
based virtualization systems are less than in hypervisor-based virtualization
systems due to differences in start-up times. In [9] the authors analyzed the
process handling, file systems and namespace Isolation for container-based
virtualization systems such as Docker, Linux Containers (LXC), OpenVZ and
Warden. From their assessment, containers have an advantage over VMs because
of performance improvements and reduced start-up times. In [3] the authors
demonstrated that container-based systems are more suitable for usage scenarios
that require high levels of isolation and efficiency such as HPC Clusters. Their
results indicate that container-based systems perform two times better for server-
type workloads than hypervisor-based systems.

Databases are often chosen to store and query large amount of data.
Traditionally, SQL databases were used in most of datacenters. However,
because of scalability issues, NoSQL databases have gained popularity since
2007 [36]. NoSQL databases support large demands of data in a scalable and
flexible manner. Currently, in the majority of datacenters online applications with
NoSQL databases are hosted on virtual machines. Therefore, there is a need to
evaluate NoSQL database performance in virtual environments. There are various
studies trying to assess the performance impacts of virtualization on SQL and
NoSQL databases.

In [37] the authors compared performance of three databases: a SQL database
PostgreSQL, and two NoSQL databases MongoDB and Cassandra using a sensor
data storage. They also compared running these databases on a Physical machine
and a Virtual machine. According to their results, virtualization has a huge effect
on Cassandra read performance while it has a moderate performance impact on
MongoDB, and increase the write performance on PostgreSQL. The difference
between their work and our work is that, we were more interested in comparison
between performance impacts of container-based virtualization and hypervisor-
based virtualization on the Cassandra database. Another difference is that they
have used only one machine to run their experiment while in our work we have
used multiple machines. In [38] the authors compared the performance of Docker
container and KVM hypervisor using the MySQL database. According to their
results, container show equal or better performance than virtual machine in
almost all cases. Their work is similar to our work. However, we chose to
evaluate Cassandra because it is a popular NoSQL database and it is widely used
in the cloud. In [39] the authors compared the performance of two NoSQL
databases MongoDB and Cassandra using different virtualization techniques,
VMware (full virtualization) and Xen (paravirtualization). According to their
results VMware provides better resource utilization for NoSQL databases. Their

129

work is different from our work; in our case study we considered performance of
Cassandra on KVM hypervisor, and container-based virtualization.

9.3 Evaluation

The goal of the experiment was that of comparing the performance of
VMware virtual machines and Docker containers when running Cassandra. As
baseline for the comparison we used the performance of Cassandra running on
physical servers.

9.3.1 Experimental Setup

All our tests were performed on three HP servers DL380 G7 with a total of 16
processor cores (plus HyperThreading), 64 GB of RAM and disk of size 400 GB.
Cassandra 3.0.8 run on RHEL7 and this setup was identical for all test cases:
Non-Virtualized, Virtualized, and Dockerized. In total, three Cassandra nodes
were configured in a cluster with default settings. The same version of Cassandra
was used on the load generators as well. VMware ESXi 6.0.0 was installed in
case of Cassandra-Virtualized.

9.3.2 Workload

To generate workload, we used Cassandra-stress tool. The Cassandra-stress
tool is a Java-based stress utility for basic benchmarking and load testing of a
Cassandra cluster. Creating the best data model requires significant load testing
and multiple iterations. The Cassandra-stress tool helps us in this endeavor by
populating our cluster and supporting stress testing of arbitrary CQL tables and
arbitrary queries on tables. The Cassandra package comes with a command-line
stress tool (Cassandra-stress tool) to generate load on the cluster of servers, the
cqlsh utility, a python-based command line client for executing Cassandra Query
Language (CQL) commands and the nodetool utility for managing a cluster.
These tools are used to stress the servers from the client and manage the data in
the servers.

The Cassandra-stress tool creates a keyspace called keyspace1 and within that,
tables named standard1 or counter1 in each of the nodes. These are automatically
created the first time we run the stress test and are reused on subsequent runs
unless we drop the keyspace using CQL. A write operation inserts data into the
database and is done prior to the load testing of the database. Later, after the data
are inserted into the database, we run the mix workload, and then split up the mix
workload and run the write only workload and the read only workload.

130

Table 9.1. Cassandra-stress Tool Sample Commands

 Command

Populate the

Database

dsc-cassandra-3.0.8/tools/bin/cassandra-stress write n=40000000 -pop seq=1..40000000 -node -schema

"replication(strategy=NetworkTopologyStrategy, datacenter1=3)"

Mix-Load
dsc-cassandra-3.0.8/tools/bin/cassandra-stress mixed ratio\(write=1, read=3\) duration=30m -pop

seq=1..40000000 -schema keyspace="keyspace1" -rate threads=100 limit=op/s –node

Read-Load
dsc-cassandra-3.0.8/tools/bin/cassandra-stress read duration=30m -pop seq=1..40000000 -schema

keyspace="keyspace1" -rate threads=100 limit=op/s –node

Write-Load
dsc-cassandra-3.0.8/tools/bin/cassandra-stress write duration=30m -pop seq=1..40000000 -schema

keyspace="keyspace1" -rate threads=100 limit=op/s –node

Below we described in detail each workload as well as the commands we used for
generating the workloads:

9.3.2.1 Mix-Load

To analyze the operation of a database while running both read and write
operations during one operation, a mixed load command is used to populate the
cluster. A mixed load operation consists of 75% read requests and 25% write
requests (three reads and one write) and generated for duration of 30 minutes onto
the three-node Cassandra cluster. The command used for generating the mixed
load is described in Table 9.1.

9.3.2.2 Read-Load

 In addition to the mix workload, we measured the performance of the
database for the read-only workload. In this case, a read load command is used to
populate the cluster. A read load operation consists of 100% read requests
generated for duration of 30 minutes onto the three-node Cassandra cluster. The
command used for generating the read-load is described in Table 9.1.

9.3.2.3 Write-Load

In addition to the mix and read workload, we measured the performance of the
database for the write-only workload. In this case, a write load command is used
to populate the cluster. A write load operation consists of 100% write requests
generated for duration of 30 minutes onto the three-node Cassandra cluster. The
command used for generating the write-load is described in Table 9.1.

Short descriptions of the Cassanrda-stress tools input parameters (used in Table
9.1) is noted below:

• mixed: Interleave basic commands with configurable ratio and

distribution. The cluster must first be populated by a write test. Here

we selected a mixed load operation of 75% reads and 25% write.

131

• write: Multiple concurrent writes against the cluster.

• read: Multiple concurrent reads against the cluster.

• n: Specify the number of operations to run. Here we chose

n=40000000 to generate 10 GB database.

• pop: Population distribution and intra-partition visit order. In this case

we chose seq= 1…40000000.

• node: To specify the address of the node to which data is to be

populated.

• schema: Replication settings, compression, compaction, and so on.

Here for the write operation we have modified the replication strategy

to “NetworkTopologyStrategy” and set the number of replication for

datacenter 1 to 3. Later for the mixed load we just set the name of the

default keyspace which is “keyspace1”.

• duration: It specifies the time in minutes to run the load.

• rate: Thread count, rate limit, or automatic mode (default is auto). In

order to control the incoming traffic, we set the number of threads to

100. We have also limited the number of operations per second, so that

we can measure the CPU utilization, write rate and the latency mean

for different number of Transactions Per Seconds(tps) (40k, 80k, 120k,

160k, and 200k tps).

9.3.3 Performance metrics

The performance of Docker container and VMware versus the non-virtualized
solution are measured using the following metrics:

• CPU utilization,

• disk and write rate, and

• mean latency.

The CPU utilization and the disk throughput are measured directly on the
server nodes by means of sar and iostat respectively. The latency is measured on
the client side, that is measured by the stress test tool.

132

9.3.4 Test cases

9.3.4.1 Cassandra-Non-Virtualized:

In this case, three servers are allocate and on each server we run Cassandra
application. All servers are connected and create a three-node Cassandra cluster.

9.3.4.2 Cassandra-Virtualized:

In this case, one virtual machine is created on each host, in total three virtual
machines.

9.3.4.3 Cassandra-Dockerized:

In this case, one container is created on each server, in total three containers.
In each container we run Cassandra application. All Cassandra nodes are
connected and a three node Cassandra cluster in configured.

In each test case, we first experiment with Cassandra different workload
scenarios, Mix, Read and Write workload. Second, we experiment with various
replication-factor configurations for the Cassandra cluster. In Cassandra, the input
splits are replicated among the nodes based on a user-set replication-factor (RF).
This design prevents data loss and helps with fault tolerance in case of node
failure [40]. In our experiments, we investigate three different replication-factor
setup, RF=1, RF=2, and RF=3. In our test environment with three Cassandra
node cluster, replication factor three means that each node should have a copy of
the input data splits. For the case of RF=2, the seed node decides based on some
algorithms where to store replicas. In the case of RF=1, each node only receives
part of the input data and no replicas. We repeat the same test cases for all three
different technologies, Non-virtualized, Virtualized, and Dockerized.

9.4 Experimental Results

In this section, we present the results of the experiments.

9.4.1 Mix-Load

Figure 9.2 shows the results of running the three node Cassandra cluster in a
Non-virtualized, Virtualized and Dockerized environment while having a Mix-
Load. The result show that both Cassandra Non-Virtualized and Dockerized with
RF=1 can handle maximum 200k (tps). While Cassandra Virtualized with RF=1
can only handle 160k (tps). Considering the CPU overhead for the virtual
machines when run the mix workload. CPU overhead measured from subtraction
of CPU utilization of Virtualized-Cassandra and Non-Virtualized-Cassandra. For

133

the Virtualized-Cassandra case the CPU overhead is up to 29%. One reason for
getting very high overhead could be due to additional layers of processing
required by the virtualization software e.g. VMware [41].

For the case with RF=2, we could reach a higher throughput than Non-
virtualized with Docker. One reason could be that the write latency was higher on
the Non-virtualized compared with the Docker. It can be observed from the
Figure 9.2 (g, h, i). This slightly higher latency could be one reason for the
Cassandra to not perform as good on the Non-virtualized as it did on the Docker.

In general, for all different deployments, RF=1 is always performing better
than RF=2 and RF=3. One reason is that when the RF in set to one, only one copy
of data is written and this process is very fast in Cassandra. As it can be seen also
from the Write rate figures (Figure 9.2 (d, e, f)), less number of packets are
written to the disk when the RF is equal to one. Respectively, latency mean for
RF=1 is lower than RF=2 and RF=3. Although RF=1 is fast but from high
availability point of view the data center providers prefer to have RF=2 or RF=3.
However, Cassandra is using different Consistency Levels in order to wait for the
respond from several nodes, and in our case we set the consistency level to be
Quorum. Quorum means that Cassandra node returns the record after a quorum of
replicas has responded from any datacenter. So, in our case as it can also be seen
from the figures, for cases with RF=2 and RF=3 the performance is almost
identical in terms of CPU utilization. Except for RF=2 in Dockerized which
performed better than RF=3 in Dockerized (Figure 9.2 (a)). In terms of Write rate
and latency, RF=2 is lower than RF=3.

9.4.2 Write-Load

Figure 9.3 shows the results of running the Cassandra application inside
VMware virtual machines, Docker containers and bare-metal while running the
write-load. Comparing Figure 9.3 and Figure 9.2, we can observe that, the CPU
utilization is very low in general in Figure 9.3 (less than 50%) compared with
Figure 9.2 (more than 90%). Respectively, as it can be seen from latency mean
figures in Figure 9.3, latency mean is also very low (around 1) compared with the
latency mean in Figure 9.2.

In conclusion we can say that write-load is very quick in Cassandra. One
reason could be the way data is written in Cassandra. During a write process in
Cassandra, data is written in the commit log and mem table, then flushing data
from the mem table and storing data on disk in SSTables. In this process,
Cassandra does not need to wait for any acknowledgment from other nodes
regarding replicas.

134

9.4.3 Read-Load

In Figure 9.4, we show the result of running Cassandra inside a three node
cluster using different deployments such as: Dockerized, Virtualized and bare-
metal while running the read-load. Comparing the results of the Read-load
presented in Figure 9.4 with Figures 9.2 and 9.3, we can observe that the read
process is consuming a lot of CPU resources. And according to the latency mean
figures, read process is much slower than write process in Cassandra. One reason
for that could be the read process in Cassandra. During a read process, Cassandra
processes data at several stages on the read path to discover where data is stored,
such as checks the mem table, checks the row cache, checks Bloom filter, checks
partition key cache. All these processes consume CPU resources and has major
impact on the latency. In summary, Docker container performed better than
Cassandra-Virtualized and except one case, it performed as good as Non-
Virtualized in terms of throughput.

