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Abstract 

Virtualization is a component of cloud computing. Virtualization transforms 

traditional inflexible, complex infrastructure of individual servers, storage, and 

network hardware into a flexible virtual resource pool and increases IT agility, 

flexibility, and scalability while creating significant cost savings. Additional 

benefits of virtualization include, greater work mobility, increased performance 

and availability of resources, and automated operations. Many virtualization 

solutions have been implemented. There are plenty of cloud providers using 

different virtualization solutions to provide virtual machines (VMs) and 

containers, respectively. Various virtualization solutions have different 

performance overheads due to their various implementations of virtualization and 

supported features. A cloud user should understand performance overheads of 

different virtualization solutions and the impact on the performance caused by 

different virtualization features, so that it can choose appropriate virtualization 

solution, for the services to avoid degrading their quality of services (QoSs).  

In this research, we investigate the impacts of different virtualization 

technologies such as, container-based, and hypervisor-based virtualization as well 

as various virtualization features such as, over-allocation of resources, live 

migration, scalability, and distributed resource scheduling on the performance of 

various applications for instance, Cassandra NoSQL database, and a large 

telecommunication application. According to our results, hypervisor-based 

virtualization has many advantages and is more mature compare to the recently 

introduced container-based virtualization. However, impacts of the hypervisor-

based virtualization on the performance of the applications is much higher than 

the container-based virtualization as well as the non-virtualized solution. The 

findings of this research should be of benefit to the ones who provide planning, 

designing, and implementing of the IT infrastructure. 
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1 Introduction 

In the past few years, the IT industry’s focus on virtualization technology has 

increased considerably. Virtualization is often confused with Cloud Computing, 

virtualization is the fundamental technology that enables Cloud Computing. 

Essentially, in this study our focus would be more on virtualization technology 

rather than the Cloud. Virtualization implementation for organizations requires an 

in-depth analysis of the organization’s specific needs and requirements. However, 

a more important step before fully implementing a system or plan is to consider 

pros and cons of the technology. In this study, we consider different types of 

virtualization for instance container based, hypervisor based, and storage 

virtualization. We evaluate virtualization solutions provided by different vendors 

and compare the impacts of different solutions on the performance in terms of 

CPU, and disk utilization as well as response time and latency using real 

workloads for example a large real-time telecommunication application and the 

Cassandra NoSQL database. In addition, we investigate some of the key features 

in virtualization for instance live migration, over-allocation, horizontal and 

vertical scaling provided by various vendors such as VMware, KVM, Xen and 

Docker. The result of this research provides guidance for organizations to choose 

the right virtualization solution to fit their organization’s needs. 

1.1 Background 

The concept of virtualization has been around for long time, it has been 

developed in the late 1960s and early 1970s by International Business Machines 

(IBM). Virtualization is commonly defined as a software that separates physical 

infrastructure to create multiple dedicated resources.  

There are different types of virtualization such as, application virtualization, 

desktop virtualization, hardware virtualization, network virtualization, and 

storage virtualization. 

1.1.1 Application virtualization 

Application virtualization is a process where applications get virtualized and 

are delivered from a server to the end user’s device, such as laptops, smartphones, 

and tablets. The user can then access and use the applications from virtually 

anywhere. Any user actions are transmitted back to the hosting server. This type 

of virtualization is particularly popular for businesses that require the use of their 

applications on the go. Application virtualization vendors and their products 

include Microsoft App-V, Citrix XenApp, VMware Horizon Apps. 
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1.1.2 Desktop virtualization 

Similar to application virtualization mentioned above, desktop virtualization 

separates the desktop environment from the physical client device that is used to 

access it. The major advantages of desktop virtualization are that users are able to 

access all their personal files and applications from any location and on any 

computer. It also lowers the cost of licensing for installing software on desktops 

and maintenance and patch management is very simple. Virtual desktop 

infrastructure (VDI) is a type of desktop virtualization. 

1.1.3 Hardware virtualization 

Hardware virtualization also known as hardware-assisted virtualization or 

server virtualization is the abstraction of computing resources from the software 

that uses those resources. There are different virtualization techniques, such as 

full virtualization, emulation virtualization, paravirtualization, and operating 

system level virtualization. All these techniques vary in the virtualization 

solutions and the level of abstraction while having the same goal.  

1.1.3.1 Emulation virtualization 

In traditional physical computing environments (see Figure 1.1), the operating 

system is directly installed on hardware devices and has direct access to the 

underlying computer hardware and components including the processor, memory, 

storage and so on. This caused limitations for allocation of CPU and memory 

resources also required service down during hardware upgrades on each server. 

However, emulation virtualization installs a hypervisor or virtual machine 

monitor (VMM), which creates an abstraction layer between the operating system 

and the underlying hardware. This approach is known as “bare-metal/native 

hypervisor” (see Figure 1.1). The alternative to a bare-metal approach involves 

installing a host operating system first and then installing a hypervisor (see Figure 

1.1). This approach is often referred to as “hosted hypervisor”. Examples of a 

bare-metal/native hypervisors are Oracle VM, Microsoft Hyper-V, VMware ESX 

and Xen. A well-known example of a hosted hypervisor is Oracle VM 

VirtualBox, others includes VMware Server and Workstation, Microsoft Virtual 

PC, KVM, QEMU and Parallels. 

1.1.3.2 Operating system level virtualization 

In operating system level virtualization, the operating system is altered so that 

it operates like several different, individual systems. The virtualized environment 

accepts commands from different users running different applications on the 

same machine. The virtualized operating system separately handles the users and 
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their requests. The most popular operating system level virtualization method is 

called containerization or container-based virtualization. Container-based 

virtualization approach is to deploy and run distributed applications without 

launching an entire virtual machine for each application (see Figure 1.1). Instead, 

multiple isolated systems, called containers, are run on a single control host and 

access a single kernel. Because containers share the same operating system kernel 

as the host, containers can be more efficient than virtual machines, which require 

separate operating system instances. Some popular implementations are Docker, 

Linux containers (LXC), and OpenVZ. 

 

Figure 1.1. Traditional and Virtual Architecture 

1.1.4 Network virtualization 

Network virtualization is defined by the ability to create a logical software-

based view of the underlying hardware and software networking resources 

(switches, routers, etc.). As a result, network virtualization can better integrate 

with and support increasingly virtual environments. Some of the well-known 

network virtualization vendors are Arista, Nicira, and Cisco. 

1.1.5 Storage virtualization 

Storage virtualization is the grouping the physical storage from multiple 

network storage devices into what appears to be a single storage device that is 

managed from a central console. The management of storage such as performing 

the tasks of backup, archiving, and recovery is becoming more difficult and time 

consuming. Storage virtualization helps to address this problem by hiding the 

actual complexity of storage area network (SAN). Storage administrators can 

implement storage virtualization with software applications or by using hardware 

and software hybrid appliances. Some of the benefits of storage virtualization 

include automated management, expansion of storage capacity, reduced time in 
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manual supervision, easy updates, and reduced downtime. Vendors of software 

defined storage includes Compuverde, RedHat’s Ceph and Gluster storage, and 

VMware’s vSAN. 

1.2 Advantages and Disadvantages of Virtualization 

Making the commitment to switching over to a virtualized IT environment can 

cause a fair amount of uncertainty among business owners. It is important to 

know the advantages and disadvantages of doing so before making the leap. To 

help with this, below is an overview of the key advantages and disadvantages of 

going to a virtual environment. 

1.2.1 Advantages of virtualization 

There are many good reasons for companies and organizations to invest in 

virtualization today. Below is an overview of the key benefits of virtualization.  

1.2.1.1 Resource optimization 

Many servers typically run for most of the day at low levels of utilization. 

With features like thin provisioning, memory transparent page sharing and 

Dynamic Resource Scheduler load balancing for CPU and Memory, the 

administrators are better able to fully utilize the hardware resources. By 

virtualizing the hardware and allocating parts of it based on the real needs of 

users and applications, the available computing power, storage space and network 

bandwidth can be used much more effectively.  

1.2.1.2 Consolidation 

Reduce datacenter costs by reducing the physical infrastructure. It is common 

practice to dedicate individual computers to a single application. If several 

applications only use a small amount of processing power, the administrator can 

consolidate several computers into one server running multiple virtual 

environments. For organizations that own hundreds or thousands of servers, 

consolidation can dramatically reduce the need for floor space, HVAC, A/C 

power, and co-location resources. This means the cost of ownership is reduced 

significantly, since less physical servers and floor and rack space are required, 

which in turn leads to less heat and power consumption, and ultimately a smaller 

carbon footprint. 



5 

 

1.2.1.3 Increased availability 

Virtualization brings new opportunities to data center administration, allowing 

guaranteed uptime of servers and applications; speedy disaster recovery if large 

scale failures do occur. Instant deployment of new virtual machines or even 

aggregated pools of virtual machines via template images. Elasticity, that is, 

resource provisioning when and where required instead of keeping the entire data 

center in an always-on state. Reconfiguration of running computing environments 

without impacting the users. Server virtualization provides a way to implement 

redundancy without purchasing additional hardware. Redundancy, in the sense of 

running the same application on multiple servers, is a safety measure: if for any 

reason a server fails, another server running the same application takes over, 

thereby minimizing the interruption in service. This kind of redundancy works in 

two ways when applied to virtual machines, if one virtual system fails, another 

virtual system takes over or by running the redundant virtual machines on 

separate physical hardware you can also provide better protection against 

physical hardware failure. 

1.2.1.4 Operational flexibility 

Migration refers to moving a server environment from one place to another. 

With most virtualization solutions it is possible to move a virtual machine from 

one physical machine in the environment to another. With physical servers this 

was originally possible only if both physical machines ran on the same hardware, 

operating system and processor. In the virtual world, a server can be migrated 

between physical hosts with entirely different hardware configurations. Migration 

is typically used to improve reliability and availability: in case of hardware 

failure the guest system can be moved to a healthy server with limited downtime, 

if any. It is also useful if a virtual machine needs to scale beyond the physical 

capabilities of the current host and must be relocated to physical hardware with 

better performance. 

1.2.2 Disadvantages of virtualization 

The disadvantages of virtualization are mostly those that would come with 

any technology transition. With careful planning and expert implementation, all 

of these drawbacks can be overcome. 

1.2.2.1 Upfront costs 

For the providers of a virtualization environment, the implementation costs 

can be quite high for the servers and software licenses. Hardware and software 

are required at some point and that means devices must either be developed, 

manufactured, or purchased for implementation. This obstacle can also be more 
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readily navigated by working with a Managed IT Services provider, who can 

offset this cost with monthly leasing or purchase plans. 

1.2.2.2 Servers and applications compatibility issues 

Virtualization still has limitations, for example not every application or server 

is going to work within an environment of virtualization. That means an 

individual or corporation may require a hybrid system to function properly and 

since not every vendor supports virtualization and some may stop supporting it 

after initially starting it, there is always a level of uncertainty when fully 

implementing this type of system. 

1.2.2.3 Data security risks 

Because data is crucial to the success of a business, it is targeted frequently. 

The average cost of a data security breach in 2017, according to a report 

published by the Ponemon Institute, was $3.62 million. While a universal security 

model in a virtualized environment makes it easier, generally, to manage security, 

the virtual server might be on the same physical server as another company and 

that could open to risks. 

1.2.2.4 Scalability issues 

Server sprawl is one of the unintended consequences of virtualization. 

Although administrators can grow a business or opportunity quickly because of 

virtualization, they may not be able to become as large as they would like. They 

may also be required to be larger than they want to be when first starting out. 

Because many entities share the same resources, growth creates lag within a 

virtualization network. One large presence can take resources away from several 

smaller businesses and there would be nothing anyone could do about it. 

1.2.2.5 Bleed over issues 

Bleed over occurs when the contents of one virtual server affect other virtual 

servers. Bleed over issues are possible issues to be aware of when subscribing to 

a virtualized server. 

1.3 Thesis Outline and Structure 

Chapter 2 presents the Related Work, the Aim & Scope together with the 

Research Questions and the Methodology. In Chapter 3, the contributions are 

presented, and the results are discussed and concluded in Section 3.2 and 3.3 
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respectively. Finally, the proposed Future Work is presented in Section 3.3 and 

the publications are then presented in Chapters 4–11. 

2 Approach 

This chapter presents the Related Work for the publications in this thesis. 

Followed by Aim & Scope, Research Questions, and Research Methodology. 

2.1 Related Work 

Today, storage virtualization is set to play an important role in modern cloud 

computing infrastructures. In [1], the authors described the evolution of storage 

systems and presented a set of challenges driving research and development 

efforts in storage systems. Among the difficulties that storage administrators can 

encounter when managing storage for virtual environments are lowering the cost 

of storage, improving the performance, and increasing flexibility. Many types of 

distributed storage systems have emerged to solve these problems, such as 

commercial services, Google Drive [10], Dropbox [11], Compuverde [17] and 

Windows Azure Storage [12], open source system, HDFS [13], Ceph [14], 

GlusterFS [6], IOStack [9], OpenStack Swift [2] and Rackspace Cloud Files [15]. 

Storage can be divided into different types, such as traditional file and block 

storage technologies, object-based storage, software-defined storage (SDS) [4], 

and the latest data-defined storage [16].  

There are few studies on implementing different techniques to improve the 

performance of the storage for instance, in [3], the authors implemented a 

bandwidth differentiation technique for OpenStack Swift that can control each 

data stream and guarantees a high utilization of the device. In [5], the authors 

proposed a solution to enable multilevel data fault tolerance on a single disk to 

reduce storage system energy consumption. In [8], the authors proposed a self-

learning scheduler for OpenStack Cinder. In [18], the authors proposed an 

approach to separate the distributed storage’s journal and data partitions and 

others to different storage pools in order to speed up the I/O operations.  