In terms of CPU utilization, Non-virtualized show the lowest CPU utilization
and then Docker show a slightly higher CPU utilization with the overhead of
around 10% and then Cassandra-Virtualized show the highest CPU utilization
with the overhead of around 30%. In terms of the write rate, Cassandra-
Virtualized write rate is slightly higher than the Cassandra-Non-Virtualized and
the Cassandra-Dockerized. In terms of the latency mean, Cassandra-Virtualized
has higher latency compared to the Non-Virtualized and the Docker.

9.5 Conclusions and Future Work

In this paper, we try to address the problem of which solution is better for
distributed databases such as Cassandra, Non-Virtualized, Virtualized (VMware)
or Docker? The overall result showed that the biggest issue with running the
Cassandra-Virtualized, is the significant resource and operational overheads of
the virtualization layer which affects the performance of the application too.
However, Cassandra-Dockerized seems to address the challenges of virtualization
and that is done mostly by packaging the applications and their dependencies into
lightweight containers. According to the result, Cassandra-Dockerized consumed
fewer resources and operational overheads compared to the Cassandra-
Virtualized (see Table 9.2). In addition, the performance of Cassandra-
Dockerized was as good as Cassandra-Non-Virtualized.

Even though container solution is showing very low overhead and system
resource consumption, it suffers from securing stored data which is crucial for
database protection. Comparing containers architecture with virtual machines,
containers cannot be secure candidate for databases because all containers share
the same kernel and are therefore less isolated than virtual machines. A bug in the
kernel affects every container and results in data loss. On the other hand,
hypervisor-based virtualization is a mature and secure technology. Virtual

135

machines are able to partition and distribute resources viably in the hypervisor
without relying on kernel support or separate hardware.

However, according to our results, hypervisor-based virtualization suffers
from noticeable overhead which effects the performance of the databases. Since
both containers and virtual machines have their set of benefits and drawbacks, an
alternative solution could be to combine the two technologies. In the future, we
plan to investigate the alternative solution by running containers inside virtual
machines running Cassandra workload. In this way, we can get the benefits of
both security of the virtual machine with the execution speed of containers.

1
3

6

a.

b.

c.

Figure. 9.2: Mix-load workload. Docker, Non-virtualized and Virtualized scenarios are compared using the mean value of

CPU utilization, write rate and latency.

1
3

7

d.

e.

f.

Figure. 9.2: Mix-load workload. Docker, Non-virtualized and Virtualized scenarios are compared using the mean value of

CPU utilization, write rate and latency.

1
3

8

g.

h.

i.

Figure. 9.2: Mix-load workload. Docker, Non-virtualized and Virtualized scenarios are compared using the mean value of

CPU utilization, write rate and latency.

1
3

9

a.

b.

c.

Figure. 9.3: Write-load workload. Docker, Non-virtualized and Virtualized scenarios are compared using the meand value

of CPU utilization, write rate and latency.

1
4

0

d.

e.

f.

Figure. 9.3: Write-load workload. Docker, Non-virtualized and Virtualized scenarios are compared using the meand value

of CPU utilization, write rate and latency.

1
4

1

g.

h.

i.

Figure. 9.3: Write-load workload. Docker, Non-virtualized and Virtualized scenarios are compared using the meand value

of CPU utilization, write rate and latency.

1
4

2

a.

b.

c.

Figure. 9.4: Read-load workload. Docker, Non-virtualized and Virtualized scenarios are compared using the mean value of

CPU utilization, write rate and latency.

1
4

3

d.

e.

f.

Figure. 9.4: Read-load workload. Docker, Non-virtualized and Virtualized scenarios are compared using the mean value of

CPU utilization, write rate and latency.

1
4

4

Table 9.2. Summary of the Performance Results

RF Workload

Docker Non-Virtualized Virtualized

CPU Util

(%)

Write Rate

(wkb/s)

Latency

(msec)

CPU Util

(%)

Write Rate

(wkb/s)

Latency

(msec)

CPU Util

(%)

Write Rate

(wkb/s)

Latency

(msec)

1

Mix (80K tps) 55 2201 1.35 46 2190 1.2 75 2633 1.9

Read (60k tps) 39 2 0.9 32 3 0.9 57 15 1.2

Write (20k tps) 14 1811 0.7 12 1816 0.6 24 2210 0.8

2

Mix (80k tps) 70 5032 1.9 59 5050 2.1 86 5407 4.4

Read (60k tps) 50 2 1.5 41 3 1.4 65 16 1.6

Write (20k tps) 22 3815 0.7 18 3748 0.7 36 3667 0.9

3

Mix (80k tps) 74 7860 2.2 64 7888 2.1 84 8849 5.45

Read (60k tps) 54 2 1.9 45 2 1.9 68 18 1.6

Write (20k tps) 26 5772 0.8 22 5835 0.8 41 5828 1

145

9.6 References

[1] L. Yu, L. Chen, Z. Cai, H. Shen, Y. Liang, Y. Pan, “Stochastic Load

Balancing for Virtual Resource Management in Datacenters,” Published

in IEEE Transactions on Cloud Computing (Volume: PP, Issue: 99), 2016,

pp 1-14.

[2] T. Adufu, J. Choi, Y. Kim, “Is Container-Based Technology a Winner for

High Performance Scientific Applications?” Published in APNOMS,

2015, pp 507-510.

[3] S. Soltesz, H. Potzl, M. E. Fiuczynski, A. Bavier, L. Peterson, “Container-

based Operating System Virtualization: A Scalable, High-performance

Alternative to Hypervisors,” Published in EuroSys conference, 2007, pp.

275-287.

[4] J. Li, et al. “Performance Overhead among Three Hypervisors: An

Experimental Study using Hadoop Benchmarks,” Published in IEEE

international congress on Big Data, 2013, pp 9-16.

[5] S. G. Soriga and M. Barbulescu, “A Comparison of Performance and

Scalability of Xen and KVM Hypervisors,” Published in RoEduNet

international conference 12th edition, 2013, pp 1-6.

[6] J. Hwang, S. Zeng, F. Wu, T. Wood, “A Component-Based Performance

Comparison of Four Hypervisors,” Published in IFIP/IM, 2013, pp 269-

276.

[7] J. Che, Q. He, Q. Gao, D. Huang, “Performance Measuring and

Comparing of Virtual Machine Monitors,” Published in EUC international

conference, 2008, pp 381-386.

[8] S. Shirinbab, L. Lundberg, D. Ilie, ”Performance Comparison of KVM,

VMware and XenServer using a Large Telecommunication Application,”

Published in the 5th international conference on Cloud Computing,

GRIDs, and Virtualization, 2014, pp 114-122.

[9] R. Dua, A. R. Raja, D. Kakadia, “Virtualization vs Containerization to

support PaaS Cloud Engineering,” Published in IC2E conference, 2014,

pp. 610- 614.

[10] LXC, ”Linux Containers,” 2016, https://linuxcontainers.org/

[11] C. Pahl, “Containerization and the PaaS Cloud,” Published in IEEE Cloud

Computing (Volume: 2, Issue: 3), 2015, pp 24-31.

[12] R. Rosen, “Linux Containers and The Future Cloud,” Linux J, 2014.

[13] R. Wu, A. Deng, Y. Chen, E. Blasch, B. Liu, “Cloud Technology

Applications for Area Surveillance,” Published in NAECON conference,

2015, pp 89-94.

https://linuxcontainers.org/

146

[14] OpenVZ, “OpenVZ Virtuozzo Containers,” 2016, https://openvz.org/

[15] K. Kolyshkin, “Virtualization in Linux,” Whitepaper, OpenVZ, 2006.

[16] B. I. Ismail et al. “Evaluation of Docker as Edge Computing Platform,”

Published in ICOS conference, 2015, pp 130-135.

[17] Docker, “Docker,” 2016, https://www.docker.com/

[18] C. Anderson, ”Docker: Software Engineering”, Software IEEE,

(Volume:32, Issue: 3), 2015.

[19] C. Kan, “DoCloud: An Elastic Cloud Platform for Web Applications

Based on Docker,” Published in ICACT, 2016, pp 478-483.

[20] E. N. Preeth, J. Mulerickal, B. Paul, Y. Sastri, “Evaluation of Docker

Containers Based on Hardware Utilization,” Published in ICCC

conference, 2015, pp 697-700.

[21] A. Gkortzis, S. Rizou, D. Spinellis, “An Empirical Analysis of

Vulnerabilities in Virtualization Technologies,” Published in Cloud

Computing Technology and Science conference, 2016, pp. 533-538.

[22] C. Mohmet and M. Buyukkececi, “Big Data Challenges in Information

Engineering Curriculum," Published in EAEEIE conference, 2014, pp 1-4.

[23] R. Jain, S. Iyengar, A. Arora, “Overview of Popular Graph Databases,”

Published in: ICCCNT conference, 2013, pp 1-6.

[24] Cassandra, “Cassandra,” 2016, http://cassandra.apache.org/

[25] E. Hewitt, Cassandra: The Definitive Guide. O’Reilly Media, 2010.

[26] J. R. Lourenco, et al. “NoSQL in Practice: A Write-Heavy Enterprise

Application,” Published in IEEE international congress on Big Data,

2015, pp 584-591.

[27] A. Chebotko, A. Kashlev, S. Lu, ”A Big Data Modeling Methodology for

Apache Cassandra,” Published in IEEE international congress on Big

Data, 2015, pp 238-245.

[28] R. P. Goldberg, “Survey of Virtual Machines Research,” Computer, 1974.

[29] D. Liu, L. Zhao, “The Research and Implementation of Cloud Computing

Platform Based on Docker,” Published in ICCWAMTIP conference,

2014, pp 475-478.

[30] D. Bernstein, “Containers and Cloud: From LXC to Docker to

Kubernetes,” Published in IEEE Cloud Computing (Volume: 1, Issue: 3),

2015, pp 81-84.

[31] Nitin Naik, “Migrating from Virtualization to Dockerization in the Cloud

Simulation and Evaluation of distributed Systems,” Published in a

conference of the Maintenance and Evolution of Service-Oriented and

Cloud-based Environments, 2016, pp. 1-8.

https://openvz.org/
https://www.docker.com/
http://cassandra.apache.org/

147

[32] M. Raho, A. Spyridakis, M. Paolino, D. Raho, “KVM, Xen and Docker: A

Performance Analysis for ARM based NFV and Cloud Computing,”

Published in AIEEE conference, 2015, pp 1-8.

[33] J. Zhang, X. Lu, D.K. Panda, “Performance Characterization of

Hypervisor -and Container-Based Virtualization for HPC or SR-IOV

Enabled InfiniBand Clusters,” Published in Parallel and Distributed

Processing Symposium Workshops, 2016, pp. 1777-1784.

[34] M. T. Chung, N. Q. Hung, M. T. N. Thoai, “Using Docker in high

Performance Computing Applications,” Published in Communications

and Electronics conference, 2016, pp. 52-57.

[35] J. P. Walters, et al. “GPU Passthrough Performance: A Comparison of

KVM, Xen, VMware ESXi, and LXC for CUDA and OpenCL

Applications,” Published in the 7th international conference on Cloud

Computing, 2014, pp 636-643.

[36] N. Leavit, “Will NoSQL Database Live Up to Their Promise?” Published

in IEEE Computer, 2010, pp 12-14.

[37] J. Sipke, B. waaij, R. Meijer, “Sensor Data Storage Performance: SQL or

NoSQL, Physical or Virtual,” Published in CLOUD, 2012, pp 431-438.

[38] W. Felter, A. Ferreira, R. Rajamony, J. Rubio, “An Updated Performance

Comparison of virtual Machines and Linux Containers,” Published in

ISPASS conference, 2015, pp 171-172.

[39] G. Martins, P. Bezerra, R. Gomes, F. Albuquerque, “Evaluating

Performance Degradation in NoSQL Databases Generated by

Virtualization,” Published in LANOMS, 2015, pp 84-91.

[40] E. Dede, B. Sendir, P. Kuzlu, J. Hartog, M. Govindaraju, ”An Evaluation

of Cassandra for Hadoop,” Published in CLOUD, 2013, pp. 494-501.

[41] J. Heo, R. Taheri, “Virtualization Latency-Sensitive Applications: Where

Does the Overhead Come From?, ” Published in VMware Technical

Journal, 2013, https://labs.vmware.com/vmtj/virtualizing-latency-

sensitive-applications-where-does-the-overhead-come-from

https://labs.vmware.com/vmtj/virtualizing-latency-sensitive-applications-where-does-the-overhead-come-from
https://labs.vmware.com/vmtj/virtualizing-latency-sensitive-applications-where-does-the-overhead-come-from

148

10 Performance Comparison between Horizontal Scaling of

Hypervisor and Container Based Virtualization using

Cassandra NoSQL Database

Abstract

Cloud computing promises customers the on-demand ability to scale in face of

workload variations. There are different ways to accomplish scaling, one is

vertical scaling and the other is horizontal scaling. The vertical scaling refers to

buying more power (CPU, RAM), buying a more expensive and robust server,

which is less challenging to implement but exponentially expensive. While, the

horizontal scaling refers to adding more servers with less processor and RAM,

which is usually cheaper overall and can scale very well. The majority of cloud

providers prefer the horizontal scaling approach, and for them would be very

important to know about the advantages and disadvantages of both technologies

from the perspective of the application performance at scale. In this paper, we

compare performance differences caused by scaling of the different virtualization

technologies in terms of CPU utilization, latency, and the number of transactions

per second. The workload is Apache Cassandra, which is a leading NoSQL

distributed database for Big Data platforms. Our results show that running

multiple instances of the Cassandra database concurrently, affected the

performance of read and write operations differently; for both VMware and

Docker, the maximum number of read operations was reduced when we ran

several instances concurrently, whereas the maximum number of write operations

increased when we ran instances concurrently.

10.1 Introduction

Today’s modern data centers are increasingly virtualized where applications
are hosted on one or more virtual servers that are then mapped onto physical
servers in the data center. Virtualization provides a number of benefits such as
flexible allocation of resources and scaling of applications. Scalability
corresponds to the ability of a system uniformly to handle an increasing amount
of work [1] [2] [3]. Nowadays, there are two types of server virtualization
technologies that are common in data center environments, hardware-level
virtualization and operating system level virtualization. Hardware-level
virtualization involves embedding virtual machine software (known as hypervisor
or Virtual Machine Monitor (VMM)) into the hardware component of a server.
The hypervisor controls processor, memory, and other components by allowing
several different operating systems to run on the same machine without the need

149

for a source code. The operating system running on the machine will appear to
have its own processor, memory, and other components. Virtual machines are
extensively used in today’s practice. However, during the last few years, much
attention has been given to operating system level virtualization (also known as
container-based virtualization or containerization). Operating system level
virtualization refers to an operating system feature in which the kernel allows the
existence of multiple isolated user-space instances (also known as partitions or
containers) instead of just one. As has been shown in Figure 10.2, containers are
more light weight than virtual machines, various applications in container share
the same operating system kernel rather than launching multiple virtual machines
with separate operating system instances. Therefore, container-based
virtualization provides better scalability than the hypervisor-based virtualization
[4].

Currently, two concepts are used to scale virtualized systems, vertical and
horizontal scaling [5] [6] [7][8]. Vertical scaling corresponds to the improvement
of the hardware on which application is running, for example addition of
memory, processors, and disk space. While horizontal scaling corresponds to
duplication of virtual servers to distribute the load of transactions. Horizontal
scaling approach is almost always more desirable because of its advantages such
as, no limit to hardware capacity, easy to upgrade, and easier to run fault-
tolerance.

Figure 10.2. Different of Virtual Machines and Containers Architecture

In our previous study, we explored the performance of a real application,
Cassandra NoSQL database, on the different environments. Our goal was to
understand the overhead introduced by virtual machines (specifically VMware)
and containers (specifically Docker) relative to non-virtualized Linux [9]. In this
study, our goal is to provide an up-to-date comparison of containers and virtual

150

machine environments using recent software versions. In addition, explore how
much horizontal scaling of virtual machines and containers will improve the
performance in terms of the system CPU utilization, latency, and throughput. In
this work, we have used multiple instances of the Cassandra running concurrently
on the different environments.

The presented work is organized as follows: In Section 10.2 we discuss related
work. Section 10.3 describes the experimental setup and test cases. Section 10.4
presents the experimental results and we conclude our work in Section 10.5.

10.2 Related Work

Both container-based and virtual machine-based virtualization technologies
have been growing at a rapid space, and research work evaluating the
performance aspects of these platforms provides an empirical basis for comparing
their performance. Our previous research [9], has compared performance
overheads of Docker containers, VMware virtual machines versus Non-
virtualized. We have shown that, Docker had lower overhead compared to the
VMware. In this paper, we try to expand our previous work and compare the two
technologies; Container-based and Virtual Machine-based virtualization in terms
of their scalabilities running Cassandra workload. There have not been many
studies on both scalability and performance comparison between the two
technologies. A comparison between Linux containers and AWS ec2 virtual
machines is performed in [10]. According to their results, containers
outperformed virtual machines in terms of both performance and scalability.

In [11], the authors evaluated the performance differences caused by the
different virtualization technologies in data center environments where multiple
applications are running on the same servers (multi-tenancy). According to theirs
study, containers may suffer from performance in multi-tenant scenarios, due to
the lack of isolation. However, containers offer near bare-metal performance and
low footprint. In addition, containers allow soft resource limits which can be
useful in resource over-utilization scenarios. In [12], the authors studied
performance implications on the NoSQL MongoDB during the horizontal scaling
of virtual machines. According to their results, horizontal scaling affects the
average response time of the application by 40%.

10.3 Evaluation

The goal of the experiment was that of comparing the performance scalability
of the Cassandra while running it on multiple virtual machines versus on multiple
containers concurrently.

151

Figure 10.3. Experimental Setup

10.3.1 Experimental Setup

All our tests were performed on three HP servers DL380 G7 with processors
for a total of 16 cores (plus HyperThreading) and 64 GiB of RAM and disk of
size 400 GB. Red Hat Enterprise Linux Server 7.3 (Maipo) (Kernel Linux 3.10.0-
514.e17.x86_64) and Cassandra 3.11.0 are installed on all hosts as well as virtual
machines. Same version of Cassandra used on the load generators. To test
containers, Docker version 1.12.6 installed and in case of virtual machines
VMware ESXi 6.0.0 installed. In total 4 times 3-node Cassandra clusters
configured for this study (see Figure 10.3).

10.3.2 Workload

To generate workload, we used Cassandra-stress tool. The Cassandra-stress
tool is a Java-based stress utility for basic benchmarking and load testing of a
Cassandra cluster. Creating the best data model requires significant load testing
and multiple iterations. The Cassandra-stress tool helps us in this endeavor by
populating our cluster and supporting stress testing of arbitrary CQL tables and
arbitrary queries on tables. The Cassandra package comes with a command-line
stress tool (Cassandra-stress tool) to generate load on the cluster of servers, the
cqlsh utility, a python-based command line client for executing Cassandra Query
Language (CQL) commands and the nodetool utility for managing a cluster.
These tools are used to stress the servers from the client and manage the data in
the servers.

The Cassandra-stress tool creates a keyspace called keyspace1 and within that,
tables named standard1 or counter1 in each of the nodes. These are automatically
created the first time we run the stress test and are reused on subsequent runs

152

unless we drop the keyspace using CQL. A write operation inserts data into the
database and is done prior to the load testing of the database. Later, after the data
are inserted into the database, we run the mix workload, and then split up the mix
workload and run the write only workload and the read only workload. In [9] [1],
we described in detail each workload as well as the commands we used for
generating the workloads, in this paper we have used the same approach for
generating the workload.

10.3.3 Performance Metrics

The performance of Docker containers and VMware virtual machines are
measured using the following metrics:

• CPU Utilization (percentage),

• Maximum Transactions Per Second (TPS), and

• Mean Latency (milisecond).

The CPU utilization is measured directly on the server nodes by means of sar
command. The latency and maximum transactions per second (TPS) are
measured on the client side, that are measured by the stress test tool. The term
transactions per second refers to the number of database transactions performed
per second.

10.3.4 Test Cases

10.3.4.1 One-Cassandra-three-node-cluster

In this case, one virtual machine/container deployed on each host running
Cassandra application. All virtual machines/containers configured as one 3-node
cluster.

10.3.4.2 Two-Cassandra-three-node-clusters

In this case, two containers/virtual machines deployed on each host running
Cassandra application. Each container/virtual machine on each host belongs to its
own 3-node cluster, so in total two 3-node clusters configured to run
concurrently.

10.3.4.3 Four-Cassandra-three-node-clusters

In this case, four containers/virtual machines deployed on each host running
Cassandra application. Each container/virtual machine on each host belongs to its

153

own 3-node cluster, so in total four 3-node clusters configured to run
concurrently.

In this experiment, we compare the performance of virtual machines and
containers running different Cassandra workload scenarios, Mix, Read and Write.
However, unlike our previous study [9], here we decided to set the replication-
factor as three. In our test environment with three-node clusters, replication factor
three means that each node should have a copy of the input data splits.

10.4 Performance and Scalability Comparison

10.4.1 Transactions per second (tps)

Figure 10.3 shows transactions per second (tps) during write, read and mixed
load. In this figure we summarized the total transactions per second from
different number of Cassandra clusters running on Docker containers and
VMware virtual machines. According to the results, overall in all cases Docker
containers could handle higher number of database transactions per second than
VMware virtual machines. In the case of the mixed load, Docker containers could
handle around 25% more transactions per second than VMware virtual machines.
In the case of only write load the difference is around 19% more for containers
than virtual machines. While in the case of only read load, there is a huge
difference of around 40% in the number of transactions per second between
virtual machines and containers. Another aspect to consider according to the
transactions per second results is that, running multiple instances of the
Cassandra database concurrently, affected the performance of read and write
operations differently; for both VMware and Docker, the maximum number of
read operations was reduced when we ran several instances concurrently, whereas
the maximum number of write operations increased when we ran instances
concurrently. Note that increasing the number of Cassandra clusters did not have
any significant impact on the number of transactions per second in the case of the
mixed-load.

10.4.2 CPU utilization

Figure 10.4 shows the results of CPU utilization of multiple number of
Cassandra clusters running on virtual machines and containers during write, read,
and mix workloads. According to the results, in general CPU utilization of one
cluster of virtual machines/containers are lower than two clusters and CPU
utilization of two clusters is less than three clusters. It can be observed from the
figures that, the overhead of running multiple clusters in terms of CPU utilization
is around 10% for both containers and virtual machines. This overhead decrease
as the load increases, one reason for this can be the background jobs that are
running in Cassandra and as the load increases Cassandra by default delays these
jobs since there are not enough resources available for executing the jobs. In

154

addition, it can be observed from the figures that, the overall CPU utilization of
containers is lower than virtual machines for all different workloads. Considering
the mix workload CPU utilization of containers is around 15% lower than CPU
utilization of virtual machines. The difference between CPU utilization of
containers and virtual machines is around 12% for the write workload which is
very close to the difference that we saw for the mix workload case. However, this
difference is significantly higher for the read workload up to around 40%.
According to these results, read operations utilize more CPU cycles on virtual
machines than on containers.

10.4.3 Latency

Figure 10.5 shows the results of latency mean of multiple number of
Cassandra clusters running on virtual machines and containers during write, read,
and mix workloads. As it can be observed from the figures, in general, the latency
of containers is 50% lower than virtual machines as the load increases.

In the case of the mixed workload, the latency difference between having one
cluster and two clusters is negligible. However, the latency difference between
having one or two clusters compared with four clusters is around 33%. In the case
of the write workload the difference between having containers.

However, for virtual machines, the latency becomes around 10ms in the case
of 4 clusters when the tps is only 80k. Also, in the case of two clusters and
1cluster, since the cluster did not handle the load of 80k tps the latency is only
shown for 40k tps which is around 2-3 ms. In the case of read workload, for the
virtual machines the latency increases up to around 50% higher for the case with
two clusters compared with one cluster. The latency increases up to around 20%
for the case of four clusters compared with the case of two clusters and there is an
increase of up to around 60% compared to the case of only one cluster.
According to these results scaling would be very expensive for virtual machines
in terms of latency mean which will have a negative impact on the application
performance. However, in the case of containers the cost in terms of latency
difference for having multiple clusters compared with one cluster is up to around
23%. According to the results, running multiple clusters inside containers will
have less impact on the latency and the performance of the application (in this
case Cassandra) than running multiple clusters inside virtual machines. The
latency difference increases exponentially as the number of clusters increases as
well as the load increases. The latency difference increases up to around 23% on
containers and up to around 60% on virtual machines while having 100% read
workload. The latency difference is negligible in the case of write workload.
Also, there is a moderate latency difference in the case of mixed workload which
is up to around 20% for virtual machines when the tps is 80k and up to around
25% for containers when the tps is 120k.