Many studies exist that either directly or indirectly conducted a performance 

analysis or comparison between different storage solutions. For instance, in [7], 

the authors performed availability and sensitivity analysis on OpenStack Swift. In 

[19], the authors presented details on how different parameter and hardware 

configurations affect the performance of the OpenStack Swift. In [20], the authors 

reported performance results of Ceph in terms of latency and throughput during 

insert, read, update, and delete operations. In [21], the authors compared three 

storage solutions, Lustre, GlusterFS, and Hadoop. According to their results 

Hadoop performed better than Lustre and GlusterFS. In [22], the authors 



8 

 

compared performance of four different storage solutions, Amazon S3, Amazon 

Glacier, Windows Azure Blob, and Rackspace Cloud Files. According to their 

results all services show weaknesses related to some workload and there was no 

clear winner. In [23], the authors compared the performance of Google Drive, 

Dropbox, and OneDrive. According to their results, OneDrive has a good 

responsiveness to display learning object, Dropbox has a good performance to 

upload and to download the learning object, and Google Drive delivers good 

performance for manipulating the learning object. In [24], the authors compared 

features of different storage types as provided by Amazon Web Services, 

Windows Azure, and Google AppEngine. The focus of our work is to provide an 

extensive survey on differences between various storage types as well as a 

performance comparison between different storage systems (e.g., structured, 

unstructured, and software-defined storage) in terms of IOPS and response time 

as well as the throughput and recovery time during read, write, delete operations. 

When it comes to the hardware virtualization, the de facto solution is to 

employ the hypervisor-based and the container-based technologies. In the hosted 

hypervisor-based virtualization the access is only provided to the physical 

hardware, and each virtual machine needs a complete implementation of a guest 

operating system including the binaries and libraries necessary for applications 

[35]. As a result, the guest operating system will automatically compete on 

resources with the applications running on the virtual machine, and essentially 

decreases the quality of service (QoS) from the application’s perspective.  

In recent years, there have been several efforts to compare performance of 

different hypervisors. For instance, in [25], the authors compared Vmware 

Server, Xen Server and OpenVZ, in terms of network utilization, SMP 

performance, file system performance, and MPI scalability. According to their 

results OpenVZ provides the best overall performance. In [28], the authors 

compared the performance of Xen and KVM. According to their results Xen 

outperformed KVM on a kernel compile test and KVM outperformed Xen on 

I/O-intensive tests. In [30], the authors compared performance of Hyper-V, 

KVM, vSphere, and Xen. According to their results there is no perfect 

hypervisor, and that different workloads may be best suited for different 

hypervisors. In [31], the authors compared Xen and KVM performance using 

Hadoop MapReduce. According to their results, KVM was better for disk 

reading. Xen was better when there was a combination of disk reading and 

writing with CPU intensive computations. In [32], VMware compared 

performance of Xen and VMware ESX Server with non-virtualized. According to 

their results, VMware ESX Server is far better equipped to meet the demands of 

an enterprise datacenter than the Xen hypervisor. There are some similarities 

between these studies and ours. However, none of these studies considered real-

time telecommunication applications or NoSQL Cassandra database. In our work, 
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we also considered various virtualization features, such as, over-allocation of 

resources, VMware’s distributed resource scheduler (DRS) and live migration.  

To mitigate the performance overhead of hypervisor-based virtualization, 

researchers and practitioners recently started promoting container-based 

virtualization [35]. This technology is eventually evolved into virtualization 

mechanisms like Linux Vserver, OpenVZ and Linux Containers (LXC) [36], 

[37]. Unlike hypervisors, containers would be more resource efficient by 

excluding the execution of hypervisor and guest operating system, and more time 

efficient by avoiding booting (and shutting down) a whole operating system [38], 

[39]. Nevertheless, it has been identified that the cascading layers of container 

images come with inherent complexity and performance penalty [40]. In other 

words, the container-based virtualization technology could also negatively impact 

the corresponding quality of service (QoS) due to its performance overhead. 

Although the performance advantages of containers were investigated in several 

pioneer studies [25], [26], [36], [41], the container-based virtualization solution 

did not gain significant popularity until the recent underlying improvements in 

the Linux kernel, and especially until the emergence of Docker (Starting from an 

open-source project in early 2013) [42]. To examine the performance of Docker 

containers, a molecular modeling simulation software [43] and a PostgreSQL 

database-based Joomla application [44] have been used to benchmark the Docker 

environment against the VM environment. In [27], the authors compared energy 

efficiency of four hypervisors, KVM, Xen, VMware, and Hyper-V, as well as 

Docker container. According to their results, container virtualization which is 

light-weight in terms of system implementation and maintenance, is not more 

power efficient than hypervisors. In [29], the authors compared the performance 

of KVM, Docker and LXC with non-virtualized. According to their results the 

level of overhead introduced by containers can be considered almost negligible. 

The closest work to ours are [34], [45], and the IBM research report [33] on the 

performance comparison of VM and Linux containers. However, we recognized 

that these studies are incomplete (e.g., they did not consider non-CPU features, or 

did not finish the container’s network evaluation). In addition, our work denies 

the IBM report’s finding that “containers and VMs impose almost no overhead on 

CPU and memory usage” Furthermore, in addition to the average performance 

overhead of virtualization technologies, we are more concerned with their impact 

on the applications performance during horizontal or vertical scaling. There are 

also performance studies on deploying containers inside VMs (e.g., [46], [47]), 

however we did not include this virtualization scenario in this study. 

There has been a significant amount of effort dedicated to optimizing the 

performance of virtual environments [48], [49], [50], [54]. However, there is 

comparatively lesser work in real-time scheduling of tasks with hard deadlines in 

virtualized environments [55]. In [51], the authors studied a constant bandwidth 

server (CBS) on top of Earliest Deadline First (EDF) for scheduling real-time 



10 

 

tasks with hard deadlines on virtual machines. The results show that virtual 

machine technology and scheduling algorithm can affect the real-time application 

performance. In [52], the authors developed a Compositional Scheduling 

Architecture (CSA) that is built on the Xen virtualization platform. The 

architecture allows timing isolation among virtual machines and supports timing 

guarantees for real-time tasks running on each virtual machine. In [53], the 

authors addressed the problem of scheduling hard real-time tasks with arbitrary 

deadlines on multiprocessors. In [56], the authors proposed a combination of the 

two scheduling algorithms (one which assigns priorities to tasks in a monotonic 

relation to their request rates and the other one was the dynamic deadline driven 

scheduling algorithm) which appears to provide most of the benefits of the 

deadline driven scheduling algorithm, and can be readily implemented in existing 

computers. However, none of these works considered how the overhead for 

switching from one virtual machine to another affects the schedulability of task 

set running in the virtual machine. In our method we considered virtual machines 

with one virtual core. However, it is easily extendable to virtual machines with 

multiple cores as long as each real-time task is allocated to one of the (virtual) 

cores. So, in that case the analysis needs to be repeated for each of the virtual 

cores to make sure that all real-time tasks on each core meet their deadlines. 

2.2 Aim and Scope 

The main focus of this thesis is how to optimize various platform 

virtualization software and shared storage in order to improve the performance of 

the real-time applications. This thesis aims to provide useful insights to system 

designers, as well as data center operators for real-time workload placement and 

virtual machine scheduling. Currently, a comparison of performance impacts of 

different hypervisors and containers on real-time applications is lacking. 

Therefore, the intention of this thesis is to extensively evaluate performance of 

different server virtualization solutions and virtualization features for instance, 

load balancing, resource scheduling, live migration, and scalability using a large 

real-time telecommunication application and NoSQL Cassandra database 

workload. In addition, performance evaluation and comparison of different 

storage virtualization solutions as well as real-time scheduling of tasks with hard 

deadlines are included in this study. 

2.3 Research Questions 

The main questions we explore in this thesis is: How to choose from various 

hardware and storage virtualization solutions in order to improve the performance 

of the real-time applications and at the same time maximize the utilization of 

resources. While investigating this question other challenges have risen. First, 

virtualization’s performance overhead must be considered specially in case of 
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over-allocation of resources and the impact of the overhead on the performance 

of the real-time applications. Second, maturity of different technologies in terms 

of what virtualization features they offer for instance, load balancing, live 

migration, horizontal and vertical scaling as well as which has the lowest negative 

impact on the QoS of the real-time applications. The main research question has 

been approached using the following eight sub-research questions covered in this 

thesis. Research questions 2, 3, 4, 5, 6, and 7 investigating different hardware 

virtualization solutions and features. Optimization of storage virtualization 

solutions is Research question 1. Research question 8 is again optimizing 

scheduling algorithms for virtualization platforms. 

2.3.1 Research question 1  

What kind of shared storage do we need in terms of hardware and software to 

minimize performance bottlenecks? 

Storage for virtualization has changed data centers in many ways. Many 

companies moved most of their data from local disk resources to some form of 

shared storage. Therefore, it is of interest to evaluate performance of different 

storage solutions for virtualization. We investigate this research question in Paper 

I, Section 4. 

2.3.2 Research question 2 

Which platform virtualization software should we use to get the best 

performance of the real-time applications? 

There are number of vendors that provide hardware virtualization solutions. 

Every solution has its own pros and cons. Therefore, when organizations consider 

any of those options, they need to be aware of the tradeoff they are making 

between performance and virtualization flexibility. In Paper II (Section 5) we 

addressed this research question.  

2.3.3 Research question 3 

How the resource allocation parameters in the platform virtualization 

software should be configured to provide high utilization of the hardware 

resources, without affecting the performance of the real-time applications? 

In a virtualized environment, the physical hardware is partitioned into virtual 

components. Resources like memory and CPU must be precisely allocated. Any 

deviations will result in either under-utilization of resources or allocating too 

many resources that can negatively impact the performance of the real-time 
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applications. Therefore, in paper III (Section 6) we investigate different resource 

allocation scenarios to find the most efficient and accurate scenario. 

2.3.4 Research question 4 

How well VMware’s load balancer (DRS) performs compared to a human 

expert in terms of efficiently utilizing resources without affecting the performance 

of the real-time applications? 

Load balancing is a key component of highly-available infrastructures. It used 

to improve the performance and reliability of applications by distributing the 

workload across multiple servers. It is of interest to observe how a load balancer 

work in general and investigate its impact on the performance of real-time 

telecommunication applications. This research question is addressed in Paper IV 

(Section 7). 

2.3.5 Research question 5 

How does resource over-allocation affects the performance of the real-time 

applications during live migration, in terms of CPU and disk utilization as well 

as the application response time? 

Live migration and resource over-allocation technologies can contribute to 

efficient resource management in a cloud datacenter. However, live migration 

will inevitably entail downtime for the virtual machine involved. Even if the 

downtime is relatively short, its effect can be serious for real-time applications 

which are sensitive to response time degradations. So, the challenge is to over-

allocate resources in a way to improve the performance of the real-time 

applications during live migration. We investigate this challenge in Paper V, 

Section 8. 

2.3.6 Research question 6 

Which hardware virtualization solution performs better, container-based, or 

hypervisor-based, in terms of how much performance overheads they produce 

and how this overhead affects the performance of NoSQL database applications?  

Recently, virtual machines and containers received a widespread attention and 

many IT organizations overlooking how the two compare and contrast. Since 

containers are well-known for being light-weight and producing less performance 

overhead than virtual machines, it is of interest to compare the two technologies 

and their impact on the NoSQL database applications which are adopted 
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increasingly by many organizations as a more cloud-friendly solution to their big 

data problems. In Paper VI (Section 9) we investigate this research question. 

2.3.7 Research question 7 

How different hardware virtualization solutions, container-based and 

hypervisor-based perform during horizontal scaling and how do they impact the 

performance of the NoSQL database applications? 

One of the biggest advantages of virtualization in cloud is the scalability 

feature. There are two different approaches to accomplish scaling, vertical and 

horizontal. Vertical scaling is more costly compare to horizontal scaling and is 

limited by the fact that the virtual machines/containers can only get as big as the 

size of the server. However, horizontal scaling offers the ability to scale wider to 

deal with the traffic. The challenge with horizontal scaling is to calculate how 

many virtual machines/containers can be placed on the same server without 

negatively impacting the performance of the NoSQL database applications. In 

addition, it is of interest to understand how well containers and virtual machines 

scale, in terms of performance overhead produced by an extra instance added on 

the same server. This research question is addressed in Paper VII (Section 10). 

2.3.8 Research question 8 

How can we schedule a virtual machine containing a number of real-time 

applications with hard deadlines on the hypervisor level, in a way that all the 

tasks inside the virtual machine meet their deadlines?  

This research question can be broken down into the following sub-questions: 

2.3.8.1 Research question 8.1 

How can we schedule a hypervisor that contains number of virtual machines 

in a way that, all the real-time applications with hard deadlines that are running 

inside these virtual machines meet their deadlines?  

In virtualized environments performance of a virtual machine can be 

negatively affected by co-resident virtual machines which can result in missing 

deadlines for applications with hard deadlines. It is of interest to understand how 

scheduling is done in hypervisors and it can be optimized to avoid such negative 

impacts. We proposed an approach to solve this problem in Paper VIII, Section 

11. 
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2.3.8.2 Research question 8.2 

How the scheduling algorithm will be affected by the overhead that will be 

produced by switching from one virtual machine to another? 

In real systems the hypervisor scheduler should consider a performance 

overhead while switching between virtual machines in order to not negatively 

affecting the applications with hard deadlines. In Paper VIII (Section 11), we 

proposed an approach to calculate for the performance overhead while scheduling 

virtual machines on hypervisor level. 

2.4 Research Methodology 

2.4.1 Experimental Study 

We used comparative studies to address research questions 1, 2, 6 and 7. For 

research question 1 we did an experiment with three different distributed storage 

solutions (Compuverde vs. Gluster vs Openstack’s Swift). Then we gathered the 

measurement data, we performed an analysis of the data and presented the results. 