155

10.5 Discussions and Conclusions

In this study, we have compared the performance of running multiple clusters
of the NoSQL Cassandra database inside Docker containers and VMware virtual
machines. We have measured the performance in terms of CPU utilization,
Latency mean and the maximum number of Transactions Per Second (TPS).
According to our results, running Cassandra inside multiple clusters of VMware
virtual machines was showing less performance in terms of maximum number of
transactions per second compared to the Docker containers. The performance
difference was around 20% lower during the mixed workload, around 16% lower
during the write-only workload and around 29% lower during read-only
workload. One reason for this could be that containers are lighter-weight
compared to virtual machines, therefore there is a less overhead of the
virtualization layer and this helps the application to get more resources and
performs better on containers than virtual machines. Another reason can be how a
write and a read operation procedure works in Cassandra. In Cassandra, a write
operation in general performs better than a read operation because it does not
involve too much I/O. A write operation is completed when the data has been
both written in the commit log (file) and in memory (memtable). However, a read
operation may require more I/O for different reasons. A read operation first
involves reading from a filter associated to sstable that might save I/O time
saying that a data is surely not present in the associated sstable and then if filter
returns a positive value, Cassandra starts seeking the sstable to look for data. In
terms of CPU Utilization, the Cassandra application performs better on containers
than on virtual machines. According to our results, the difference between CPU
utilization on virtual machines is around 16% higher than containers during the
mixed workload, around 8% higher during the write-only workload and around
32% higher during the read-only workload. In addition, the Cassandra application
running inside virtual machines got up to around 50% higher latency than
containers during the mixed workload. The difference became up to around 40%
higher on virtual machines during the write-only workload compared to
containers, also up to around 30% higher on virtual machines during the read-
only workload compared to containers. As it has been discussed before in general
the read-only workload is showing less performance than the write-only
workload, and the impact of the different types of workloads on the performance
in terms of CPU utilization is higher on virtual machines than containers.

However, considering the scalability aspects of the virtual machines and the
containers, according to our results, containers scale better without loosing too
much performance while virtual machines overhead is very high, and it has a
negative impact on the performance of the application. This might differ
depending on the application and the type of workload as we have seen during
our experiments. Therefore, cloud providers need to investigate this issue while
deploying both virtual machines and containers across data centers also at larger
scale.

1
5

6

Figure 10.4. Transactions per second (tps)

1
5

7

a.

b.

Figure 10.4. CPU utilization results for Write, Read and Mix workload for multiple Cassandra clusters running on virtual

machines and containers concurrently.

1
5

8

c.

d.

Figure 10.4. CPU utilization results for Write, Read and Mix workload for multiple Cassandra clusters running on virtual

machines and containers concurrently.

1
5

9

e.

f.

Figure 10.4. CPU utilization results for Write, Read and Mix workload for multiple Cassandra clusters running on virtual

machines and containers concurrently.

1
6

0

a.

b.

Figure 10.5. Latency mean results for Write, Read and Mix workload for multiple Cassandra clusters running on virtual

machines and containers concurrently

1
6

1

c.

d.

Figure 10.5. Latency mean results for Write, Read and Mix workload for multiple Cassandra clusters running on virtual

machines and containers concurrently

1
6

2

e.

f.

Figure 10.5. Latency mean results for Write, Read and Mix workload for multiple Cassandra clusters running on virtual

machines and containers concurrently

163

10.6 References

[1] G. Huang et al., “Auto Scaling Virtual Machines for Web Applications

with Queuing Theory,” in ICSAI conference, pp. 433-438, 2017.

[2] S. He et al., “Elastic Application Container: A Lightweight Approach for

Cloud Resource Provisioning,” in AINA conference, pp. 15-22, 2012.

[3] A. Horiuchi, and K. Saisho, “Development of Scaling Mechanism for

Distributed Web System,” in SNPD conference, pp. 1-6, 2015.

[4] F. Tseng et al., ”A Lightweight Auto-Scaling Mechanism for Fog

Computing in Industrial Applications,” in IEEE Transactions on Industrial

Informatics Journal, vol. PP, no. 99, pp. 1-1, 2018.

[5] W. Wenting, C. Haopeng, C. Xi, “An Availability-Aware virtual Machine

Placement Approach for Dynamic Scaling of Cloud Applications,” in

UIC/ATC conference, pp. 509-516, 2012.

[6] L. Chien-Yu, S. Meng-Ru, L. Yi-fang L. Yu-Chun, L. Kuan-Chou,

”Vertical/Horizontal Resource Scaling Mechanism for Federated Clouds,”

in ICISA conference, pp.1-4 , 2014.

[7] S. Sotiriadis, N. Bessis, C. Amza, R. Buyya, “Vertical and Horizontal

Elasticity for Dynamic Virtual Machine Reconfiguration,” in IEEE

Transactions on Services Computing Journal, vol. PP, no. 99, pp. 1-14,

2016.

[8] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, P. Merie, ”Elasticity in Cloud

Computing: State of the Art and Research Challenges,” in IEEE

Transactions on Services Computing Journal, vol. PP, Issue. 99, pp 1-1,

2017.

[9] S. Shirinbab, L. Lundberg, E. Casalicchio, “Performance Evaluation of

Container and Virtual Machine Running Cassandra Workload, ” in

CloudTech conference, pp. 1-8, 2017.

[10] A.M. Joy, "Performance Comparison between Linux Containers and

Virtual Machines," in ICACEA Conference, pp. 342-346, 2015.

[11] L. Chaufournier, P. Sharma, P. Shenoy, Y.C. Tay, "Containers and Virtual

Machines at scale: A Comparative Study," in Middleware Conference, pp.

1-13, 2016.

[12] C. Huang et al., “The Improvement of Auto-Scaling Mechanism for

distributed Database- A Case Study for MongoDB,” in APNOMS

conference, pp. 1-3, 2013.

164

11 Scheduling Tasks with Hard Deadlines in Virtualized

Software Systems

Abstract

There is scheduling on two levels in real-time applications executing in a

virtualized environment: traditional real-time scheduling of the tasks in the real-

time application, and scheduling of different Virtual Machines (VMs) on the

hypervisor level. In this paper, we describe a technique for calculating a period

and an execution time for a VM containing a real-time application with hard

deadlines. This result makes it possible to apply existing real-time scheduling

theory when scheduling VMs on the hypervisor level, thus making it possible to

guarantee that the real-time tasks in a VM meet their deadlines. If overhead for

switching from one VM to another is ignored, it turns out that (infinitely) short

VM periods minimize the utilization that each VM needs to guarantee that all

real-time tasks in that VM will meet their deadlines. Having infinitely short VM

periods is clearly not realistic, and in order to provide more useful results we have

considered a fixed overhead at the beginning of each execution of a VM.

Considering this overhead, a set of real-time tasks, the speed of each processor

core, and a certain processor utilization of the VM containing the real-time tasks,

we present a simulation study and some performance bounds that make it

possible to determine if it is possible to schedule the real-time tasks in the VM,

and in that case for which periods of the VM that this is possible.

11.1 Introduction

Most real-time services were originally designed for physical (un-virtualized)

computer systems. However, the trend towards virtualization pushes, for cost

reasons, more and more systems onto virtualized machines, and at some point one

would also like to run real-time systems with hard deadlines in a virtualized

environment. Moving a real-time system with hard deadlines to a virtualized

environment where a number of Virtual Machines (VMs) share the same physical

computer is a challenging task. The original real-time application was designed

so that all tasks were guaranteed to meet their deadlines provided that the

physical computer was fast enough. In a system with faster processors, and more

cores, one would like to put several VMs on the same hardware and some (or all)

of these VMs may contain real-time tasks with hard deadlines. In such a system

there will be scheduling at two levels [6]: traditional real-time scheduling of the

tasks within a VM, and hypervisor controlled scheduling of several VMs on the

same physical server. In [25] and [32] the authors refer to this technique as

165

Component-based design. This technique is also known as Hierarchical

scheduling [21] [22] [31] [32] [34].

Traditional scheduling of tasks on a physical uni-processor computer is well

understood, and a number of useful results exist [9], e.g., it is well known that

Earliest Deadline First (EDF) is optimal when we allow dynamic task priorities.

Similarly, it is well-known that Rate-Monotonic Scheduling (RMS) where tasks

are assigned priorities based on their deadlines is optimal for the case when we

use static task priorities. These priority scheduling algorithms are based on a

number of parameters for each task τi. These parameters are typically, the period

Ti the worst-case execution time Ci, and the deadline Di, for task τi. Often, we

assume that Di = Ti, and in that case we only need two parameters for each task,

namely, Ti and Ci. Priority assignment schemes such as EDF and RMS are

typically used in the original real-time scheduling applications, i.e., in the

applications that will be running in a VM.

If we ignore the overhead for context switching from one VM to another and

if we use (infinitely) small time slots, we could let a VM get a certain percentage

of the physical computer, e.g., two VMs where each VM uses every second time

slot. This kind of situation could be seen as two VMs running in parallel with

50% of full speed each. In that case, the real-time application would meet all

deadlines if the processor on the physical computer is (at least) two times as fast

as the processor for which the original real-time application was designed for.

However, the overhead for switching from one VM to another cannot be ignored

and the time slot lengths for this kind of switching can obviously not be infinitely

small. In order to minimize the overhead due to switching between VMs we

would like to have relatively long time periods between switching from one VM

to another VM. In order to share the physical hardware between as many VMs as

possible we would also like to allocate a minimum percentage of the physical

CPU to a VM, i.e., we would only like to allocate enough CPU resources to a VM

so that we know that the real-time application that runs in that VM meets all its

deadlines.

In order to use EDF, RMS or similar scheduling algorithms also on the

hypervisor level, i.e., when scheduling the different VMs to the physical

hardware, we need to calculate a period TVM and a (worst-case) execution time

CVM for each VM that share a physical computer. It can be noted that also most

real-time multiprocessor scheduling algorithms are based on the period and the

worst-case execution time [8] [20]. This is important since most modern

hardware platforms, i.e., most platforms on which the VMs will run, are

multiprocessors.

VMs with one virtual processor will, for several reasons, be a very important

case. Many existing real-time applications with hard deadlines have been

166

developed for uniprocessor hardware. Moreover, even when using state-of-the-art

multiprocessor real-time scheduling algorithms, one may miss deadlines for task

sets with processor utilization less than 40% [8]. For the uni-processor case it is

well known that when using RMS we will always meet all deadlines as long as

the processor utilization is less than ln(2) = 69.3% [9]. This indicates that,

compared to having a small number of VMs with many virtual cores each, it is

better to use a larger number of VMs with one virtual core each on a multicore

processor (we will discuss this in Section 10.2). We will present our results in the

context of VMs with one virtual core. However, the results could easily be

extended to VMs with multiple virtual cores as long as each real time task is

allocated to a core (we will discuss this in Section 11.9). Systems that use global

multiprocessor scheduling of real-time tasks, i.e., systems that that allow tasks to

migrate freely between processors, are not considered here.

In this paper we will, based on an existing real-time application and the

processor speed of the physical hardware, calculate a period TVM and an

execution time CVM such that the existing real-time application will meet all

deadlines when it is executed in a VM, provided that the VM executes (at least)

CVM time unites every period of length TVM. We will show, and it is also well

known from previous studies, that if overhead for switching from one VM to

another is ignored, it turns out that (infinitely) short VM periods minimizes the

utilization that each VM needs to guarantee that all real-time tasks in that VM

will meet their deadlines. Having infinitely short VM periods is clearly not

realistic, and in order to provide more useful results we consider a fixed overhead

at the beginning of each execution of a VM. Considering this overhead, a set of

real-time tasks, the speed of the each processor core, and a certain processor

utilization of the VM containing the real-time tasks, we present a simulation

study and some performance bounds that make it possible to determine if it is

possible to schedule the real-time tasks in the VM, and in that case for which

periods of the VM that this is possible. We will base our calculations on the case

when we use static priorities, and thus RMS, in the original real-time

applications. However, we expect that our approach can easily be generalized to

cases when other scheduling policies, such as EDF, are used in the original real-

time applications (we will discuss this in Section 11.2).