For research question 2, we considered various hypervisors, VMware, KVM, and 

XenServer. We collected data related to the performance in terms of CPU and 

disk utilization as well as response time of a real-time telecommunication 

application. In addition, we tested the three hypervisors’ live migration 

techniques. Here we also measured downtime and total migration time of 

different hypervisors and compared them with each other. For research question 

6, we compared a hypervisor-based (VMware) and a container-based (Docker) 

virtualization solutions. We collected data related to the performance in terms of 

CPU and disk utilization as well as latency of the Cassandra NoSQL database 

application under write, read and mixed workloads. For research question 7, we 

focused on comparing horizontal scalability of the two solutions and presented 

our observations as well as analysis of the performance data under different 

scenarios. 

For research question 3 we used VMware hypervisor and tested various 

scenarios for resource allocation. Here we gathered data from performance 

measurements, CPU and disk utilization as well as response time of a real-time 

telecommunication application. After we gathered all data, we conducted an 

analysis of the data and presented our observations.  

For research question 4, we compared performance of VMware’s automatic 

load balancer distributed resource scheduler (DRS) technology versus human 

expert manual decisions under various scenarios. We collected data related to the 

performance in terms of CPU utilization both before and after balancing the load 
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as well as the number of application requests failure. We analyzed the collected 

data and presented our observations. 

For research question 5, we used platform virtualization software (VMware) 

and tested various scenarios for resource over-allocation in combination with live 

migration using a real-time telecommunication application. Here we gathered 

data from performance measurements, CPU utilization, downtime, and total 

migration time of the application. After we gathered all data, we analyzed the 

data and present our observations.  

2.4.2 Theoretical and Simulation Study 

For research question 8, we used simulation and defined a prediction model. 

We proposed a mathematical equation that helped us when scheduling 

hypervisors and we implemented the equation in a simulation application, using 

the Java programming language. We did a number of experiments in the 

simulated environment to verify that our technique can be applied in various 

scenarios. In addition, we proposed a prediction model where we included 

performance boundaries and compared these bounds with our simulation studies. 

3 Results 

3.1 Contributions 

3.1.1 Contributions in Paper I 

The main focus in Paper I (Section 4) is to evaluate four large distributed 

storage systems. Two of these use Distributed Hash Tables (DHTs) in order to 

keep track of how data is distributed, and two systems use multicasting to access 

the stored data. We measured the read/write/delete performance, as well as the 

recovery time when a storage node goes down. The evaluations are done on the 

same hardware, consisting of 24 storage nodes and a total storage capacity of 768 

TB of data. These evaluations show that the multicast approach outperforms the 

DHT approach. 

3.1.2 Contributions in Paper II 

Paper II (Section 5) presents the results from a performance comparison of 

three well-known virtualization hypervisors: KVM, VMware and XenServer. In 

this paper, we measured performance in terms of CPU utilization, disk utilization 

and response time of a large industrial real-time application. The application runs 

inside a virtual machine (VM) controlled by the KVM, VMware and XenServer 
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hypervisors, respectively. Furthermore, we compared the three hypervisors based 

on downtime and total migration time during live migration. The results show 

that the Xen hypervisor results in higher CPU utilization and thus also lower 

maximum performance compared to VMware and KVM. However, VMware 

causes more write operations to disk than KVM and Xen, and Xen causes less 

downtime than KVM and VMware during live migration. This means that no 

single hypervisor has the best performance for all aspects considered here. 

3.1.3 Contributions in Paper III 

In Paper III (Section 6), we presented that overall system performance is 

sensitive to appropriate allocation of resources (e.g., CPU), and there are other 

factors such as context-switch overhead and waiting in a queue that are affecting 

the performance. We observed that over-allocation of (virtual) CPU resources to 

virtual machines when there are many numbers of them running on one host in a 

virtualized environment is a big challenge. Thus, it is important to identify 

performance bottlenecks and avoid them when running in virtualized 

environment. The results of this study will help virtualized environment service 

providers to decide how much resources should be allocated for better 

performance as well as how much resource would be required for a given load. 

3.1.4 Contributions in Paper IV 

In Paper IV (Section 7), we evaluated VMware’s Distributed Resource 

Scheduler (DRS) in a number of realistic scenarios using multiple instances of a 

large industrial telecommunication application. We also measured the 

performance on the hosts before and after the migration in terms of CPU 

utilization and compared automatic DRS migrations with manual human expert 

migrations. According to our results, DRS with the most aggressive threshold 

gave us the best results. It could balance the load in 40% of cases while in other 

cases it could not balance the load properly. DRS did completely unnecessary 

migrations back and forth in some cases. The results of this study should help IT 

organization to better understand how DRS works in general as well as how to 

configure migration thresholds in their environments to prevent DRS from 

additional vMotion activities.  

3.1.5 Contributions in Paper V 

In Paper V (Section 8), we conducted an experiment using a large 

telecommunication application that runs inside virtual machines, here we varied 

the number of vCPU resources allocated to these virtual machines in order to find 

the best choice which at the same time reduces the risk of under-allocating 

resources after the migration and increases the performance during the live 
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migration. We used VMware’s vMotion to migrate virtual machines while they 

are running. The results of this study should help virtualized environment service 

providers to decide how much resources should be allocated for better 

performance during live migration as well as how much resource would be 

required for a given load. 

3.1.6 Contributions in Paper VI 

In Paper VI (Section 9), we presented an extensive performance comparison 

between VMware and Docker container, while running Apache Cassandra as 

workload. Apache Cassandra is a leading NoSQL distributed database when it 

comes to Big Data platforms. As baseline for comparisons we used the 

Cassandra’s performance when running on a physical infrastructure (non-

virtualized). Our study shows that Docker had lower overhead compared to the 

VMware when running Cassandra. In fact, the Cassandra’s performance on the 

Dockerized infrastructure was as good as on the Non-Virtualized. 

3.1.7 Contributions in Paper VII 

In Paper VII (Section 10), we compared performance differences caused by 

scaling of the different hardware virtualization technologies in terms of CPU 

utilization, latency, and the number of transactions per second. The workload is 

Apache Cassandra, which is a leading NoSQL distributed database for Big Data 

platforms. Our results show that running multiple instances of the Cassandra 

database concurrently, affected the performance of read and write operations 

differently; for both VMware and Docker, the maximum number of read 

operations was reduced when we ran several instances concurrently, whereas the 

maximum number of write operations increased when we ran instances 

concurrently. 

3.1.8 Contributions in Paper VIII 

In Paper VIII (Section 11), we described a technique for calculating a period 

and an execution time for a VM containing a real-time application with hard 

deadlines. This result makes it possible to apply existing real-time scheduling 

theory when scheduling VMs on the hypervisor level, thus making it possible to 

guarantee that the real-time tasks in a VM meet their deadlines. If overhead for 

switching from one VM to another is ignored, it turns out that (infinitely) short 

VM periods minimize the utilization that each VM needs to guarantee that all 

real-time tasks in that VM will meet their deadlines. Having infinitely short VM 

periods is clearly not realistic, and in order to provide more useful results we have 

considered a fixed overhead at the beginning of each execution of a VM. 

Considering this overhead, a set of real-time tasks, the speed of each processor 
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core, and a certain processor utilization of the VM containing the real-time tasks, 

we present a simulation study and some performance bounds that make it 

possible to determine if it is possible to schedule the real-time tasks in the VM, 

and in that case for which periods of the VM that this is possible. 

3.2 Discussion 

In terms of storage virtualization, we compared two unstructured storage 

systems for Cloud Computing (Compuvede Unstructured and Openstack’s Swift) 

and two structured storage systems for Cloud Computing (Compuverde 

Structured and Gluster). Compuverde uses multicasting and Openstack’s Swift 

and Gluster use Distributed Hash Tables (DHTs). The architectural advantage of 

DHTs compared to multicasting is that they do not need to broadcast requests; the 

hash table gives them the address of the nodes that store of the requested data and 

it avoids communication overhead. However, the disadvantage with DHTs is that 

they need to run a hash function to obtain the address of the data, which 

introduces processing overhead. This means that the architectural decision, 

whether to use DHTs or multicasting will introduce different kinds of overhead: 

processing overhead for DHTs and communication overhead for multicasting. 

We believe that the main reason for the higher performance of Compuverede 

compared to Gluster and Openstack’s Swift is that Compuverde uses multicast 

instead of DHTs. The communication overhead introduced by multicasting does 

not affect the performance as negatively as the processing overhead introduced 

by DHTs. The recovery tests show that Compuverde recovers from a storage 

node failure much faster than OpenStack’s Swift and Gluster. One additional 

reason for Gluster to perform slower than Compuverde Structure could be that 

Gluster involves proxy servers in self-healing while Compuverde uses the many-

to-many replication pattern and only involves storage nodes in self-healing. 

Another reason could be that Compuverde has built its own recovery protocol 

from scratch, whereas OpenStack’s Swift and Gluster base their protocols on 

existing applications (e.g., rsync). Moreover, the processor utilization for Gluster 

never exceeds 50%, even for high loads. This indicates that there are internal 

performance bottlenecks in Gluster, which probably contributes to the relatively 

long time for self-healing. 

Further in the thesis we investigate impacts of different hardware 

virtualization solutions on performance of real-time applications. The results of 

the performance tests indicate that KVM and VMware performed better in terms 

of CPU utilization compared to Xen. While, in terms of disk utilization, KVM 

and Xen had similar performance while VMware had the highest disk utilization. 

In terms of response time of the real-time application, Xen had the longest 

response times compared to KVM and VMware. We believe that the method that 

a hypervisor uses to accurately emulate the physical hardware to prevent guests 

from accessing it except under carefully controlled circumstances is a key factor 
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in its performance. For instance, Type 1 hypervisors (KVM and Xen) avoid the 

overhead that a Type 2 hypervisor (VMware ESXi) incurs when it requests access 

to physical resources from the host OS. However, other factors also play an 

important role in a hypervisor’s performance. For example, VMware ESXi 

generally requires more time to create and start a server than KVM and Xen. In 

addition, we believe that the type of workload is a very important factor as well 

and different virtualization solutions may behave differently if the type of 

workload/application changes. The work presented in this thesis is limited to a 

test of only one real-time application, therefore our recommendation for IT 

organizations is to conduct a similar test using their application instead before 

they decide which type of hypervisor to use.  

In the thesis, we tested live migration technologies of different hypervisors 

(KVM, VMware ESXi and Xen). The results indicate that Xen’s live migration 

technology, XenMotion, performed better than VMware’s vMotion and KVM 

live migration technology in terms of downtime and total migration time. further, 

we investigate different ways of using the physical CPU resources and how it can 

affect system performance. In virtualized environments the number of virtual 

CPUs (vCPUs) does not need to match the number of CPUs (or CPU cores) on 

the physical server. So, if we sum up the number of vCPUs in all virtual 

machines on a physical server, we could end up in three situations: the total 

number of vCPUs exceeds the number of physical CPU cores (over-allocation), 

the total number of vCPUs is the same as the number of physical CPU cores 

(balanced allocation), or the number of vCPUs is smaller than the number of 

physical CPU cores (under-allocation). Resource allocation is very important 

especially during live migration of virtual machines. Most of the time the source 

host will become under-allocated and the destination host will become over-

allocated. It is clear that under-allocation will result in sub-optimal resource 

utilization since some physical CPU cores will not be used. Therefore, we 

conbined the live migration of VMware ESXi vMotion and over-allocation of 

CPU resources in order to figure out how different allocation of vCPUs to each 

virtual machine will affect the performance during live migration. Also, 

investigated how other virtual machines in the background are affected during the 

live migration of one virtual machine from the source host to the destination host. 

We hope that these studies can be helpful in optimizing existing live migration 

mechanisms. 

VM migrations can be used for balancing the utilization of server host 
resources in order to avoid having heavily loaded hosts while lightly loaded 
servers are available. Load balancing helps to maximize resource by optimizing 
the mapping of VMs to hosts. We considered five different test scenarios, and 
three different loads to test VMware distributed resource scheduler (DRS) under 
its three different levels of aggressiveness. This means that we looked at in total 
5*3*3 = 45 cases. In 23 of these cases DRS did nothing. In 11 cases it did (more 
or less) the same decision as a human expert. And in 7 cases DRS balanced the 
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load to some extent, but in 4 cases DRS suffered from the “ping-pong” effect and 
did completely unnecessary migrations back and forth. We observed that when 
the migration threshold was set to level 1 (conservative) or level 3 
(moderate/default) DRS did not migrate any virtual machine in most of the cases. 
However, in some cases, DRS started to migrate virtual machines even when the 
migration threshold was set to level 1 (conservative). One reason could be that 
VMware designers considered similar test scenarios when they designed the DRS 
algorithm (evacuating a physical machine for maintenance is a very common 
scenario); however, for some more complex test scenarios VMware’s DRS was 
unreliable, according to our results. Overall if we compare the system 
performance after DRS migration we can observe that we obtained better results - 
more close to human expert migrations - with the aggressive threshold (level 5). 
In 15 cases out of 45 cases where we used level 5, we got no migrations in two 
cases, good (human expert quality) migrations in 7 cases, reasonably good 
migrations in three cases, and the undesirable “ping-pong” effect in three cases. 
So even if the migrations are better in general using level 5, the risk of suffering 
from the “ping-pong” effect is also considerably higher compared to the other 
levels of aggressiveness. One very important factor here is to understand how 
well the application can handle the migrations and how often the migration 
should happen. For some real-time applications having too many migrations in a 
short time may cause request failures and disturbance in the application 
performance. Therefore, it is important for administrators of big data centers to 
investigate different migration thresholds and always select the one that results in 
an overall improvement in resource utilization and load balancing while at the 
same time does not negatively impacting the application performance. 

When it comes to deciding between container-based and hypervisor-based 
virtualization, we believe that it is important to look at the “scope” of the work, as 
others have suggested it as well. For instance, if one would like to run multiple 
instances of the same application can benefit from using container-based 
virtualization, however, if one is interested in running multiple applications that 
require different operating systems, hypervisor-based virtualization is 
recommended. Even though container solution is showing very low overhead and 
system resource consumption, it suffers from securing stored data which is 
crucial for database protection. Comparing containers architecture with virtual 
machines, containers cannot be secure candidate for databases because all 
containers share the same kernel and are therefore less isolated than virtual 
machines. A bug in the kernel affects every container and results in data loss. On 
the other hand, hypervisor-based virtualization is a mature and secure technology. 
Virtual machines are able to partition and distribute resources viably in the 
hypervisor without relying on kernel support or separate hardware. We 
investigate in the thesis, performance of NoSQL Cassandra database on both 
containers and virtual machines. According to our results, hypervisor-based 
virtualization suffers from noticeable overhead which effects the performance of 
the databases. Since both containers and virtual machines have their set of 
benefits and drawbacks, an alternative solution could be to combine the two 
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technologies to get the benefits of both security of the virtual machine with the 
execution speed of containers.  

Scalability is also the major discussion point in designing the infrastructure. 
Today’s applications need t scale based on the demand. Containers and virtual 
machines have their own advantages and limitation when it comes to scalability. 
There is always a difficult decision to decide which technology to choose 
considering requirements of different applications. In this study, we tested both 
technologies in terms of their scalability and their impact on the performance of a 
NoSQL database. We observed that running multiple instances of the Cassandra 
database concurrently, affected the performance of read and write operations 
differently; for both VMware and Docker, the maximum number of read 
operations was reduced when we ran several instances concurrently, whereas the 
maximum number of write operations increased when we ran instances 
concurrently. In general, according to our results, running Cassandra inside 
multiple clusters of VMware virtual machines was showing less performance in 
terms of maximum number of transactions per second compared to the Docker 
containers. 

Further in the thesis, we investigate hypervisor scheduling of virtual machines 

considering real-time applications with hard deadlines. Based on an existing real-

time application and the processor speed of the physical hardware, we calculated 

a period and an execution time such that the existing real-time application meets 

all deadlines when it is executed in a virtual machine. We show that if overhead 

for switching from one virtual machine to another is ignored, it turns out that 

(infinitely) short virtual machine periods minimizes the utilization that each 

virtual machine needs to guarantee that all real-time tasks in that virtual machine 

meet their deadlines. Having infinitely short virtual machine periods is clearly not 

realistic, and in order to provide more useful results we consider a fixed overhead 

at the beginning of each execution of a virtual machine. Considering this 

overhead, a set of real-time tasks, the speed of each processor core, and a certain 

processor utilization of the virtual machine containing the real-time tasks, we 

presented a simulation study and some performance bounds that made it possible 

to determine if it is possible to schedule the real-time tasks in the virtual machine, 

and in that case for which periods of the virtual machine that this is possible. We 

based our calculations on the case when we used static priorities, and thus RMS, 

in the original real-time applications. Our approach can easily be generalized to 

cases when other scheduling policies, such as EDF, are used in the original real-

time applications. The work presented in this thesis is limited to cover only 

processor, however with some modification this approach can be used for 

multiprocessor scenarios as well. 
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3.3 Conclusion and Future Work 

This thesis investigates how different virtualization solutions affect the 

performance of various applications. First, we evaluated different storage 

virtualization solutions and compared their I/O performance as well as their 

recovery time (when one node goes down). According to our study, Compuverde 

outperforms the Gluster and Openstack solutions in terms of read/write/delete 

process as well as recovery test. In the future studies, it would be interesting to 

compare Compuverde with other solutions such as Hadoop, Lustre, EMC Atmos, 

etc.  

Second, we measured the performance of three different hardware 

virtualization solutions in terms of CPU utilization, disk utilization and response 

time using a large real-time industrial application. In addition, we measured the 

performance of these three hypervisors in terms of downtime and total migration 

time during the live migration and compared their results. According to the 

results, both VMware and KVM perform better in terms of application response 

time and CPU utilization. Xen’s performance was below that of the two other 

virtualization systems tested. However, Xen’s live migration technology, 

XenMotion, performed better than VMware’s vMotion and KVM live migration 

technology in terms of downtime. For this experiment we used only two servers 

and maximum four virtual machines (two virtual machines on each server), it 

would be interesting to scale up the environment and run the same sort of tests 

and performance measurements when there are number of servers and many 

number of virtual machines. Also, it would be very interesting to test the live 

migration in that environment to see how scalable these three different 

hypervisors are and how powerful their live migration technique has been 

designed.  

Further, we quantified the cost of having different amounts of over-allocation. 
Providers of virtualized service can use this quantification in order to do a 
balanced trade-off between the flexibility offered by over-allocation and the 
performance penalty. Our results indicate that it is in many cases wise to use a 
moderate level of over-allocation (not exceeding a factor of two) which gives 
some flexibility at a very modest performance cost. Our measurements also show 
that the write latency decreases with the number of VMs sharing the physical 
server (seen indirectly as by considering that the amount of writes to disk 
increases with the number of VMs sharing the same physical server - due to write 
throttling in the application). Over-allocation increases the write latency (seen 
indirectly as by considering that the amount of writes to disk increases with over-
allocation - due to write throttling in the application). There was no clear 
connection between the application level response time with neither the number 
of VMs nor with the degree of over-allocation. To investigate over-allocation 
more, we measured the performance in terms of CPU utilization, migration down 
time and total migration time of a large telecommunication application during the 



23 

 

live migration. According to our results, over-allocation has a small effect on the 
CPU utilization of the low loaded VMs, while it highly effects the downtime and 
total migration time. However, once we have reached a certain amount of over-
allocation, then having more over-allocation does not have noticeable effect even 
on the downtime and the total migration time. Also, we show that live migration 
of a heavy loaded VM when the amount of over-allocation is medium or massive 
increases the risk of getting request failures especially for large real-time 
applications.  

In the thesis, we compared VMware’s DRS migrations versus human expert 
migrations using various realistic test scenarios. We show that there is still 
considerable room for improvement of VMware’s state-of-the-art DRS load 
balancing systems. In particular, load balancing needs to be more robust in the 
sense that completely unnecessary migrations should be avoided.  

To answer research question 6, we tried to address the problem of which 
solution is better for distributed databases such as Cassandra, Non-Virtualized, 
Virtualized (VMware) or Docker? The overall result showed that the biggest 
issue with running the Cassandra-Virtualized, is the significant resource and 
operational overheads of the virtualization layer which affects the performance of 
the application too. According to the results, Cassandra-Dockerized consumed 
fewer resources and operational overheads compared to the Cassandra-
Virtualized. In addition, the performance of Cassandra-Dockerized was as good 
as Cassandra-Non-Virtualized. Since both containers and virtual machines have 
their set of benefits and drawbacks, an alternative solution could be to combine 
the two technologies. In the future, it would be of interest to investigate the 
alternative solution by running containers inside virtual machines running 
Cassandra workload. In this way, IT organization can get the benefits of both 
security of the virtual machine with the execution speed of containers. Further in 
the thesis, we compared the performance of running multiple clusters of the 
NoSQL Cassandra database inside Docker containers and VMware virtual 
machines. We measured the performance in terms of CPU utilization, Latency 
mean and the maximum number of Transactions Per Second (TPS). According to 
our results, running Cassandra inside multiple clusters of VMware virtual 
machines was showing less performance in terms of maximum number of 
transactions per second compared to the Docker containers. The overall 
performance difference was around 20% lower during the mixed workload, 
around 16% lower during the write-only workload and around 29% lower during 
read-only workload. As it has been discussed before in general the read-only 
workload is showing less performance than the write-only workload, and the 
impact of the different types of workloads on the performance in terms of CPU 
utilization is higher on virtual machines than containers. However, considering 
the scalability aspects of the virtual machines and the containers, according to our 
results, containers scale better without losing too much performance while virtual 
machines overhead is very high, and it has a negative impact on the performance 
of the application. This might differ depending on the application and the type of 
workload as we have seen during our experiments. Therefore, cloud providers 
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need to investigate this issue while deploying both virtual machines and 
containers across data centers also at larger scale. 

To answer research question 8, we proposed a new algorithm for calculating a 

period and an execution time for a virtual machine containing a real-time 

application with hard deadlines. We also presented a simulation study and some 

performance bounds that made it possible to determine if it is possible to schedule 

the real-time tasks in the virtual machine, and in that case for which periods of 

the virtual machine that this is possible. This result makes it possible guarantee 

that the real-time tasks in a virtual machine meet their deadlines. If overhead for 

switching from one virtual machine to another is ignored, it turns out that 

(infinitely) short virtual machine periods minimize the utilization that each virtual 

machine needs to guarantee that all real-time tasks in that virtual machine will 

meet their deadlines. Having infinitely short virtual machine periods is clearly not 

realistic, and in order to provide more useful results we have also considered a 

fixed overhead at the beginning of each execution of a virtual machine. In our 

study we considered non-preemptive scheduling; however, it would be interesting 

to modify this algorithm in order to make it work as a pre-emptive scheduling 

algorithm. In the future, it would be interesting to execute this algorithm on in a 

real environment and see how it will perform. 
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4 Performance Evaluation of Distributed Storage Systems 

for Cloud Computing  

Abstract 

The possibility to migrate a virtual server from one physical computer in a 

cloud to another physical computer in the same cloud is important in order to 

obtain a balanced load. In order to facilitate live migration of virtual servers, one 

needs to provide large shared storage systems that are accessible for all the 

physical servers that are used in the cloud. Distributed storage systems offer 

reliable and cost-effective storage of large amounts of data and such storage 

systems will be used in future Cloud Computing. We have evaluated four large 

distributed storage systems. Two of these use Distributed Hash Tables (DHTs) in 

order to keep track of how data is distributed, and two systems use multicasting to 

access the stored data. We measure the read/write/delete performance, as well as 

the recovery time when a storage node goes down. The evaluations are done on 

the same hardware, consisting of 24 storage nodes and a total storage capacity of 

768 TB of data. These evaluations show that the multicast approach outperforms 

the DHT approach. 

4.1 Introduction 

The possibility to migrate a virtual server from one physical computer in a 

cloud to another physical computer in the same cloud is important in order to 

obtain a balanced load. In order to facilitate live migration of virtual servers, one 

needs to provide large shared storage systems that are accessible for all the 

physical servers that are used in the cloud. This is an important reason why the 

demand for storage capacity has increased rapidly during the last years.  

One problem with traditional disk drives is that data losses are common due 

to hardware errors. A solution to this is Redundant Array of Independent Disks 

(RAID) storage. RAID storage systems can automatically manage faulty disks 

without losing data, and scale by attaching new disk drives. However, the 

scalability of RAID is too limited for large cloud systems; this limitation is the 

main reason for using distributed storage systems. 

Distributed storage systems should be capable of sustaining rapidly growing 

storage demands, avoid loss of data in case of hardware failure, and they should 

provide efficient distribution of the stored content [2]. Two examples of 

distributed storage systems are OpenStack’s Swift and Gluster. We have 

evaluated the performance of three distributed storage systems: Compuverde, 
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OpenStack’s Swift, and Gluster. Openstack’s Swift and Gluster are both open-

source distributed storage systems that are available for downloading and 

testing. 

Some distributed storage systems use Distributed Hash Tables (DHTs) for 

mapping data to physical servers. In the DHT approach file names and addresses 

are run through a hashing function in order to indentify the nodes that have the 

requested data. Two examples of systems that use DHTs are Gluster and 

OpenStack’s Swift [22]. An alternative approach to using DHTs is to use 

multicasting where data requests are sent to multiple storage nodes and the 

nodes that have the requested data answer. Compuverde uses the multicast 

approach. The architectural advantage of DHTs compared to multicasting is that 

we do not need to broadcast requests; the hash table gives us the address of the 

nodes that store the requested data and we avoid communication overhead. 

However, the obvious disadvantage with DHTs is that we need to run a hash 

function to obtain the address of the data, which introduces processing overhead. 

This means that the architectural decision, whether to use DHTs or multicasting 

will introduce different kinds of overhead: processing overhead for DHTs and 

communication overhead for multicasting. Using DHTs or multicasting is a key 

architectural decision in distributed storage systems for Cloud Computing and 

this performance evaluation will give important insights regarding the 

performance implications of this decision. 

4.2 Background 

In distributed storage systems, the most common interfaces are Web Service 

APIs (Application Programming Interface) like Internet Small Computer System 

Interface (iSCSI) [25]; REpresentational State Transfer (REST)-based [23, 24] 

and Simple Object Access Protocol (SOAP)-based [27]. REST is a HTTP-based 

architectural style to build networked applications that allows access to stored 

objects by an Object Identifier (OID), i.e., no file or directory structures are 

supported [4]. We will refer to object-based storage systems as unstructured 

storage systems. 

There are other access methods like Network File System (NFS) and 

Common Internet File System (CIFS) which are used for accessing storage on a 

private network or LAN and Web-based Distributed Authoring and Versioning 

(WebDAV) which is based on HTTP. These APIs are file-based (variable-size) 

and use a path to identify the data; we denote these as structured storage 

systems. The architecture of structured storage systems is similar to Network 

Attached Storage (NAS) which provide file system functionality, i.e., structured 

storage systems support variable file and directory structures [3, 21].  
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The most well-known distributed storage systems are Amplistor [5, 30], 

Caringo’s CAStor[6, 31], Ceph [7], Cleversafe, Compuverde , EMC Atmos [8], 

Gluster [9], Google File System [10], Hadoop [11, 20], Lustre [12], OpenStack’s 

Swift [19], Panasas [13], Scality and Sheepdog. Some of the distributed file 

systems could be used by other applications, i.e., BigTable is a distributed 

storage for structured data and it uses GFS to store log and data files [36]. 

As shown in Table 4.1 AmpliStor, CAStor, Ceph, Cleversafe and Scality are 

unstructured distributed storage systems. Amplistor is designed to work with 

HTTP/REST. Just as in Amplistor, CAStor’s Simple Content Storage Protocol 

(SCSP) is based on HTTP using a RESTful architecture [34]. Ceph provides an 

S3-compatible REST interface that allows applications to work with Amazon’s 

S3 service. Cleversafe provides an iSCSI device interface, which enables users 

to transparently store and retrieve files as if they were using a local hard drive. 