11.2 Related Work

Today, most physical servers will contain multiple processor cores. Modern

virtualization systems, such as KVM, VMware and Xen, make it possible to

define VMs with a number of (virtual) cores, thus allowing parallel execution

within a VM. This means that one can use the physical hardware in different

ways: one can have a large number of VMs with one (virtual) core each on a

physical (multi-core) server, or a smaller number of VMs with multiple (virtual)

cores each (or a combination of these two alternatives). It is also possible to make

167

different design decisions in the time domain, e.g., allowing a VM with one

virtual core to execute for relatively long time periods, or restricting a VM with

multiple cores to relatively short execution periods. Real-time scheduling theory

(for non-virtualized systems) shows that the minimum processor utilization for

which a real-time system can miss a deadline, using fixed priority scheduling,

decreases as the number of processors increases, e.g., 69.3% for one processor

systems [7] (using RMS) and 53.2% for two processor systems [8] and then down

to as little as 37.5% for systems with (infinitely) many processors [8].

Consequently, compared to multiprocessor systems, the processor utilization

is in general higher for systems with one processor. This is one reason why we

have assumed that the VM containing the original real-time application only has

one (virtual) processor. Also, most existing real-time applications are developed

for systems with one processor.

In this paper we have assumed that the real-time application in the VM uses

RMS. If we assume some other scheduling policy, e.g., EDF we can use the same

technique. The only difference is that the formula Ri = Ci + ∑ ⌈Ri Tj⁄ ⌉Cj
i−1
j=1 (see

Section 11.3), needs to be replaced with the corresponding analysis for EDF.

Very little has been done in the area of scheduling real-time tasks with hard

deadlines in virtualized systems. Some results on real-time tasks with soft

deadlines exist [1] [16].

There are a number of results concerning so called proportional-share

schedulers [2] [3] [4] [18]. These results look at a real-time application that runs

inside an operating system process. The proportional-share schedulers aim at

dividing the processor resource in predefined proportions to different processes.

In [10] the authors look at a model for deciding which real-time tasks to

discard when the cloud system’s resources cannot satisfy the needs of all tasks.

This model does, however, not address the problems associated with hard

deadlines.

In [11] the authors ran an experiment using a real-time e-learning distributed

application for the purpose of validating the IRMOS approach. The IRMOS uses

a variation of the Constant Bandwidth Server (CBS) algorithm based on EDF.

Furthermore in [17] the authors developed their particular strategy in the context

of IRMOS project. They tried to consider isolation and CPU scheduling effects

on I/O performance. However, in IRMOS they do not consider hard real-time

tasks scheduled using the RMS.

Reservation-based schedulers are used as hypervisor level schedulers. In [12]

and [19] the authors used CPU reservation algorithm called, Constant Bandwidth

168

Server (CBS) in order to prove that the real time performance of the VMs running

on the hypervisor is affected by both the scheduling algorithm (CBS) and VM

technology (in this case KVM). However, the authors do not present a method for

how to schedule different VMs running on the hypervisor.

In [13] the authors presented two algorithms for real-time scheduling. One is

the hypervisor scheduling algorithm and the other is the processor selection

algorithm. However they only consider scheduling VMs on the hypervisor level,

they do not investigate scheduling of the hard real-time tasks that run inside the

VMs.

Eucalyptus is open-source software for building private and hybrid clouds.

There are several algorithms already available in Eucalyptus for scheduling VMs

with some advantages and disadvantages. In [14] the authors proposed a new

algorithm for scheduling VMs based on their priority value, which varies

dynamically based on their load factors. However they consider dynamic priority

based scheduling not static priority.

In [15], a priority based algorithm for scheduling VMs is proposed. The

scheduler is first distinguishing the best matches between VMs and empty places

and then deploying the VMs onto the corresponding hosts. The authors did a

comparison between their priority algorithm and First Come First Serve (FCFS)

algorithm, they concluded that the resource performance of their algorithm is not

higher than the FCFS algorithm all the time but it has higher average resource

performance. Nevertheless, they do not consider periodic tasks and static priority

assignment.

The VSched system, which runs on top of Linux, provides soft real-time

scheduling of VMs on physical servers [5]. However, the problems with hard

deadlines are not addressed in that system.

In [21], the authors proposed a hierarchical bounded-delay resource model

that constructs multiple levels resource partitioning. Their approach is designed

for the open system environment. Their bounded-delay resource partition model

can be used for specifying the real-time guarantees supplied from a parent model

to a child model where they have different schedulers, while in [22] and [32], the

authors proposed a resource model that can provide a compositional manner such

that if the parent scheduling model is schedulable, if and only, its child

scheduling models are schedulable. However, none of the proposed resource

models consider scheduling in virtualized environment.

In [23] and [31], the authors presented a methodology for computing exact

schedulability parameters for two-level framework while in [24] they did an

analysis on systems where the fixed priority pre-emptive scheduling policy is

used on both level. Further in [26], the authors presented a method for analysis of

169

platform overheads in real-time systems. Similar work by [33] represents that

their proposed approach can reduce pre-emption and overhead by modifying the

period and execution time of the tasks.

In [25], the authors developed compositional real-time scheduling framework

based on the periodic interface, they have also evaluated the overheads that this

periodic interface incur in terms of utilization increase. Later in [41], the authors

proposed an approach to eliminate abstraction overhead in composition. In their

latest study the authors have improved their previous works and proposed a new

technique for the cache-related overhead analysis [40].

In [27], the authors implemented and evaluated a scheduling framework that

built on Xen virtualization platform. Another similar work has been done by [29];

they represent an implementation of compositional scheduling framework for

virtualization using the L4/Fiasco micro kernel which has different system

architecture compared to Xen. The authors calculated clock cycle overhead for

the L4/Fiasco micro kernel. In [28], the authors proposed and compare the results

of overhead of an external scheduler framework called ExSched that is designed

for real time systems. In [30], the authors presented and compared several

measurements of overheads that their implemented hierarchical scheduling

framework imposes through its implementation over VxWorks.

Compositional analysis framework based on the explicit deadline periodic

resource model has been proposed by [38]. They have used EDF and Deadline

Monotonic (DM) scheduling algorithm and their model supports sporadic tasks.

In [39], the authors present the RM schedulability bound in a periodic real time

system which is an improvement to the earlier bound that has been proposed by

[7]. However, none of these works consider the overhead in their models.

11.3 Problem Definition

We consider a real-time application consisting of n tasks. Task τi (1 ≤ i ≤
n) has a worst-case execution time Ci (1 ≤ i ≤ n), and a period Ti (1 ≤ i ≤
n). This means that task τi generates a job at each integer multiple of Ti and each

such job has an execution requirement of Ci time units that must be completed by

the next integer multiple of Ti. We assume that each task is independent and does

not interact (e.g., synchronize or share data) with other tasks. We also assume that

the first invocation of a task is unrelated to the first invocation of any other task,

i.e., we make no assumptions regarding the phasing of tasks with equal or

harmonic periods. We assume that the deadline Di is equal to the period,

i.e., Di = Ti (1 ≤ i ≤ n). The tasks are executed using static task priorities, and

we use RMS scheduling, which means that the priority is inversely proportional

to the period of the task (i.e., tasks with short periods get high priority). This

static priority assignment scheme is optimal for the uni-processor case [9].

170

The real-time application is executed by a VM with one virtual processor. The

real-time tasks may miss their deadlines if the VM containing the tasks is not

scheduled for execution by the hypervisor during a certain period of time. For

instance, if some period that the VM is not running exceeds some Ti, it is clear

that the corresponding task τi will miss a deadline. Also, if the VM gets a too low

portion of a physical processor, the tasks may also miss their deadlines since

there will not be enough processor time to complete the execution time before the

next deadline.

In a traditional real-time application, a task τi will voluntarily release the

processor when it has finished its execution in a period, and Ci denotes the

maximum time it may execute before it releases the processor. In the case with

real-time scheduling of VMs on the hypervisor level it is more natural to assume

that the hypervisor preempts VMj and puts VMj in the blocked state when it has

executed for CVMj
 time units in a period. The hypervisor then moves VMj to the

ready state at the start of the next period. As mentioned before, the length of the

period for VMj is TVMj
.

On the hypervisor level one may use any scheduling policy as long as one can

guarantee that each VM is executed CVM, during each period TVM. On multicore

processors one could for instance bind each VM to a core and let the VMs that

share the same core share it using RMS, or one could let the VMs share a global

ready queue, i.e., a VM could be executed on different cores during different time

periods.

11.4 Defining Tvm And Cvm

Without loss of generality, we order the tasks τi (1 ≤ i ≤ n) such that Ti ≤
 Ti+1. This means that τ1 has the highest priority and τn has the lowest priority

using RMS. Let Ri denote the worst-case response time for taskτi. From previous

results we know that

 Ri = Ci + ∑ ⌈Ri Tj⁄ ⌉Cj
i−1
j=1 (1)

on a physical uni-processor server (or when the VM has uninterrupted access

to a physical processor). In order to obtain Ri from Equation (1) one needs to use

iterative numeric methods [9]. In order to meet all deadlines, we must make sure

that Ri ≤ Ti (1 ≤ i ≤ n).

Consider a time period of length t, which may extend over several

periods TVM. The scenario with minimum execution of the VM during period t,
starts with a period of 2(TVM − CVM) with no execution (see Figure 11.1)

[37][25], i.e., the period starts exactly when the VM has executed CVM time units

171

as early as possible in one of its periods. Following this line of discussion, it is

also clear that for the worst-case scenario ⌊(t − 2(TVM − CVM)) TVM⁄ ⌋ is the

number of whole periods of length TVM (each containing a total execution

of CVM) that is covered by t.

Let t′ denote the minimum amount of time that the VM is running during a

time period of length t. From Figure 10.1 we get the minimum t’ as:

t′ = ⌊
(t−2(TVM− CVM))

TVM
⌋ CVM + min ((t − 2(TVM − CVM) − ⌊

(t−2(TVM− CVM))

TVM
⌋ TVM) , CVM) (2)

In Equation (2), the first term (⌊(t − 2(TVM − CVM)) TVM⁄ ⌋CVM) corresponds

to the full periods, and the last term to the remaining part. The term t −

2(TVM − CVM) − ⌊(t − 2(TVM − CVM)) TVM⁄ ⌋TVM is the time that the VM has

access to a physical processor during the part of t that exceeds the full periods.

Figure 11.1 : Worst-case scenario when scheduling a VM with period 𝑻𝑽𝑴 and

(worst-case) execution time 𝑪𝑽𝑴.

172

The minimum comes from the fact that time that the VM has access to a

physical processor during the time interval that exceed the full periods cannot be

more than CVM. This means that t′ is a function of three parameters, i.e., t′ =
f (t, TVM, CVM). For fixed TVM and CVM, t′ = f (t, TVM, CVM) is a continuous

increasing function in t, consisting of straight line segments from ((2(TVM −

 CVM) + nTVM), nCVM) to ((2(TVM − CVM) + (n + 1)TVM) , (nCVM + TVM))

for any n = 0, 1, 2, … and horizontal lines connecting them.

Figure 11.1 displays a general piece of the curve, and the points Pn =

 ((2(TVM − CVM) + nTVM) , CVM) are the lower corners in the graph.

We now define the inverse function

 t = f −1(f (t, TVM, CVM), TVM, CVM) (3)

By looking at Figure 10.2 we see that

 f −1(t, TVM, CVM) = 2(TVM − CVM) + t + ⌊t CVM⁄ ⌋(TVM − CVM) (4)

Figure 11.2 : The function 𝒇−𝟏(𝒕, 𝑻𝑽𝑴, 𝑪𝑽𝑴); 𝒕 is the parameter on the x-axis in

the graph.

173

From previous results on Ri (see [9] and above), and from the definition of

f −1 we get that the worst-case response time for task τi is

 Ri = f −1 ((Ci + ∑ ⌈Ri Tj⁄ ⌉Cj
i−1
j=1), TVM, CVM) (5)

 For example if we have two tasks and T1 = 8, C1 = 1, and T2 = 15, C2 = 3,

and TVM = 6 and CVM = 3 we get 7 = R1 = f −1(1, 6, 3) and 14 = R2 =

 f −1((3 + ⌈14/8⌉ ∗ 1), 6, 3).