EMC Atmos is a structured distributed storage system that provides CIFS 

and NFS interfaces, as well as web standard interfaces such as SOAP and REST. 

Other distributed file systems such as Google File System, Hadoop Distributed 

File System (HDFS), Lustre and Panasas provide a standard POSIX API. 

Sheepdog is the only distributed storage system which is based on Linux 

QEMU/KVM and is used for virtual machines. 

Some of the distributed file systems are also used for computing purposes, 

e.g., the Hadoop Distributed File System (HDFS) which distributes storage and 

computation across many servers. HDFS stores file system metadata and 

application data separately and users can reference files and directories by paths 

in the namespace (a HTTP browser can be used to browse the files of an HDFS 

instance) [35]. Lustre is an object-based file system used mainly for computing 

purposes. The Lustre architecture is designed for High Performance Computing 

(HPC). Panasas is also used for computing purposes and similar to Lustre, it is 

designed for HPC. 

Scality uses a ring storage system which is based on a Distributed Hashing 

Mechanism with transactional support and failover capability for each storage 

node. The Sheepdog architecture is fully symmetric and there is no central node 

such as a meta-data server (Sheepdog uses the Corosync cluster engine [32] to 

avoid metadata servers). Sheepdog provides an object (variable-sized) storage 

and assigned a global unique id to each object. In Sheepdog’s object storage, 

target nodes calculated based on consistent hashing algorithm which is a schema 

that provides hash table functionality and each object is replicated to 3 nodes to 

avoid data loss [33]. 

The remaining distributed storage systems in Table 4.1 are Compuverde, 

Gluster and OpenStack’s Swift. We have ported these three systems to the same 

hardware platform (see Section 4.3), thus making it possible to compare their  
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Table 4.1 : Overview of different distributed storage systems 
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File-based 
APIs (CIFS, 

NFS) 

Other APIs 
(WebDAV, FTP, 

Proprietary API) 

AmpliStor X - - - - - - X  X 

Caringo’s 

CAStor 
X - X - - X X - X - 

Ceph X - - - X - - X - X 

Cleversafe - X - - - - - X X - 

Compuverde X - X X - X X - - X 

EMC Atmos X - X - X - - X - X 

Gluster - - X X X - X - - - 

Google File 

System (GFS) 
X - X - - - - X X - 

Hadoop - - X - X - - X X - 

Lustre - - X - X - - X X - 

OpenStack’s 

Swift 
X - - - X - X - - X 

Panasas - - X - - - - X - X 

Scality X - - - X - X - - X 

SheepDog - X - - X - X - - X 
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performance (see sections 4.4 and 4.5). In subsections 4.2.1, 4.2.2, and 4.2.3, we 

discuss these three systems in detail. 

Distributed storage systems use either multicasting or Distributed Hash 

Tables (DHTs). Data redundancy is obtained by either using multiple copies of 

the stored files or by so called striping using Reed-Solomon coding [1]. When 

using striping the files are split into stripes and a configurable number of extra 

stripes with redundancy information are generated. The stripes (in case of 

Striping) and file copies (in case of Copying) are distributed to the storage nodes 

in the system. 

4.2.1 Compuverde 

Compuverde has no separate metadata. The system uses its own proprietary 

caching mechanism (SSD Caching that employs Write-back policy) [26] in the 

storage nodes. The solution uses multicasting, and supports geographical 

dispersion, heartbeat monitoring, versioning, self-healing and self-configuring. 

Compuverde supports a flat 128 bit addresses space (for unstructured storage) 

and NFS/CIFS (for structured storage). The system supports both Linux and 

Windows. Compuverde’s storage solution consists of two parts: The first part is 

unstructured and it contains all storage nodes (clusters). The other part is the 

structured part of the storage solution. This part contains gateways (this 

corresponds to what OpenStack calls proxy servers) to communicate with 

storage nodes. The communication is based on TCP unicast and UDP multicast 

messages. Structured data storage is achieved by storing information about the 

structure in envelopes. An envelope is an unstructured file that is stored on the 

storage nodes and contains information about other envelopes and other files.  

The storage cluster provides mechanisms for maintaining scalability and 

availability of the structured data by replicating the envelopes a (configurable) 

number of times within the cluster as well as providing access to them by the use 

of IP-multicast technology. 

The communication between the structured and the unstructured layers starts 

with an IP-multicast of a key from the gateway; this key identifies the requested 

envelope. All nodes that have the requested envelope reply with information 

about the envelope and what other nodes contain the requested envelope, with 

the current execution load on the storage node. The gateway collects this 

information and waits until it has received answers from more than 50% of the 

listed storage nodes that contains the identifier before it makes a decision on 

which one to select for retrieval of the file. 
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4.2.2 Gluster 

Gluster is a structured distributed storage system. Storage servers in Gluster 
support both NFS and CIFS. Gluster does not provide a client side cache in the 
default configuration [28]. Gluster only provides redundancy at the server level, 
not at the individual disk level. For data availability and integrity reasons Gluster 
recommends RAID 6 or RAID 5 for general use cases. For high-performance 
computing applications, RAID 10 is recommended. Distribution over mirrors 
(RAID 10) is one common way to implement Gluster. In this scenario, each 
storage server is replicated to another storage server using synchronous writes. In 
this strategy, failure of a single storage server is transparent, and read operations 
are spread across both members of the mirror. 

Gluster uses the Elastic Hash Algorithm (EHA). EHA determines where the 
data are stored and is a key to the ability to function without metadata. A 
pathname/filename is run through the hashing algorithm. After that, the file is 
placed on the selected storage. When accessing the file, the Gluster file system 
uses load balancing to access replicated instances. Gluster offers automatic self-
healing [9, 14]. 

4.2.3 OpenStack’s Swift 

OpenStack’s Swift is an unstructured distributed storage system. A number 

of “zones” are organized in a logical ring which represents a mapping between 

the names of entities stored on disk and their physical location. Swift is 

configurable in terms of how many copies (called “replicas”) that are stored, as 

well as how many zones that are used. The system tries to balance the writing of 

objects to storage servers so that the write and read load is distributed. The 

mapping of objects to zones is done using a hash function. Swift does not do any 

caching of actual object data but Swift-proxys can work with a cache 

(Memcached1) to reduce authentication, container, and account calls [29]. In 

Swift, there are separate rings for accounts, containers, and objects. When other 

components need to perform any operation on an object, container, or account, 

they interact with the appropriate ring to determine its location in the cluster. 

OpenStack’s Swift’s rings are responsible for determining which devices to use 

in failure scenarios [15, 16, 17, 18, 19].  

OpenStack’s Swift divides the storage space into partitions. In our case, 18 

bits of the GUID are used to decide on which partition a certain file should be 

stored, i.e., there are 218 = 262 144 partitions. These partitions are divided into 6 

zones. Zone 0 is mapped to storage nodes 0 to 3, zone 1 is mapped storage nodes 

4 to 7, and zone 5 is mapped to storage nodes 20 to 23. Storage nodes 0 to 7 are 

                                                           
1 Memcached is a distributed memory object caching system 
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handled by one switch, nodes 8 to 15 by one switch and nodes 16 to 23 by one 

switch (see Figure 4.1). There are 24*16 = 384 disks in the system and the 

262 144 partitions are spread out with 682 or 683 partitions on each disk 

(262144/384 = 682.666…). If a file is stored on partition X, the two extra copies 

of the file (there are three copies of each file) are stored on partitions (X + 87 

381) mod 262 144, and (X + 2 * 87 381) mod 262 144 (262 144 / 3 = 

87 381.333…). 

4.3 Experimental Setup 

4.3.1 Test Configurations 

Four different storage system configurations have been evaluated: 

1. Compuverde Unstructured  

2. Compuverde Structured  

3. OpenStack’s Swift (an unstructured storage system)  

4. Gluster (a structured storage system)  

The measurements use two load generating clients (see Figure 4.1). We use 

the same load for each configuration; the only part that has been changed is the 

interface. The clients work synchronously and report the result to the master 

controlling the clients (see Figure 4.1), which is responsible for monitoring the 

throughput. 

In the configurations 1 and 2, Compuverde 0.9 has been installed on CentOS 

6.2. In the configuration 3, version 1.4.3 of the OpenStack’s Swift (release 

name: Diablo) has been installed on Linux Ubuntu 10.04 and in the 

configuration 4, Gluster 3.2.5 has been installed on CentOS 6.2. 

The same hardware is used in each configuration. The storage system 

consists of 24 storage nodes, each containing sixteen 2 TB disks, i.e., a total of 

32 TB for each node and 768 TB storage for all 24 nodes. With the exception of 

configuration 1 (Compuverde Unstructured), all accesses to the storage system 

are routed through four proxy (gateway) servers. In configuration 1 the clients 

communicate directly with the storage system.  

Each proxy server has an Intel Quad processor, 16 GB RAM, and two 10 

Gbit network cards. Each storage node has an Intel Atom D525 processor, 4 GB 

RAM, and a 1 Gbit network card. All storage nodes and proxy servers run the 

Linux operating system. There are four switches that are used to transmit data 
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from four proxy servers and two load generating clients to the 24 storage nodes. 

The central switch is a Dell 8024F and the other three switches are Dell 7048Rs. 

Four proxy servers are connected to the central switch via four 20 Gbit fibers. 

Two load generating clients are connected to a central switch via two 10 Gbit 

fibers and the central switch is connected to the other three switches via three 40 

Gbit fibers. 

The four test configurations will now be described. 

4.3.1.1 Compuverde Unstructured 

In this configuration three copies of each file are created. The proxy 

servers are not used, and the load generating clients communicate directly with 

the storage nodes.  

4.3.1.2 Compuverde Structured 

In this case two copies of each file are created. The reason for this is that 

this case will be compared with Gluster, and Gluster only supports two copies of 

each file. The two load generating clients communicate with two proxy servers 

each. The communication protocol between the load generating clients and the 

proxy servers is NFS/CIFS. 

4.3.1.3 OpenStack’s Swift 

OpenStack’s Swift has three copies of each file, and the two load generating 

clients communicate with two proxy servers each. 

4.3.1.4 Gluster 

Gluster dedicates a volume to the lock file. In Gluster the storage nodes 

are arranged in pairs to obtain fault tolerance. This means that there are only two 

copies of each file. The communication protocol between the load generating 

clients and the proxy servers is NFS/CIFS. 

4.3.2 Test Cases 

Two kinds of tests are considered in this study: performance tests and 

recovery tests. 

4.3.2.1 Performance Tests 

In these test cases the read, write and delete performance are measured: 
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There are four test cases for each test configuration: 

1. We measure write performance. In these tests, a number of clients 

(implemented as full speed threads, i.e., as threads that issue write 

requests in a tight loop without any delay and with only minimal 

processing done between each request) running on two servers (see 

Figure 4.1) create files of size 0 KB, 10 KB, 100 KB, 1 MB and 10 MB, 

respectively. Writing 0 KB corresponds to creating a file and will be 

reported separately. We vary the number of clients using the steps 2, 4, 

8, 16, 32, 64, 128, and 256 clients. A write operation is a combination of 

Open, Write and Close. We measure MB/s and operations/s. 

2. We measure read performance. In these tests, a number of clients 

(implemented as full speed threads) running on two servers (see Figure 

4.1) read files of size 0 KB, 10 KB, 100 KB, 1 MB and 10 MB, 

respectively. Reading 0 KB corresponds to opening a file and will be 

reported separately. We vary the number of clients using the steps 2, 4, 

8, 16, 32, 64, 128, and 256 clients. A read operation is a combination of 

Open, Read and Close. We measure MB/s and operations/s. 

3. We measure delete performance. In these tests, a number of clients 

(implemented as full speed threads) running on two servers (see Figure 

4.1) delete files of size 10 KB, 100 KB, 1 MB and 10 MB, respectively. 

We vary the number of clients using the steps 2, 4, 8, 16, 32, 64, 128, 

and 256 clients. We measure operations/s. 

4. For the structured storage case, we use the SPECsfs2008 performance 

evaluation tool. The tool can be configured to issue a number of I/O 

Operations per Second (IOPS), and it then measures the actual achieved 

throughput in terms of IOPS and the average response time. 

The performance tests for small file sizes (0 KB and 10 KB) have been done 

by writing/reading/deleting 1,000,000 files to/from the storage nodes, but for 

larger file sizes (100 KB, 1 MB and 10 MB) the test has been continued by 

writing/reading/deleting files (between 50,000 and 100,000 files) until the results 

become stable. 

Gluster and OpenStack’s Swift do not use caching. In order to get fair 

results, the test has been done for Compuverde for two cases: caching and No 

Caching (NC). We limited the NC tests to 1 MB files 

4.3.2.2 Recovery Tests 

In these tests we measure how long it takes for the storage system to 

reconfigure itself after a node failure. We measure recovery performance by 

reformatting one storage node. When a storage node is reformatted the file 
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copies stored on that node are lost. We measure the time until the system has 

created new copies corresponding to the copies that were lost. 

4.4 Read and Write Performance 

In this section we look at the read and write performance of each of the four 

configurations. In Section 4.5 we compare the different configurations.  

4.4.1 Compuverde Unstructured 

Figures 4.2(a) and 4.2(b) show that the throughput is low when number of 

clients and the size of the files are small; the throughput increases when number 

of clients and the size of the files increase. It can also be noted that the 

performance in case of using cache in the storage nodes, e.g., 1 MB files, does 

not differ much compared to the case that using NC, i.e., 1 MB (NC). 

4.4.2 Compuverde Structured 

Figures 4.3(a) and 4.3(b) show that the data transfer rate is low when the 

number of clients and the size of the files are small and it increases when 

number of clients and size of files increase. It can also be noted that the 

performance difference between using caching in the storage nodes, e.g., 1 MB 

files, and using NC, i.e., 1 MB (NC), is approximately a factor of 1.5 when 

writing; there is no significant difference between caching and NC when 

reading.  