In order to solve Equation (5), one needs to use numeric and iterative

methods, i.e., a very similar approach as the well-known method used for

obtaining Ri in the non-virtualized case [9] (this approach can easily be

implemented in a program that calculates the Ri values). In order to meet all

deadlines for all tasks τi, we need to select TVM and CVM so that Equation (5) ≤
 Ti(1 ≤ i ≤ n).

11.5 Example

Consider the following small real-time application with three tasks.

Table 11.1: Example of a small real-time application with three tasks.

Task Period (Ti) Worst-case execution time (Ci) Utilization (Ui)

τ1 16 2 2/16 = 0.125

τ2 24 1 1/24 = 0.042

τ3 36 4 4/36 = 0.111

 ∑ = 0.278

As discussed above, we use fixed priorities and RMS priority assignment. If

we let the VM that executes this application use 40% of a CPU resource, i.e.,

if CVM TVM = 0.4 ⁄ , we can use Equation (4) to calculate the maximum TVM so

that all three tasks will meet their deadlines. When CVM TVM = 0.4 ⁄ we can

replace CVM with 0.4TVMin Equation (4), thus obtaining the function

f −1(t, TVM) = 1.2TVM + t + ⌊t 0.4TVM⁄ ⌋(0.6TVM) .

We start by looking at τ1. We need to find the maximal TVM so that R1 =

 f −1 ((C1 + ∑ ⌈R1 Tj⁄ ⌉Cj
0
j=1), TVM) = f −1(C1, TVM) = f −1(2, TVM) ≤ T1 = 16.

In general, f −1 is solved using a numeric and iterative approach in a similar way

as Ri is obtained in the non-virtualized case [9]. However, we will see that for

this τ1 the ⌊t CVM⁄ ⌋(TVM − CVM) part of f −1 can be ignored. In that case, we get

the following equation for the maximum TVM: 1.2TVM + 2 = 16, and from this

we get TVM = 14 1.2 =⁄ 11.7. If we have a period of 11.7 we get a CVM =

174

0.4 × 11.7 = 4.68, and (as predicted above) since CVM > C1, we know that we

do not have to consider the ⌊t CVM⁄ ⌋(TVM − CVM) part of f −1.

We now look at τ2. We want to find the maximal TVM so that R2 =

 f −1 ((C2 + ∑ ⌈R2 Tj⁄ ⌉Cj
1
j=1), TVM) ≤ T2 = 24. It is clear that τ2 will miss its

deadline with TVM = 14 1.2 =⁄ 11.7 (which is the maximal TVM period for

which τ1 will meet its deadlines); if we use TVM = 14 1.2 =⁄ 11.7, the first

execution period will (in the worst-case, see Figure 11.1) start at time 2(TVM −
CVM) = 1.2TVM = 14. Since T1 = 16 and C1 = 2 we see that τ1 will execute

two times back-to-back in this interval, i.e., after the first execution of τ1 it will

be released again at time 16. Consequently, τ2 cannot start executing until time

18, and the first execution period of the VM will end at 2TVM − CVM (see Figure

10.1) = 1.6TVM = 1.6 × 11.7 = 18.7, and since C1 = 1, τ2 cannot complete

during the first execution period of the VM. The second period of the VM starts

at time 3TVM − 2CVM (see Figure 11.1) = 2.2TVM = 2.2 × 11.7 = 25.7,

which is after the deadline of τ2(T2 = 24).

By using our formulas, we see that in order for τ2 to meet its deadlines TVM

cannot be larger than 13 1.2⁄ = 10.8. This means that we now know that the real-

time application can at most have TVM = 10.8 when CVM TVM = 0.4⁄ . For TVM =
10.8 and CVM TVM = 0.4⁄ , the corresponding CVM is 0.4 × 10.8 = 4.33.

We finally look at τ3. We need to find the maximum TVM so that R3 =

 f −1 ((C3 + ∑ ⌈R3 Tj⁄ ⌉Cj
2
j=1), TVM) ≤ T3 = 36. In this case we see that τ3 will

not meet its deadline when TVM = 13 1.2⁄ = 10.8. The reason for this is that

both τ1 and τ2 will cause interference on τ3, and τ3 will as a consequence of this

not complete in the first TVM cycle, since C1 + C2 + C3 = 2 + 1 + 4 = 7 >
4.33. The second TVM cycle will complete at time 3TVM − CVM(see Figure

10.1) = 3 × 10.8 − 4.33 = 28.07. Before the end of this cycle both τ1 and τ2

will have had one new release each (τ1 at time 16 and τ2 at time 24). This means

that τ3 will not complete during the second cycle of TVM since2C1 + 2C2 + C3 =
4 + 2 + 4 = 10 > 2 × 4.33 = 8.66.

In the worst-case scenario (see Figure 11.1), the third cycle of TVM will start

at time 4TVM − 2CVM = 4 × 10.8 − 2 × 4.33 = 34.54. At time 32 there is a

new release of task τ1, and since τ1 has higher priority than τ3, task τ1 will

execute for two time units starting at time 34.54.

Since T3 = 36, we see that τ3 will miss its deadline. This means that we need

a shorter period TVM in order to guarantee that also τ3 will meet its deadlines.

When using our formulas, we see that TVM = 10 is the maximal period that τ3

can tolerate in order to meet its deadline when CVM TVM = 0.4⁄ , i.e., for

175

Figure 11.2 : The upper bound for 𝑻𝑽𝑴 / T1

CVM TVM = 0.4⁄ we get TVM = 10, and τ3 is the task that requires the shortest

period TVM.When CVM TVM = 0.5⁄ we can use our formulas to calculate a TVM.

In this case we get a maximal TVM of 14 for task τ1, and the calculations for tasks

τ2 and τ3 will result in larger values on the maximal TVM.

This means that τ1 is the task that requires the shortest period TVM, i.e., TVM =
14 when CVM TVM = 0.5⁄ . In general, the period TVM will increase when the

utilization CVM TVM ⁄ increases, and the task that is “critical” may change when

CVM TVM⁄ changes (e.g., task τ3 when CVM TVM = 0.4⁄ and task

τ1when CVM TVM = 0.5⁄).

11.6 Simulation Study

In Section 11.5 we saw that the maximal TVM, for which a task set inside the

VM is schedulable increases when CVM TVM⁄ increases. In this section we will

quantify the relation between the maximal TVMthe utilization CVM TVM⁄ .

We will do a simulation study where we consider two parameters:

• n – the number of tasks in the real-time application

• u – the total utilization of the real-time application

176

The periods TI are taken from a rectangular distribution between 1000 and

10000. The worst-case execution time CI for task τI is initially taken from a

rectangular distribution between 1000 and Ti.

All worst-case execution times are then scaled by a factor so that we get a

total utilization u. For each task, we then find the maximum TVM using Equation

(5) so that all tasks meet their deadlines. We refer to this period as Tmax, and we

then select the minimum of the n different Tmax values (one value for each task).

For each pair of n and u, we calculate the minimum Tmax for (CVM TVM = 0.9⁄),

(CVM TVM = 0.8⁄), (CVM TVM = 0.7⁄), (CVM TVM = 0.6⁄), (CVM TVM = 0.5⁄),

(CVM TVM = 0.4⁄), (CVM TVM = 0.3⁄), (CVM TVM = 0.2⁄), (CVM TVM = 0.1⁄)

for 10 randomly generated programs (we generate the programs using the

distribution and the technique described above). We look at n = 10, 20, and 30,

and u = 0.1, 0.2 and 0.3. This means that we look at 3*3 = 9 combinations of n

and u, and for each of these nine combinations we look at 9 different values

on CVM TVM⁄ . This means that we looked at 3*3*9 = 81 different scenarios. For

each such scenario we generated 10 programs using a random number generator.

11.7 Results

In the worst-case scenario (see Figure 11.1), the maximum time that a virtual

machine may wait before its first execution is 2(TVM − CVM). In order for the

real-time tasks not to miss their deadlines the maximum waiting time, 2(TVM −
CVM) must be less than the shortest period, T1 (i.e., 2(TVM − CVM) < T1). For

each value of CVM TVM⁄ , we can replace CVM and calculate the TVM T1⁄ using

the formula above. For example, if CVM TVM = 0.7⁄ then we can replace CVM by

0.7TVM in 2(TVM − CVM) < T1 so we have 2(TVM − 0.7TVM) < T1 , from that

we get 0.6TVM < T1 , this means that TVM T1⁄ < 1 0.6⁄ = 1.66. By continuing

this we can calculate the values of TVM T1⁄ for each value of CVM TVM⁄ . The

corresponding graph is presented in Figure 11.2. These values are clearly the

upper bound for all the values of TVM T1⁄ , and our simulation study shows that,

for all combinations of u, n, and CVM TVM ⁄ , TVM T1⁄ is less than this upper

bound.

11.7.1 Total Utilization of 0.1

In Figure 11.4, we see that the standard deviation is very small for u = 0.1. For

n = 10 we get values around 0 and for n = 20, we get 0.006 and for n = 30, we get

0.009.

As shown in Figure 11., for different number of the tasks (n = 10, 20 and 30)

TVM / T1 increases when CVM TVM⁄ increases. The first observation is thus that

the maximum TVMfor which the task set inside the VM is schedulable increases

177

when the VM gets a larger share of the physical processor, i.e., when CVM TVM⁄

increases. The second observation is that the curves in Figure 11. are below, but

very close to, the upper bound in Figure 11.2. Also, when total utilization (u) is

0.1, we observe that TVM / T1 is zero when CVM TVM⁄ = 0.1 . This means that the

task set inside the VM is not schedulable when CVM TVM⁄ = 0.1.

11.7.2 Total Utilization of 0.2

Figure 11. shows that the standard deviation divided with the average is

almost zero except when CVM TVM⁄ = 0.3. This means that for CVM TVM⁄ = 0.3

(and n = 10, 20, and 30) some task sets are schedulable with TVM / T1 close to

the upper bound (0.71, see Figure 11.2), but other task sets need a much shorter

TVM . When is CVM TVM⁄ larger than 0.3, all task sets are schedulable with TVM /
T1 close to the upper bound.

Figure 11. shows that the maximum TVM, for which the task set inside the VM

is schedulable, increases when CVM TVM⁄ increases. When CVM TVM⁄ is larger

than 0.3 the curves in Figure 11. are very close to the upper bound in Figure 11.2.

When CVM TVM⁄ = 0.1, and 0.2, Figure 11. shows that the task set inside the VM

is not schedulable (i.e., TVM / T1 = 0 for these values). When CVM TVM⁄ = 0.3,

Figure 11. shows that the average TVM / T1 are significantly below the upper

bound. As discussed above, the reason for this is that when CVM TVM⁄ =
0.3 some task sets are schedulable with TVM / T1 close to the upper bound, but

other task sets need a much shorter TVM.

11.7.3 Total Utilization of 0.3

Figure 11. shows that the standard deviation divided with the average is

almost zero except when CVM TVM⁄ = 0.4 (for n = 10, 20, and 30), and when

CVM TVM⁄ = 0.5 (for n = 10).

This means that for CVM TVM⁄ = 0.4 (and n = 10, 20, and 30) some task sets

are schedulable with TVM / T1 close to the upper bound (0.83, see Figure 11.2),

but other task sets need a much shorter TVM. For n = 10, we have a similar

situation when CVM TVM⁄ = 0.5. In general, the standard deviation decreases

when n increases.

11.8 Considering Overhead

In our previous model presented in Section 10.3, we neglected the overhead

induced by switching from one VM to another. However, in reality this is not the

case. So in this section we consider overhead at the beginning of execution of

each VM.

178

11.8.1 Defining Overhead

By considering the overhead we can rewrite the Equation (4) as

f −1(t, TVM, CVM, X) = (TVM − CVM) + t + ⌈
t

(CVM−X)
⌉ (TVM − CVM + X) (6)

where X denotes the overhead (see Figures 11.10 and 11.11). So, in the worst-

case scenario considering this overhead model, the first execution of task τ1 is

after 2(TVM − CVM) + X time units (see Figure 11.10). Our model is obviously

valid for non-preemptive scheduling since we have considered overhead at the

beginning of the execution of each task [35]. The overhead model can also be

used in systems with preemptive scheduling, since one can put a bound on the

number of preemptions in RM and EDF schedulers [36]. By multiplying the

maximum number of preemptions with the overhead for a preemption, and then

making the safe (but pessimistic) assumption that all this overhead occurs at the

start of a period, we arrive at the model considered here.