4.4.3 OpenStack’s Swift 

Figures 4.4(a) and 4.4(b) show that in cases of writing/reading the files of 

large size (10 MB), the data transfer rate increases rapidly when the number of 

the clients increases. While in case of writing files with size of 1 MB and less 

the curve is quite stable.  

4.4.4 Gluster  

Figures 4.5(a) and 4.5(b) show that the data transfer rate for large files 

increases when the number of clients increases. However, for smaller files the 

transfer rate does not increase so much when the number of clients increases. 

In fact, when the number of clients exceeds a certain values the transfer rate 

starts to decrease. The reason for this is probably that Gluster contains 

contention bottlenecks internally. According to the performance test results, the 
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utilization for the storage nodes never exceeds 50% for Gluster. For the other 

test configurations we get much higher utilization values. This is an indication 

that there are internal performance bottlenecks in Gluster. 

 

Figure 4.1. The physical structure of the test configuration 

4.5 Comparing the Distributed Storage Systems 

We have evaluated two unstructured storage systems (OpenStack’s Swift and 
Compuverde Unstructured) and two structured storage systems (Gluster and 
Compuverde Structured). In Section 4.5.1 we compare the performance of the 
two unstructured systems and in Section 4.5.2 we compare the performance of the 
two structured systems. In Section 4.5.3 we compare the time to recreate all the 
file copies in a storage system in case one of the storage nodes fails. 

4.5.1 Compuverde Unstructured vs. OpenStack’s Swift  

We talked to several cloud storage providers and it turned out that most of 

their users store small files with an average size of 1 MB. Therefore, the 

performance tests are compared only for 1 MB. Figure 4.6(a) shows that the 

write performance of Compuverde Unstructured for 256 clients (both when 
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using caching and NC) was roughly 800 MB/s, while for OpenStack’s Swift it 

was around 200 MB/s. Figure 4.6(b) shows that the read performance of 

Compuverde Unstructured for 256 clients (both when using caching and NC) 

was 1600 MB/s to 1900 MB/s, while for OpenStack’s Swift it was around 600 

MB/s. Figure 4.6(c) shows that the create files performance of Compuverde 

Unstructured for 256 clients was 10118 operations/s in case of caching and 6500 

operations/s in case of NC; for OpenStack’s Swift it was 600 operations/s. 

Figure 4.6(d) show that the open files performance of Compuverde Unstructured 

for 256 clients was 11153 operations/s in case of caching and 12826 operations/s 

in case of NC; for OpenStack’s Swift it was 4500 operations/s. The delete files 

performance test has been done by deleting files with a size of 1 MB. Figure 

4.6(e) shows that the delete files performance of Compuverde Unstructured for 

256 clients was 9956 operations/s in case of caching and 8145 operations/s in 

case of NC; for OpenStack’s Swift it was 498 operations/s. 

4.5.2 Compuverde Structured vs. Gluster 

The write/read/delete performance tests have been done for 1 MB file size. 

Figure 4.7(a) shows that the write performance of Compuverde Structured for 

256 clients was 655 MB/s in case of caching and 450 MB/s in case of NC; for 

Gluster it was 164 MB/s. Figure 4.7(b) shows that the read performance of 

Compuverde Structured for 256 clients was 780 MB/s in case of caching and 

821 MB/s in case of NC; for Gluster it was 270 MB/s. Figure 4.7(c) shows that 

the performance for Compuverde Structured for 256 clients was 7370 

operations/s in case of caching and 1239 operations/s in case of NC; for Gluster 

it was 241 operations/s. Figure 4.7(d) shows that the performance for 

Compuverde Structured for 256 clients was 11116 operations/s in case of 

caching and 12458 operations/s in case of NC; for Gluster it was 1029 

operations/s. The delete files performance test has been done by deleting files of 

1 MB size. Figure 4.7(e) shows that the performance for Compuverde Structured 

for 256 clients was 3548 operations/s in case of caching and 3367 operations/s in 

case of NC; for Gluster it was 441 operations/s.  

The test results using the Spec2008sfs tool are shown in Figures 4.8(a) and 

4.8(b). Figure 4.8(a) shows that both Compuverde Structured and Gluster meet 

the number of requested IOPS for 3000 IOPS and 4000 IOPS. However, when 

the requested numbers of IOPS increased to 5000 and above, Compuverde 

Structured delivered a number of IOPS relatively near to the requested one, 

while Gluster delivers a number of IOPS that is significantly lower than the 

requested number. Figure 4.8(b) shows the result of response time test that has 

been obtained using the Spec2008sfs performance evaluation tool. 

Compuverde’s response time is in the range of 3.5 ms to 17 ms, while for 

Gluster the response time is between 10.1 ms and 33.3 ms. 
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4.5.3 Recovery Test 

We did the recovery test for all four different configurations. The same 

recovery test has been run twice for each configuration.  

Table 4.2: Recovery Test Results 

Compuverde 

Unstructured 
19 minutes (1140 s) 18 minutes (1080 s) 

Compuverde Structured 22 minutes (1320 s) 22 minutes (1320 s) 

OpenStack 9 hours 27 minutes (34020 s) 10 hours 16 minutes (36960 s) 

Gluster 18 hours 27 minutes (66420 s) 18 hours 29 minutes (66540 s) 

As shown in Table 4.2, the recovery time for Compuverde Unstructured 

was 18-19 minutes and the recovery time for OpenStack’s Swift was 

approximately 10 hours. This means that the recovery time for Compuverde 

Unstructured is approximately 30 times faster than that of OpenStack’s Swift. 

One reason for this difference is that Compuverde uses multicasting whereas 

OpenStack’s Swift uses DHT. Another reason could be that OpenStack uses the 

rsync2 command that is responsible for maintaining object replicas, consistency 

of objects and perform update operations. It seems that using rsync command 

introduces a significant overhead which causes a performance decrease. The 

situation is similar for Compuverde Structured with a recovery time of 22 

minutes compared to Gluster with recovery time of approximately 18.5 hours. 

Compuverde Structured recovery time is thus approximately 50 times faster than 

Gluster recovery time. As discussed before, Gluster uses DHTs instead of 

multicasting. Gluster also uses rsync for replication. Another reason for the low 

performance of Gluster compare to Compuverde Structured is the architecture 

that is used by Gluster for replication. In Gluster the proxy servers are doing the 

self-healing while in Compuverde Structured storage nodes are performing the 

self-healing by themselves without involving any proxy servers which results in 

a many-to-many replication pattern.  

4.6 Discussion and Related Work 

Compared to conventional centralized storage systems, a distributed storage 

system allows for not only increased performance and redundancy, but also 

affords improved energy efficiency and lowering the carbon footprint of the 

                                                           
2 rsync is a file transfer program for Unix-like systems.  
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system. For instance, by removing the need for a central, high-powered storage 

controller and replacing it with low wattage storage nodes, such as the ones used 

in the experiments presented in this paper. Furthermore, a distributed storage 

system built from standard hardware components also makes it possible to 

exchange the individual nodes with nodes with a lower carbon footprint as 

technology advances. Reducing the carbon footprint and enabling green 

computing are two important aspects of Cloud Computing. 

In recent years, many research, and development efforts have been done in 

cloud computing, specifically on distributed file systems. In [37] the authors 

have done a performance comparison between several distributed file systems 

such as Hadoop, MooseFS (MFS) and Lustre. They have compared 

functionalities as well as I/O performance of these three file systems. 

In [38] the authors have done a performance comparison between Google 

File System (GFS) and MFS in terms of reliability, file performance and 

scalability. According to their comparison GFS and MFS are both reliable since 

resource files are backed up. But they found a single point of failure in master on 

GFS while it does not exist on MFS. In MFS there is a need for manual back up 

after a problem has occurred. Their comparison of the file performance indicates 

that GFS is used for large GB file size while MFS supports small files better.  

4.7 Conclusion 

We have compared two unstructured storage systems for Cloud Computing 

(Compuvede Unstructured and Openstack’s Swift) and two structured storage 

systems for Cloud Computing (Compuverde Structured and Gluster). 

Compuverde uses multicasting and Openstack’s Swift and Gluster use 

Distributed Hash Tables (DHTs). The architectural advantage of DHTs 

compared to multicasting is that we do not need to broadcast requests; the hash 

table gives us the address of the nodes that store of the requested data and we 

avoid communication overhead. However, the obvious disadvantage with DHTs 

is that we need to run a hash function to obtain the address of the data, which 

introduces processing overhead. This means that the architectural decision, 

whether to use DHTs or multicasting will introduce different kinds of overhead: 

processing overhead for DHTs and communication overhead for multicasting. 

We have compared the performance using a large storage system and 

realistic workloads, including the well-known Spec2008sfs test tool. Our 

experiments show that Compuverde has higher performance than the two 

systems that use DHTs. The performance advantage of Compuverde is 

particularly clear when the number of clients that issue simultaneous accesses to 

the system is high, which is typical in Cloud Computing. The performance 

advantage of Compuverde is not a result of caching in the storage nodes, i.e., the 
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performance of Compuverde using NC is still significantly higher than that of 

the other two systems. We believe that the main reason for the higher 

performance is that Compuverde uses multicast instead of DHTs. The 

communication overhead introduced by multicasting does obviously not affect 

the performance as negatively as the processing overhead introduced by DHTs.  

The recovery tests show that Compuverde recovers from a storage node 

failure much faster than OpenStack’s Swift and Gluster. Again, we believe that 

the use of multicast instead of DHTs is the main reason. However, this cannot be 

the only reason for the significant difference in recovery times. One additional 

reason for Gluster to perform slower than Compuverde Structure could be that 

Gluster involves proxy servers in self-healing while Compuverde uses the many-

to-many replication pattern and only involves storage nodes in self-healing. 

Another reason could be that Compuverde has built its own recovery protocol 

from scratch, whereas OpenStack’s Swift and Gluster base their protocols on 

existing applications (e.g., rsync). Moreover, the processor utilization for Gluster 

never exceeds 50%, even for high loads. This indicates that there are internal 

performance bottlenecks in Gluster, which probably contributes to the relatively 

long time for self-healing. 
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a. Write Performance Test Results (Compuverde 

Unstructured) 

 

b. Read Performance Test Results (Compuverde 

Unstructured) 

Figure 4.2: In figures (a) and (b) the y-axis denotes the data transfer rate in MB/s, while the x-axis denotes the 

number of clients that are writing/reading simultaneously. 
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a. Write Performance Test Results (Compuverde 

Structured) 

 

b. Read Performance Test Results (Compuverde 

Structured) 

Figure 4.3: In figures (a) and (b) the y-axis denotes the data transfer rate in MB/s, while the x-axis denotes the 

number of clients that are writing/reading simultaneously. 
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a. Write Performance Test Results (Openstack) 

 

b. Read Performance Test Results (Openstack) 

Figure 4.4: In figures (a) and (b) the y-axis denotes the data transfer rate in MB/s, while the x-axis denotes the 

number of clients that are writing/reading simultaneously. 
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a. Write Performance Test Results (Gluster) 

 

b. Write Performance Test Results (Gluster) 

Figure 4.5: In figures (a) and (b) the y-axis denotes the data transfer rate in MB/s, while the x-axis denotes the 

number of clients that are writing/reading simultaneously. 
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a. Write Performance Compuverde Unstructured vs. 

Openstack’s Swift 

 

b. Read Performance Compuverde Unstructured vs. 

Openstack’s Swift 

Figure 4.6: Comparison between the performance of Compuverde Unstructured and OpenStack’s Swift for files of 1 

MB. 
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c. Create Files Performance Compuverde Unstructured 

vs. Openstack’s Swift 

 

d. Open Files Performance Compuverde Unstructured 

vs. Openstack’s Swift 

Figure 4.6: Comparison between the performance of Compuverde Unstructured and OpenStack’s Swift for files of 1 

MB. 
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e. Delete Files Performance Compuverde Unstructured vs. Openstack’s Swift 

Figure 4.6: Comparison between the performance of Compuverde Unstructured and OpenStack’s Swift for files of 1 

MB. 
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a. Write Performance Compuverde Structured vs. 

Gluster 

 

b. Read Performance Compuverde Structured vs. Gluster 

Figure 4.7: Comparison between the performance of Compuverde Structured and Gluster for files of 1 MB. 
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c. Create Files Performance Compuverde Structured vs. 

Gluster 

 

d. Open Files Performance Compuverde Structured vs. 

Gluster 

Figure 4.7: Comparison between the performance of Compuverde Structured and Gluster for files of 1 MB. 
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e. Delete Files Performance Compuverde Structured vs. Gluster 

Figure 4.7: Comparison between the performance of Compuverde Structured and Gluster for files of 1 MB. 
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a. Performance Evaluation Compuverde Structured vs. 

Gluster 

 

b. Performance Evaluation Compuverde Structured vs. 

Gluster 

Figure 4.8: Comparison between the performance of Compuverde Structured and Gluster when using the 

Spec2008sfs tools. 
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5 Performance Comparison of KVM, VMware and 

XenServer using a Large Telecommunication 

Application 

Abstract 

One of the most important technologies in cloud computing is virtualization. 

This paper presents the results from a performance comparison of three well-

known virtualization hypervisors: KVM, VMware and XenServer. In this study, 

we measure performance in terms of CPU utilization, disk utilization and 

response time of a large industrial real-time application. The application is 

running inside a virtual machine (VM) controlled by the KVM, VMware and 

XenServer hypervisors, respectively. Furthermore, we compare the three 

hypervisors based on downtime and total migration time during live migration. 

The results show that the Xen hypervisor results in higher CPU utilization and 

thus also lower maximum performance compared to VMware and KVM. 

However, VMware causes more write operations to disk than KVM and Xen, and 

Xen causes less downtime than KVM and VMware during live migration. This 

means that no single hypervisor has the best performance for all aspects 

considered here. 

5.1 Introduction 

Virtualization has many advantages over non-virtualized solutions, e.g., 
flexibility, cost and energy savings [19][34]. As a more specific example, 
consider the cost associated with test hardware used during professional software 
development. This includes the initial price for purchasing the equipment, as well 
as operational costs in the form of maintenance, configuration and consumed 
electricity. For economic reasons, organizations often choose to use virtualized 
test servers, so that the test hardware can be shared and maintained in a cost-
effective way [20]. In order to provide maximum resource utilization, there 
should be no restrictions on the mapping of VMs to physical computers, i.e., it 
should be possible to run a VM on any physical server. In order to balance the 
load, it is desirable that a VM running on a physical host could be restarted on 
another physical host, i.e., there is a need for migrating VMs from one physical 
server to another [21][22][23]. There is support for migration in many commonly 
used virtualization systems, e.g., KVM Live Migration [16], VMware’s vMotion 
[18] and XenServers’s XenMotion [17]. 

There are three different approaches to VM migration: cold migration, hot 
migration and live migration. When cold migration is used the guest Operating 
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System (OS) is shut down, the VM is moved to another physical server and then 
the guest OS is restarted there. Hot migration suspends the guest OS instead of 
shutting it down. The guest OS is resumed after the VM is moved to the 
destination host. The benefit of hot migration is that application running inside 
the guest OS can preserve most of their state after migration (i.e., they are not 
restarted from scratch). In the live migration approach [13], the VM keeps 
running while its memory pages are copied to a different host. Live migration 
reduces the downtime dramatically for applications executing inside the VM. 
Live migration is thus suitable for high-availability services.  

In this paper, we compare the performance of KVM, VMware and XenServer, 
for two different scenarios: when no VM is migrated, and when a VM is migrated 
from one physical server to another. The work load is, for both scenarios, a large 
real-time telecommunication application. In the case when no VM is migrated, 
we measure the CPU utilization, the disk utilization (the number of write 
operations), and the average application response time. When a VM is migrated 
we measure the CPU utilization, the disk utilization (the number of write 
operations), and the down time due to live migration. 

The rest of the paper is organized as follows. In Section 5.2 the state of the art 
is summarized. Section 5.3 describes the experimental setup for the different 
hypervisors, and, in Section 5.4, we compare and analyze the results for KVM, 
VMware and XenServer. Finally, related work is discussed in Section 5.5. 
Section 6.5 concludes the paper. 

5.2 State of The Art 

5.2.1 Virtualization 

In its simplest form, virtualization is a mechanism for several virtual OS 
instances on a single physical system.  This is typically accomplished using a 
Hypervisor or Virtual Machine Monitor (VMM), which lies between the 
hardware and the OS. Virtualization is often beneficial for environments 
consisting of a large number of servers (e.g., a datacenter). 

A virtualization solution relies on several components, such as CPU 
virtualization, memory virtualization, I/O virtualization, storage virtualization, 
and so on. In this paper we focus specifically on CPU and memory virtualization. 

Current approaches to virtualization can be classified into: full virtualization, 
paravirtualization and hardware assisted virtualization [11][12].  

Full virtualization uses binary translation which translates the kernel code so 
that privileged instructions can be converted to user-level instructions during run-
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time. Detection and translation of privileged instructions typically carries a large 
performance penalty. KVM and VMware support this approach. 

Paravirtualization attempts to alleviate the performance of full virtualization 
by replacing privileged instructions with specific function calls to the hypervisor, 
so called hypercalls. This requires changes to the guest OS source code, which is 
not always possible. In particular, access to the source code of commercial OSs is 
heavily restricted. Both XenServer and KVM support paravirtualization. 

Recent innovations in hardware, particularly in CPU, Memory Management 
Unit (MMU) and memory components (notably the Intel VT-x and AMD-V 
architectures [12]), provide some direct platform-level architectural support for 
OS virtualization. Hardware assisted virtualization offers one key feature: it 
avoids the need to trap and emulate privileged instructions by enabling guests to 
run at their native privilege levels. VMware and KVM support this approach. 

5.2.2 Live Migration 

Live migration is a mechanism that allows a VM to be moved from one host 
to another while the guest OS is running. This type of mobility provides several 
key benefits, such as fault tolerance, hardware consolidation, load balancing and 
disaster recovery. Users will generally not notice any interruption in their 
interaction with the application, especially in the case of non-real-time 
applications. However, if the downtime becomes too long, users of real-time 
applications, in particular interactive ones may experience serious service 
degradation [4]. 

To achieve live migration, the state of the guest OS on the source host must be 
replicated on the destination host. This requires migrating processor state, 
memory content, local storage and network state. The focus of our study is on 
network state migration. 

Pre-copy is the memory migration technique adopted by KVM live migration, 
vMotion and XenMotion [13][28][27][32]. With this approach, memory pages 
belonging to the VM are transferred to the destination host while the VM 
continues to run on the source host. Transferred memory pages that are modified 
during migration are sent again to the destination to ensure memory consistency. 
When the memory migration phase is done the VM is suspended on the source 
host, and then any remaining pages are transferred, and finally the VM is 
resumed on the destination host [8]. The pre-copy technique captures the 
complete memory space occupied by the VM (dirty pages), along with the exact 
state of all the processor registers currently operating on the VM, and then sends 
the entire content over a TCP connection to a hypervisor on the other host. 
Processor registers at the destination are then modified to replicate the state at the 
source, and the newly moved VM can resume its operation [7][27][31].  
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The Kernel-based Virtual Machine (KVM) is a bare-metal (Type 1) 
hypervisor. The approach that KVM takes is to turn the Linux kernel into a VMM 
(or hypervisor). KVM provides a dirty page log facility for live migration, which 
provides user space with a bitmap of modified pages since the last call [5][6]. 
KVM uses this feature for memory migration. 

VMware is bare-metal (Type 1) hypervisor that is installed directly onto a 
physical servers without requiring a host OS. In VMware vSphere, vCenter 
Server provides the tools for vMotion (also known as Live Migration). vMotion 
allows the administrator to move a running VM from one physical host to another 
physical host by relocating the contents of the CPU registers and memory [9][10].  

XenServer is bare-metal (Type 1) hypervisor and runs directly on server 
hardware without requiring host OS. XenMotion is a feature supported by 
XenServer, which allows live migration of VMs. XenMotion works in 
conjunction with Resource Pools. A Resource Pool is a collection of multiple 
similar servers connected together in a unified pool of resources. These connected 
servers share remote storage and common networking connections [1][15][30].   

KVM, VMware and XenServer aim to provide high utilization of the 
hardware resources with minimal impact on the performance of the applications 
running inside the VM. In this study, we compare their performance by 
measuring downtime and total migration time during live migration as well as 
their CPU utilization, when running large telecommunication applications in the 
VMs. 

5.3 Experimental Setup 

Two HP DL380 G6x86 hosts have been used to test the performance of KVM 
and VMware ESXi 5.0. On top of the VMware ESXi 5.0, RedHat Enterprise 
Linux, Version 6.2 has been installed as a guest OS. The same hardware was used 
to test the performance of Xen for Linux Kernel 3.0.13 running as part of the 
SUSE Linux Enterprise Server 11 Service Pack 2. Each server is equipped with 
24 GB of RAM, two 4-core CPUs with hyperthreading enabled in each core (i.e., 
a total of 16 logical cores) and four 146 GB disk. Both servers are connected via 
1 Gbit Fibre Channel (FC) to twelve 400 GB Serial Attached SCSI (SAS) storage 
units. All devices are located in a local area network (LAN) as shown in Figure 
5.1. 

5.3.1 Test Configurations 

Three different test setups were evaluated: 

• KVM-based setup 
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• VMware-based setup 

• XenServer-based setup 

In each setup, two VMs are created inside hypervisor1 and hypervisor2, 
resulting in a total of four VMs (see Figure 5.1). One large industrial real-time 
telecommunication application is installed in the VMs. The application, referred 
to as server in the reminder of this paper, handles billing related requests. The 
server instances running on the VMs controlled by hypervisor1 are active in the 
sense that they are the primary consumers of the requests. The remaining two 
VMs under the control of hypervisor2 are running one passive instance of the 
server. 

 

Figure 5.1. Network Plan 

Each active server is clustered together with one passive server. Thus, two 
clusters are created. Both the active and the passive server in a cluster can receive 
requests. However, all traffic received by the passive server is forwarded to the 
corresponding active server. The active server then sends the response back to the 
passive server. 

Finally, the passive server sends the response to the requesting system. Traffic 
going directly to the active server is handled without involving the passive server. 

Another separate server runs a simulator that impersonates a requesting 
system in order to generate load towards the servers running in the clusters. The 
simulator is also located in the same LAN, but is not shown in Figure 5.1. 

5.3.2 Test Cases 

Two kinds of tests are considered in this study: performance tests and live 
migration tests. 
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5.3.2.1 Performance tests 

In these tests, we vary the number of CPU cores (logical cores) in the VMs as 
well as the load towards the application. 

We have three different core configurations: 6, 12 and 16 cores. For test cases 
with 12 cores and 16 cores the RAM for the VM is set to 24 GB, but for test case 
with 6 cores, the RAM size set to 14 GB for each of the VMs. This is an 
application specific setting that is recommended by the manufacturer. A single 
cluster is used for the case with 12 and 16 cores, respectively. Both clusters are 
used when testing the 6 cores configuration in order to assess the performance 
of two 6-core systems versus the performance a single 12-core system. 

There are five load levels used in this test: 500, 1500, 3000, 4300, and 5300 
incoming requests per second (req/s).  

For each setup the following metrics are measured: CPU utilization, disk 
utilization and response time. 

CPU utilization and disk utilization are measured inside the hypervisor on 
both servers using the commands presented in Table 5.1. For disk utilization, we 
consider only write operations to the shared storage shown in Figure 5.1. The 
response time is measured inside the simulator as the duration from the instant a 
request is sent from the simulator to the application until the simulator receives 
the corresponding reply. 

5.3.2.2 Live Migration tests 

In these tests, we measure CPU and disk utilization during live migration. 
Four VMs with 6 cores CPU and 14 GB of RAM were created. For each 
configuration, a single VM (active server, e.g., VM1 on Hypervisor1 in Figure 
5.1) is migrated from the source host to the destination host while the simulator 
creates a load of 100 req/s for the VM. At the same time the other VM (e.g. VM2 
on Hypervisor1 in Figure 5.1) on the source host is receiving 1500 req/s. The 
other VMs (VM1 and VM2 on Hypervisor2 in Figure 5.1) on the destination host 
receive negligible traffic in the form of 100 req/s and thus are not completely idle. 

Table 5.1. CPU and disk utilization command API 

Virtualization 

System 
Command Interface 

CPU Utilization Disk Utilization 

KVM ssh + sar ssh + iostat 

VMware 
vCenter Server- 

performance graphs 

vCenter Server- 

performance graphs 

XenServer ssh + xentop ssh + iostat 

Non-virtualized 

Server 
ssh + sar ssh + iostat 
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The application manufacturer considered this as a realistic example when one 
would like to migrate a VM to load-balance the system. 

In addition to CPU and disk utilization, we measure the downtime and the total 
migration time. The total migration time is obtained from the hypervisor for 
KVM and XenServer, and from vCenter for VMware (see Table 5.1). Downtime 
is defined as the time from the instant when the VM is suspended on the source 
host (Hypervisor1 in Figure 5.1) until the VM is restarted on the destination host 
(Hypervisor2 in Figure 5.1). We measured the downtime inside the simulator and 
our results indicate that it corresponds to the maximum response time of the 
application. 

5.4 Comparison between KVM, VMware and XenServer 

In Section 5.4.1, the KVM, VMware and XenServer virtualization systems are 
compared in terms of CPU utilization (6 cores, 12 cores, and 16 cores), disk 
utilization and response time. These values have been measured for different 
loads (500, 1500, 3000, 4300, 5300 req/s) except for XenServer, which could not 
handle the highest load (5300 req/s).In Section 5.4.2, we compare the CPU 
utilization and the disk utilization during live migration, and in Section 5.4.3, we 
compare the total migration time and downtime of the VMs during live migration 
for the KVM, VMware and Xen Server setups, respectively. 

5.4.1 CPU, Disk Utilization and Response Time (6 cores, 12 cores, 16 

cores) 

CPU and disk utilization are measured inside the hypervisors. We also 
performed the same measurements on the non-virtualized (target) server in order 
to establish a baseline for our results (see  

Table ). The response time is measured in the simulator. 

As shown in Figure 5.2, Xen has the highest CPU utilization (approximately 
80%) in the test case with 16 cores. Because of this high CPU utilization the 
application failed for traffic loads higher than 4300 req/s. KVM and VMware 
CPU utilization increases proportional to the load with an increase rate similar to 
that of the target. In Figure 5.3, we can observe that again Xen CPU utilization is 
significantly higher compared to VMware, KVM and the target in case of 12 
cores. As shown in Figure 5.4, KVM, VMware and the target CPU utilization in 
case of 6 cores, are almost identical while Xen CPU utilization is the highest and 
at the highest point is around 70% which is the 20% higher CPU utilization 
compared to KVM, VMware and the target.  

In Figure 5.5, we can observe that in case of 16 cores, VMware has the 
highest disk utilization, up to 25000 KB/s. KVM and Xen the disk utilization is 
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linearly increasing with a rate similar to that of the disk utilization of the target. 
However, for KVM’s and Xen’s disk utilization is always around 2000 KB/s 
higher compared to the target. As shown in Figure 5.6, in case of 12 cores, Xen 
and KVM disk utilization is 5000 KB/s higher compared to the target while disk 
utilization for VMware is the highest, with a maximum around 30000 KB/s. In 
Figure 5.7, we can observe that VMware has the highest disk utilization 
compared to KVM and Xen, which show 34000 KB/s at the highest point. Xen’s 
disk utilization in case of 6 cores is higher than KVM. The maximum disk 
utilization for Xen is around 25000 KB/s while the maximum KVM disk 
utilization is around 20000 KB/s. That is 5000 KB/s higher compared to the 
target but still the lowest compared to other virtualization systems. 