Figure 11.3 : Worst-case scenario when considering context switches overheads.

179

In [26][25] and [41] the authors calculated a different kind of overhead for

periodic tasks; using our notation they calculated the ratio ((CVM TVM⁄) – u)/u

(which for fixed CVM TVM⁄ and u is an increasing function of TVM).

In [26] and [40] the authors considered different overhead models (including

overhead due to cache misses) on the task level in compositional analysis of real-

time systems. Our model considers overhead on the hypervisor level, and our

overhead analysis is in thus orthogonal to the overhead analysis on the task level

(i.e., both models could be applied independently).

11.8.2 Prediction Model

For any task set, if CVM TVM⁄ is given, it is possible to predict a range where

we can search for values of TVM that can make the task set inside the VM

schedulable (i.e., a value of TVM such that all tasks meet their deadlines). For

values of TVM that are outside of this interval, we know that there is at least one

task that will not meet its deadline. In Figure 11.12(a) and (b), the solid line

represents Maximum Ri Ti⁄ (1 ≤ i ≤ n) versus different values of TVM, for

given values of CVM TVM⁄ and overhead X. As long as Maximum Ri Ti⁄ ≤ 1 we

know that the task set is schedulable. If we can find two values of TVM such that

Maximum Ri Ti⁄ = 1, Figure 11.12(a) indicates that the interval between these

two values is the range of values of TVM for which the task set is schedulable.

We now define a prediction model consisting of three lines that will help us to

identify the range of values that will result in a schedulable task set. We will refer

to these three lines as: the left bound, the lower bound and the schedulability

limit. These three lines will produce a triangle. The intersection between the

schedulability limit line and the left bound will give us the first point and the

intersection between the schedulability limit line and the lower bound will give us

the second point.

We consider the corresponding TVM values of these two points on the x-axis

and the interval between these two values (see Figure 11.12(a) and (b)). If the

intersection between the lower bound and the schedulability limit is left of the

intersection of the left bound and the schedulability limit (see Figure 11.12(b)),

then it is not possible to find a TVM that will make the task set schedulable.

In order to find the left bound we use the equation below:

 (
(CVM−X)

TVM
) ≥ Total Utilization (7)

According to Equation (7) a TVM value must be selected so that (
(CVM−X)

TVM
) ≥

Total Utilization. Here X represents the amount of overhead and (CVM −

180

X) represents the effective execution of the VM in one period.

Obviously, (
(CVM−X)

TVM
) should be higher than or equal to total utilization since in

order to successfully schedule all tasks in the VM, the utilization of the VM

should be a value that is the same as the total utilization or higher.

In order to calculate the lower bound we consider the Maximum Ri Ti⁄ (1 ≤ i ≤
n) value. Our previous experiments showed that it is often (but not always) the

task with the shortest period that restricts the length of TVM. τ1 is the task in the

task set which has the shortest period T1, and obviously R1 T1⁄ ≤
Maximum Ri Ti⁄ . We have R1 T1⁄ = (2(TVM − CVM) + X + C1) T1⁄ , and if we

rewrite this equation and consider TVM as a variable then we can calculate the

lower bound using the equation below:

 f(TVM) =
2(TVM−CVM)

T1
+

(C1+X)

T1
 (8)

Figure 11.4 : The function 𝒇−𝟏(𝒕, 𝑻𝑽𝑴, 𝑪𝑽𝑴, 𝑿); 𝒕 is the parameter on the x-axis

in the graph.

181

By considering the common form of a linear equation f(x) = mx + b where

m and b are constant values and m represents the slope of the line and b

represents the offset, we can rewrite the Equation (8) if the value of CVM TVM⁄ is

given, e.g., CVM TVM⁄ = 0.54, we can rewrite the Equation (8) as f(TVM) =
2(1−0.54)

T1
(TVM) +

(C1+X)

T1
,. Thus the slope of the line becomes m=

2(1−0.54)

T1
 and the

offset is b=
(C1+X)

T1
.

The schedulability limit is represented by a horizontal line at

Maximum Ri Ti⁄ = 1. Ri Ti⁄ (1 ≤ i ≤ n).

In order to calculate the value Maximum Ri Ti⁄ , we first calculate Ri Ti⁄ for

each task τi (1 ≤ i ≤ n), and then Maximum Ri Ti⁄ (1 ≤ i ≤ n)is selected for

the entire task set.

For instance in Figure 11.12(a), total utilization U = 0.3, CVM TVM⁄ = 0.54

and X = 1, so to calculate the left bound using Equation (7), for TVM = 1, we will

get (0.54TVM − 1) TVM =⁄ (0.54(1) − 1) 1 =⁄ − 0.46 for TVM = 2 we get 0.04,

for TVM = 3 we get 0.206 and for TVM = 4 we will have 0.29 while for TVM = 5

we will get 0.34. So in this case for TVM = 5 we get the value of 0.34 which is

higher than total utilization (0.3) so we know that for TVM values that are higher

than 5 we have a chance to find the suitable TVM for the entire task set.

However for different values of X the same TVM value may not be valid

anymore, e.g., if we consider X = 2, then for TVM = 5 we will get
(CVM−X)

TVM
=

 0.14. For TVM = 9 we get
(CVM−X)

TVM
= 0.31 which is higher than total utilization

(0.3).

In Figure 11.12(b), for total utilization u = 0.1, CVM TVM⁄ = 0.2 and X = 16,

if we calculate the left bound using Equation (7), then for TVM = 160 we get

(0.2TVM − 1) TVM =⁄ (0.2(160) − 16) 160 =⁄ 0.1 which is equal to total

utilization (0.1) (i.e., TVM = 160 is the left bound).

For the lower bound, if we consider the first task in the task set has the

shortest period T1 = 157, and its execution time is C1 = 2. Using Equation (8),

we can get the slope of the line
2(1−0.54)

T1
=

2(0.46)

157
≈ 0.006 and the offset will be

(C1+X)

T1
=

(2+1)

157
≈ 0.02 so we can plot a line which changes in proportional to

TVM values f(TVM) = 0.006(TVM) + 0.02 (see Figure 11.12 (a)).

In Figure 11.12 (b), we can consider a task in the task set with the shortest

period, T = 161 and execution time C = 2, so we will have the linear equation

182

f(TVM) = 0.009(TVM) + 0.11 which corresponds to the lower bound and

changes in proportional to TVM values. As it can be observed from Figure 11.12

(b), if the intersection between the left bound and the lower bound become above

the schedulability limit line there is no chance of finding any TVM value that can

schedule this task set when the overhead is X = 16.

In order to validate our model, in the next section we have presented different

experiments with different number of task sets and various values of total

utilizations and CVM TVM⁄ . We have also considered different amounts of

overhead (X).

11.8.3 Overhead Simulation Study

During overhead simulation we had 10 task sets of 10 tasks each, n = 10 (we

saw no major difference when increasing the number of tasks). Each task

τI (1 ≤ I ≤ n)has a period TI (1 ≤ I ≤ n) and execution time CI (1 ≤ I ≤ n).

Each task‘s period TI is randomly generated in the range of [100, 1000] and the

execution time CI is randomly generated in the range of [100, TI]. The CI values

are then multiplied with a factor to get the desired utilization u. Different values

have been considered for overheads X = 1, 2, 4, 8, 16 . Different values for total

utilization u and CVM TVM⁄ are also considered (see Table 11.2).

Given X, u and CVM TVM⁄ , and using Equation (6) we calculate Ri for all

different values of TVM in the range of [0, 500]. We then calculate Ri Ti⁄ (1 ≤
i ≤ n) for each task for each value of TVM, and then we obtain the

Maximum Ri Ti⁄ (1 ≤ i ≤ n)for each value of TVM (see Figures 11.13 – 11.15).

The figures show the average value of the 10 task sets.

Table 11.2 : Overhead simulation, different values for Total utilization (u)

and 𝑪𝑽𝑴 𝑻𝑽𝑴⁄ .

 𝐂𝐕𝐌 𝐓𝐕𝐌⁄

T
o

ta
l

U
ti

li
za

ti
o

n
 (

𝐮
) 0.1 0.14 0.16 0.18 0.2

0.2 0.28 0.32 0.36 0.4

0.3 0.42 0.48 0.54 0.6

183

11.8.3.1 Total Utilization of 0.1

Figure 11.13 shows that for total utilization of 0.1 and overhead values are

more than 4 (X = 8 and X = 16), the task sets are not schedulable.

However, for small value of overhead X = 1, the task sets are always

schedulable for the values of CVM TVM⁄ considered here. When the overhead

values are X = 2 and X = 4, the task sets are schedulable only when CVM TVM⁄

= 0.2.

11.8.3.2 Total Utilization of 0.2

Figure 11.14 shows the Maximum Ri Ti⁄ values for different TVM and

overhead values when total utilization is 0.2. As we can observe in the figures,

the task sets are not schedulable when X = 16 (even for CVM TVM⁄ = 0.4). For

other overhead values (X = 1, 2, 4), we see that in most of the cases the task sets

are schedulable. When the value of CVM TVM⁄ = 0.4, even task sets with overhead

value of X = 8 are schedulable.

11.8.3.3 Total Utilization of 0.3

For total utilization of 0.3, Figure 11.15 shows that when CVM TVM⁄ is 0.54

and 0.6, all tasks in the task set will meet their deadlines for at least some TVM

value.

11.9 Conclusions

We consider a real time application consisting of a set of n real-time tasks

τi(1 ≤ i ≤ n) that are executed in a VM; the tasks are sorted based on their

periods, and τ1has the shortest period. We have defined a function

f −1(t, TVM, CVM) such that a real-time application that uses fixed priorities and

RMS priority assignment will meet all deadlines if we use a VM execution time

CVM and a VM period TVM such that Ri = f −1 ((Ci +

 ∑ ⌈Ri Tj⁄ ⌉Cj
i−1
j=1), TVM, CVM) ≤ Ti(1 ≤ i ≤ n). This makes it possible to use

existing real-time scheduling theory also when scheduling VMs containing real-

time applications on a physical server.

The example that we looked at in Section 10.5 shows that there is a trade-off

between on the one hand a long TVM period (which reduces the overhead for

switching between VMs), and low processor utilization (i.e., low CVM TVM ⁄). The

example also shows that the “critical” task, i.e., the task which puts the toughest

184

restriction on the maximal length of TVM, may be different for different values

on CVM TVM ⁄ .

From the simulation results shown in Section 10.6, we see that increasing the

number of the tasks (n) does not affect the maximum TVM for which the task set

inside the VM is schedulable (see Figure 11., Figure 11. and Figure 11.). The

simulation results also show that the standard deviation of the maximum TVM is

almost zero except when CVM TVM ⁄ is slightly above the total utilization (u) of

the task set (see Figure 11.4, Figure 11. and Figure 11.).

We have also presented an upper bound on the maximum TVM for which the

task set inside the VM is schedulable (see Figure 11.2). The simulation results

show that the maximum TVM is very close to this bound when CVM TVM ⁄ is

(significantly) larger than the total utilization (u) of the task set inside the VM.

If overhead from switching from one VM to another is ignored, the simulation

study in Section 11.6 shows those infinitely small periods (TVM) are the best,

since they minimize processor utilization. In order to provide more realistic

results, we included and evaluated an overhead model that makes it possible to

consider the overhead due to context switches between VMs. Along with the

model we also defined two performance bounds and a schedulability line, each

representing a straight line in a figure that plots the Maximum Ri Ti⁄ as a function

of the period of the VM (TVM). These three lines form a triangle and we show that

the intersection between the performance bounds and the schedulability lines

defines an interval where valid periods (i.e., periods that could result in all tasks

meeting their deadlines) can be found. This performance model also makes it

possible to easily identify cases when no valid TVM can be found.

We have also done a simulation study that shows how the overhead for

switching from one VM to another affects the schedulability of task set running

in the VM.

Our method is presented in the context of VMs with one virtual core.

However, it is easily extendable to VMs with multiple cores as long as each real-

time task is allocated to one of the (virtual) cores. In that case we need to repeat

the analysis for each of the virtual cores and make sure that all real-time tasks on

each core meet their deadlines.

1
8

5

Figure 11.4 : Standard deviation for 𝑇𝑉𝑀 divided with

average 𝑇𝑉𝑀when the total utilization u = 0.1.

Figure 11.5 : Average 𝑇𝑉𝑀 𝑇1⁄ when the total utilization u =

0.1.

1
8

6

Figure 11.6 : Standard deviation for 𝑇𝑉𝑀 divided with

average 𝑇𝑉𝑀when the total utilization u = 0.2.

Figure 11.7 : Average 𝑇𝑉𝑀 𝑇1⁄ when the total utilization u =

0.2.

1
8

7

Figure 11.8 : Standard deviation for 𝑇𝑉𝑀 divided with

average 𝑇𝑉𝑀when the total utilization u = 0.3

Figure 11.9 : Average 𝑇𝑉𝑀 𝑇1⁄ when the total utilization u =

0.3.

1
8

8

a.

b.

Figure 11.12 : (a)Prediction Model for 𝑪𝑽𝑴 𝑻𝑽𝑴⁄ = 𝟎. 𝟓𝟒, 𝒖 = 𝟎. 𝟑 𝒂𝒏𝒅 𝑿 = 𝟏 and (b) Prediction Model for 𝑪𝑽𝑴 𝑻𝑽𝑴⁄ =
𝟎. 𝟐, 𝒖 = 𝟎. 𝟏 𝒂𝒏𝒅 𝑿 = 𝟏𝟔

1
8

9

a.

b.

Figure 11.13. Overhead simulation results for 𝑪𝑽𝑴 𝑻𝑽𝑴⁄ = 𝟎. 𝟏𝟒, 𝟎. 𝟏𝟔, 𝟎. 𝟏𝟖, 𝟎. 𝟐 when total utilization 𝒖 = 𝟎. 𝟏

1
9

0

c.

d.

Figure 11.13. Overhead simulation results for 𝑪𝑽𝑴 𝑻𝑽𝑴⁄ = 𝟎. 𝟏𝟒, 𝟎. 𝟏𝟔, 𝟎. 𝟏𝟖, 𝟎. 𝟐 when total utilization 𝒖 = 𝟎. 𝟏

1
9

1

a.

b.

Figure 11.14. Overhead simulation results for 𝑪𝑽𝑴 𝑻𝑽𝑴⁄ = 𝟎. 𝟐𝟖, 𝟎. 𝟑𝟐, 𝟎. 𝟑𝟔, 𝟎. 𝟒 when total utilization is 𝒖 = 𝟎. 𝟐

1
9

2

c.

d.

Figure 11.14. Overhead simulation results for 𝑪𝑽𝑴 𝑻𝑽𝑴⁄ = 𝟎. 𝟐𝟖, 𝟎. 𝟑𝟐, 𝟎. 𝟑𝟔, 𝟎. 𝟒 when total utilization is 𝒖 = 𝟎. 𝟐

1
9

3

a.

b.

Figure 11.15. Overhead simulation results for 𝑪𝑽𝑴 𝑻𝑽𝑴⁄ = 𝟎. 𝟒𝟐, 𝟎. 𝟒𝟖, 𝟎. 𝟓𝟒, 𝟎. 𝟔 when total utilization is 𝒖 = 𝟎. 𝟑

1
9

4

c.

d.

Figure 11.15. Overhead simulation results for 𝑪𝑽𝑴 𝑻𝑽𝑴⁄ = 𝟎. 𝟒𝟐, 𝟎. 𝟒𝟖, 𝟎. 𝟓𝟒, 𝟎. 𝟔 when total utilization is 𝒖 = 𝟎. 𝟑

195

11.10 References

[1] Lee M., Krishnakumar A.S., Krishnan P., Singh N., and Yajnik S. 2010.

Supporting Soft Real-Time Tasks in the Xen Hypervisor. The 2010 ACM

SIGPLAN/SIGOPS International Conference on Virtual Execution

(Pittsburg, Mar. 2010).

[2] Duda K. and Cheriton D. 1999, Borrowed-Virtual-Time (BVT)

scheduling: supporting latency-sensitive threads in a general-purpose

scheduler. ACM SIGOPS Operating Systems Review, 33 (5), December

1999.

[3] Stoica I., Abdel-Wahab H., Jeffay K., Brauha S., Gehrke J., and Plaxton

G., 1996. A Proportional Share Resource Allocation Algorithm for Real-

Time, Time-Shared Systems. 17th IEEE Real Time Systems Symposium,

December 1996.

[4] Nieh J. and M. Lam. 2003. A SMART scheduler for multimedia

applications. ACM Transactions on Computer Systems, vol. 21, No. 2,

May 2003.

[5] Lin B. and DindaP.A. 2005. VSched: Mixing Batch and Interactive

Virtual Machines Using Periodic Real-Time Scheduling. The 2005

ACM/IEEE SC05 Conference (Seattle, Nov. 2005).

[6] Salimi H, Najafzadeh M., and Sharifi M. 2012. Advantages, Challenges

and Optimization of Virtual Machine Scheduling in Cloud Computing

Environments, International Journal of Computer Theory and

Engineering, vol. 4, no. 2, April 2012.

[7] Liu C. and Leyland J. 1973. Scheduling algorithms for multiprogramming

in a hard real-time environment, Journal of the ACM, 20(1), 1973.

[8] Lundberg L. 2002. Analyzing Fixed-Priority Global Multiprocessor

Scheduling. IEEE Real Time Technology and Applications Symposium,

San Jose, USA, September 2002.

[9] Burns A. and Wellings A. 2009. Real-Time Systems and Programming

Languages, Addison Wesley, ISBN 978-0-321-41745-9, 2009.

[10] Liu S., Quan G., and Ren S. 2010. On-line Scheduling of Real-time

Services for Cloud Computing. IEEE 6th World Congress on Services,

Miami, USA, July, 2011.

[11] Cucinotta T., Checconi F., Kousiouris G., Kyriazis D., Varvatigou T.,

Mazzetti A., Zlatev Z., Papay J., Boniface M., Berger S., Lamp D., Voith

T., Stein M. 2010. Virtulised e-Learning with Real-Time Guarantees on

the IRMOS Platform. IEEE International Conference on Service-Oriented

Computing and Applications (SOCA).December 2010.

196

[12] Luca A. and Tommaso C. 2011, Efficient Virtualization of Real-Time

Activities. IEEE International Conference on Service-Oriented Computing

and Applications. USA, 2011, pp 1-4.

[13] Yunfa L., Xianghua X., Jian W., Wanqing L., Youwei Y. 2010. A Real-

Time Scheduling Mechanism of Resource for Multiple Virtual Machine

System. The ChinaGride Conference. Guangzhou, China, 2010, pp 137-

143.

[14] Subramanian S., Nitish K., Kiran K. M., Sreesh P., Karpagam G. R.

2012. An Adaptive Algorithm for Dynamic Priority Based Virtual

Machine Scheduling in Cloud. The IJCSI International Journal of

Computer Science, November 2012, pp 397-383.

[15] Xiao J., Wang Z. 2012. A Priority Based Scheduling Strategy for Virtual

Machine Allocations in Cloud Computing Environment. The International

Conference on Cloud Computing and Service Computing, Shanghai,

China, 2012, pp 50-55.

[16] Sisu X., Justin W., Chenyang L., Christopher G. 2011. RT-Xen: Towards

Real-Time Hypervisor Scheduling in Xen. The International Conference

on Embedded Software, Taipei, Taiwan, 2011, pp 39-48.

[17] Tommaso C., Dhaval G., Dario F., Fabio C. 2010. Providing Performance

Guarantees to Virtual Machines. Proceedings of The 5th Workshop On

Virtualization And Cloud Computing, Italy, 2010.

[18] Tommaso C., Gaetano A., Luca A. 2008. Real-Time Virtual Machines.

The 29th Real Time Systems Symposium, Barcelona, Spain, December

2008.

[19] Tommaso C., Gaetano A., Luca A. 2009. Respecting temporal constraints

in virtualized services. The Computer Software and Applications

Conference, Seattle, U.S., July 2009, pp 73-78.

[20] Davis R., Burns A. A survey of Hard Real-Time Scheduling for

Multiprocessor Systems, ACM Computing Surveys, Vol. 43, No. 4,

October, 2011.

[21] Feng X. and Mok A. K. A Model of Hierarchical Real-Time Virtual

Resources. In Proceedings of the 23rd IEEE Real-Time Systems

Symposium, Austin, TX USA, Dec. 2002, pp 26-35.

[22] Shih I. and Lee I. Periodic Resource Model for Compositional Real-Time

Guarantees. In Proceedings of the 24th Real-Time Systems Symposium,

Cancun, Mexico, Dec. 2003, pp 2-13.

[23] Lipari G. and Bini E. A methodology for designing hierarchical

scheduling systems. J. Embedded Computing, 2005, pp 257-269.

[24] Davis R. and Burns A. Hierarchical fixed priority pre-emptive scheduling.

In 26th IEEE International Real-Time Systems Symposium. RTSS 2005.

197

[25] Shin I. and Lee I. Compositional real-time scheduling framework with

periodic model. ACM Transactions on Embedded Computing Systems

(TECS), 7(3):30, 2008.

[26] Phan L. T.X., Xu M., Lee J., Lee I., Sokolsky O. Overhead-Aware

Compositional Analysis of Real-Time Systems. In 19th IEEE Real-Time

and Embedded Technology and Applications Symposium, Philadelphia,

PA, 2013, pp 237-246.

[27] Lee J., Xi S., Chen S., Phan L. T. X., Gill C., Lee I., Lu C., Sokolsky O.

Realizing Compositional Scheduling through Virtualization. Proceedings

of the IEEE 18th Real-Time and Embedded Technology and Applications

Symposium, USA, 2012, pp 13-22.

[28] Asberg M., Nolte T., Kato S., Rajkumar R. ExSched: An External CPU

Scheduler Framework for Real-Time Systems. 18th IEEE International

conference on Embedded and Real-Time Computing Systems and

Applications (RTCSA), Seoul, 2012, pp 240-249.

[29] Yang J., Kim H., Park S., Hong C., Shin I. Implementation of

Compositional Scheduling Framework on Virtualization. Published in

Newsletter ACM SIGBED, Vol 8 Issue 1, 2011, pp 30-37.

[30] Behnam M., Nolte T., Shin I., Asberg M., Bril R. Towards Hierarchical

Scheduling in VxWorks. 4th International Workshop on Operating

Systems Platforms for Embedded Real-Time Applications, Prague, Czech

Republic, 2008, pp 63-72.

[31] Lipari G., Bini E. Resource Partitioning among Real-Time Applications.

Proceedings of the 15th Euromicro conference on Real-Time Systems,

2003, pp 151-158.

[32] Shin I., Lee I. Compositional Real-Time Scheduling Framework. 25th

IEEE International Real-Time Systems Symposium, 2004, pp 57-67.

[33] Zmaranda D., Gabor G., Popescu D.E., Vancea C., Vancea F. Using Fixed

Priority Pre-emptive Scheduling in Real-Time Systems. Published in

International Journal of Computers Communications and Control, 2011,

pp 187-195.

[34] Saewong S., Rajkumar R., Lehoczky J., Klein M. Analysis of hierarchical

fixed-priority scheduling. Proceedings of the 14th Euromicro Conference

on Real-Time systems, CA, 2002, pp 173-181.

[35] Baruah S. The Non-preemptive scheduling of periodic tasks upon

multiprocessors. Published in journal of real-time systems, USA, 2006, pp

9-20.

[36] Easwaran A., Shin I., Lee I., Sokolsky O. Bounding Preemptions under

EDF and RM Schedulers. MS-CIS-06-07, Department of Computer and

Information Science, University of Pennsylvania.

198

[37] Lundberg L., Shirinbab S. Real-time scheduling in cloud-based virtualized

software systems. In proceedings of the Second Nordic Symposium on

Cloud Computing, Oslo, Norway:ACM, 2013, pp 54-58.

[38] Easwaren A., Anand M., Insup L. Compositional analysis framework

using EDP resource models. Published in Real-time systems symposium,

2007, pp 129-138.

[39] Lu W., Li K., Wei H., Shih W. Rate monotonic schedulability tests using

period dependent conditions. Published in Journal Real-Time systems,

2007, pp 123-138.

[40] Meng X., Phan L., Lee I., Sokolsky O. Cache-aware compositional

analysis of real-time multicore virtualization platforms. Published in Real-

Time systems symposium, 2013, pp 1-10.

[41] Chen S., Phan L., Lee J., Lee I., Sokolsky O. Removing abstraction

overhead in the composition of hierarchical real-time systems.

Proceedings of the 17th IEEE Real-time and embedded technology and

applications, 2011, pp 81-90.