Figure 5.8 shows that the response time of the application when using Xen is 
the highest for all traffic loads except for loads higher than 4300 req/s. Since for 
loads higher than 4300 req/s the application failed when using Xen, KVM has the 
highest response time after Xen, and at the highest point is around 25 ms in case 
of 16 cores. The response times of the application when using VMware is similar 
to the response times we had on the target. As shown in Figure 5.9, the response 
time of the application when using Xen reaches 26 ms at the highest point. In 
case of KVM the application has also high response times with a maximum of 
around 20 ms, which is higher than VMware’s. The application response times 
when using VMware is similar to the response times of the application on the 
target. In Figure 5.10, we can observe that response time of the application when 
using Xen at the highest point is more than 25 ms, which is twice the application 
response time in case of the non-virtualized target. In the case of the 6 cores 
configuration using KVM the response time increases with a similar rate to the 
case when using VMware. However, for KVM and VMware the response times 
are around 5 ms higher compared to the target. 

5.4.2 CPU, Disk Utilization and ResponseTime during Live Migration 

CPU utilization is measured inside the hypervisors on both the source and the 
destination servers, during the live migration. Disk utilization is also measured 
inside both hypervisors. We initiate a migration after the system has been running 
for 15 minutes. 

As shown in Figure 5.12, KVM’s CPU utilization on the source is around 
26% before the live migration begins. The CPU utilization on the destination is 
around 6%. After the live migration has been started, the CPU utilization first 
increases to 35% and then decreases to 18% on the source. However, on the 
destination server the CPU utilization settles around 13% after the live migration. 
As shown in Figure 5.12, VMware’s CPU utilization before live migration is 
around 20% on the source hypervisor and around 4% on the destination 
hypervisor. When the live migration has been started, the CPU utilization on 
source increases to about 34% and remains at that level during the live migration. 
On the destination, the CPU utilization becomes around 15% after the live 
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migration has started. After the live migration has stopped, the CPU utilization 
decreases to around 15% on the source hypervisor and to around 10% on the 
destination hypervisor. In Figure 5.12, we can observe that the Xen CPU 
utilization before live migration is around 34% on the source hypervisor and 
around 7% on the destination hypervisor. In the beginning of the live migration, 
the CPU utilization on source increases to around 40% and on the destination the 
Xen CPU utilization increases to around 13%. After the live migration is 
completed, the CPU utilization on the source decreases to around 29%, while on 
the destination’s CPU utilization increases to 15%. 

As shown in Figure 5.13, KVM’s disk utilization on the source is around 
10000 KB/s before live migration. On the destination, the disk utilization is 
around 6000 KB/s before live migration. After the live migration has started, the 
disk utilization on the source decreases to 9000 KB/s, while on the destination’s 
disk utilization increases to 7000 KB/s. As shown in Figure 5.13, VMware’s disk 
utilization is around 15000 KB/s on the source before live migration while on the 
destination the disk utilization is around 7000 KB/s. After the live migration, the 
disk utilization on the source decreases to around 13000 KB/s and on the 
destination it increases to around 9000 KB/s. In Figure 5.13 we can observe that 
the Xen disk utilization before the live migration is around 13000 KB/s on the 
source and around 6000 KB/s on the destination. When the live migration has 
started, the disk utilization increases to around 30000 KB/s on the source and to 
around 23000 KB/s on the destination. After the live migration has completed, 
the disk utilization on the source decreases to around 9000 KB/s and on the 
destination the disk utilization increases to around 10000 KB/s. 

5.4.3 Downtime and Total Migration Time 

The downtime has been obtained from the maximum response time, which is 
measured inside simulator during the live migration. Downtime corresponds to 
the time that application is not available and the VM is suspended.  

As shown in Figure 5.11, the response time of the application when using 
KVM as hypervisor is around 1 ms before the live migration is started, but when 
the VM is suspended the response time increases to 700 ms. So the application 
was down for less than 700 ms. In Figure 5.11, we can observe that the response 
time of the application when using VMware as hypervisor is around 1 ms, but 
when the VM is totally down the application response time increases to 3000 ms. 
So the application downtime was around 3000 ms. As shown in Figure 5.11, 
before the live migration starts the application response time when using Xen is 
around 4 ms. When the live migration begins, the response time increases to 280 
ms. So the application was down for less than 4 ms. 

The total migration time is calculated inside the source hypervisor. It 
corresponds to the time that the VM started to be migrated until the complete VM 
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state has been transferred to the destination hypervisor (see Figures 5.12-5.13). 
The total migration time for VMware, KVM and Xen is around 2 minutes.  

5.5 Related Work 

In recent years, there have been several efforts to compare different live 
migration technologies. Xiujie et al. [1] compare the performance of vMotion and 
XenMotion under certain network conditions defined by varying the available 
bandwidth, link latency and packet loss. Their results show that vMotion 
produces less data traffic than XenMotion when migrating identical VMs. 
However, in networks with moderate packet loss and delay, which are typical in a 
Virtual Private Network (VPN), XenMotion outperforms vMotion in total 
migration time.  

Tafa et al. [2] compare the performance of three hypervisors: XEN-PV, XEN-
HVM and Open-VZ. They simulated the migration of a VM using a warning 
failure approach. The authors used a CentOS tool called “Heartbeat” that 
monitors the well-being of high-availability hosts through periodic exchanges of 
network messages. When a host fails to reply to messages the tool issues a failure 
notification that causes the hypervisor to migrate the VM from the “dead” host to 
one that is “alive”. Further, they compared CPU usage, memory utilization, total 
migration time and downtime. The authors have also tested the hypervisor’s 
performance by changing the packet size from 1500 bytes to 64 bytes. From these 
tests they concluded that Open-VZ has a higher CPU usage than XEN-PV, but 
the total migration time is smaller for Open-VZ (3.72 seconds for packet size of 
64 bytes) than for XEN-PV (5.12 seconds for packet size of 64 bytes). XEN-
HVM has lower performance than XEN-PV; especially regarding downtime. 
XEN-HVM had16 ms downtime while XEN-PV had 9 ms downtime for packet 
size of 64 bytes compared to our results with the large application we have got 
300 ms downtime for Xen and total migration time of around 2 minutes.  

In Chierici et al. [3] and Che et al. [29] present a quantitative and synthetically 
performance comparison between Xen, KVM and OpenVZ. They used several 
benchmarks (NetIO, IOzone, HEP-Spec06, Iperf and bonnie++) to measure CPU, 
network and disk accesses. According to their measurements, the OpenVZ has 
the best performance; also Xen hypervisor offers good performance while KVM 
has apparently low performance than OpenVZ and Xen. 

There has been a similar study to our work carried out by Hicks, et al. [14], in 
which the authors focused only on memory migration and storage migration in 
the KVM, XenServer, VMware and Hyper-V virtualization systems. However, 
they did not consider CPU utilization of hypervisor during live migration in their 
study. 

Clark et al. [27] introduced a method for the migration of entire operating 
system when using Xen as a hypervisor. They have tested different applications 
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and recorded the service downtime and total migration time. Their results show 
210 ms downtime for SPECweb99 (web-server) and 60 ms downtime for Quake3 
(game server) during the migration.  

Du et al. [24] proposed new method called Microwiper which makes less dirty 
pages for live migration. They implemented their method on the pre-copy based 
live migration in Xen hypervisor. They’ve tested two different programs with one 
with fixed memory writes and the other one with very quick memory writes. 
They compared the downtime and total migration time when using their method 
(Microwiper) versus the original Xen live migration (XLM). Their results show 
the original Xen live migration gets 40 ms downtime for VM memory size of 
1024 MB when running quick memory writes program and total migration time 
of 11 seconds while their technique (Microwiper) decreases the downtime so it 
became around 10 ms but they got the same total migration time. 

Web 2.0 application [33] has been evaluated by Voorsluys et al. [25] in terms 
of downtime and total migration time during live migration. They run XenServer 
as a hypervisor on their VM hosts. According to their experiments downtime of 
their system when serving 600 concurrent users is around 3 seconds and their 
total migration time is around 44 seconds which is much higher compared to our 
results because of the application that they’ve used also their setup is different. 

Jo et al. [26] implemented a technique to reduce the duplication of data on the 
attached storage. They used different applications, RDesk I and II, Admin I, etc. 
and they measured the down time and total migration time during live migration 
when using XenServer as hypervisor. Their experiment shows 350 seconds total 
migration time for the original Xen live migration when the maximum network 
bandwidth is 500 megabits per second while using their proposed technique 
reduces this number to 50 seconds when duplication ratio is up to 85 percent. 

5.6 Conclusion and Future Work 

The results of the performance tests for different configurations of number of 
CPU cores show that KVM and VMware CPU utilization is almost identical and 
similar to CPU utilization on the target machine (non-virtualized) while 
XenServer has the highest CPU utilization with a maximum around 80%. In 
terms of disk utilization, the results indicate that KVM and Xen have similar disk 
utilization while VMware has the highest disk utilization (around 30000 KB/s for 
the highest load). The response time of the application is the highest when using 
Xen as hypervisor showing around 25 ms at the highest point. For KVM and 
VMware, the response time is almost similar (around 20 ms). 

In general, KVM and VMware perform better in terms of CPU utilization 
while Xen CPU utilization is the highest. In terms of disk utilization KVM and 
Xen have similar performance while VMware has the highest disk utilization. 
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Further, in terms of response time Xen has the longest response times compared 
to KVM and VMware.   

As the results have shown, the CPU utilization during live migration is lower 
for KVM than for VMware while Xen had the highest CPU utilization during live 
migration. The disk utilization when KVM is used is 1000 KB/s lower compared 
to VMware during the migration. 

For VMware, the downtime is measured to 3 seconds during live migration. 
For KVM and Xen the measured downtime are only 0.7 seconds and 0.3 seconds, 
respectively.  

In general, the results presented in this study show that both VMware and 
KVM perform better in terms of application response time and CPU utilization 
for a configuration of two VMs with 6 cores each, compared to a configuration 
with a single VM with 16 or 12 cores. Xen’s performance is below that of the two 
other virtualization systems tested. However, Xen’s live migration technology, 
XenMotion, performs better than VMware’s vMotion and KVM live migration 
technology in terms of downtime. 
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Figure 5.2. KVM, VMware and Xen CPU utilization for 

16 cores 

 

Figure 5.3. KVM, VMware and Xen CPU utilization for 12 

cores 
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Figure 5.4. KVM, VMware and Xen CPU utilization for 6 

cores 

 

Figure 5.5. KVM, VMware and Xen disk utilization for 16 

cores 
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Figure 5.6. KVM, VMware and Xen disk utilization for 12 

cores 

 

Figure 5.7. KVM, VMware and Xen disk utilization for 6 

cores 
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Figure 5.8. KVM, VMware and Xen response time for 16 

cores 

 

Figure 5.9. KVM, VMware and Xen response time for 12 

cores 
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Figure 5.10. KVM, VMware and Xen response time for 6 

cores 

 

Figure 5.11. KVM , VMware and Xen response time during 

live migration 
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Figure 5.12. KVM , VMware and Xen CPU utilization during live migration 
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Figure 5.13. KVM , VMware and Xen disk utilization during live migration 
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6 Performance Implications of Over-Allocation of Virtual 

CPUs 

Abstract 

A major advantage of cloud environments is that one can balance the load by 

migrating virtual machines (VMs) from one server to another. High performance 

and high resource utilization are also important in a cloud. We have observed that 

over-allocation of virtual CPUs to VMs (i.e. allocating more vCPUs to VMs than 

there CPU cores on the server) when there are many VMs running on one host 

can reduce performance. However, if we do not use any over-allocation of virtual 

CPUs we may suffer from poor resource utilization after VM migration. Thus, it 

is important to identify and quantify performance bottlenecks when running in 

virtualized environment. The results of this study will help virtualized 

environment service providers to decide how many virtual CPUs should be 

allocated to each VM.  

6.1 Introduction 

There has been many studies on resource allocation in virtualized 

environments [1]. A virtual machine (VM) is usually configured with a number 

of virtual CPUs (vCPUs). One can decide to use the physical CPU cores in 

different ways, e.g., one can have a small number of VMs with a large number of 

vCPUs each, or a large number of VMs with a small number of vCPUs each. 

Previous studies show that different ways of using the physical CPU cores 

resources affects system performance [10]. If we sum up the number of vCPUs in 

all VMs on a physical server, we could end up in three situations: the total 

number of vCPUs exceeds the number of physical CPU cores (over-allocation), 

the total number of vCPUs is the same as the number of physical CPU cores 

(balanced allocation), or the number of vCPUs is smaller than the number of 

physical cores (under-allocation). Under-allocation clearly results in sub-optimal 

resource utilization since some physical cores are not used. One reason for over-

allocating resources in virtualized environments is live migration. In modern data 

centers virtual machines migrate from host to host based on the pre-defined rules 

without involving a human operator. This type of fully automatic load balancing 

can provide high and even resource utilization over a cluster of physical servers, 

e.g., VMware’s Distributed Resource Scheduler (DRS) [11]. One important 

challenge in such automatic environments is efficient resource utilization. If we 

do not use over-allocation, we may not be able to use all the physical cores after 

live migration. E.g., assume there are two hosts each with 24 CPU cores, and 

there are four virtual machines running on each host and each VM has 6 virtual 
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CPUs (vCPUs), i.e., balanced allocation. If one VM is migrated to the other host, 

the total number of VMs on the source host becomes three, and they will only 

have a total number of 18 vCPUs, i.e., six of the physical CPU cores will not be 

used. However, if each VM had 24 vCPUs allocated to it, there would be enough 

vCPUs to utilize the physical cores. There is a risk of achieving poor performance 

due to over-allocation of resources. One reason for this is that when we use over 

allocation the VMs will time share the CPU resources; in the case of no 

overallocation there is no or very little time sharing. Time sharing increases the 

number of context switches between VMs. The overhead due to excessive context 

switching between VMs, and other contention related activities, will decrease 

performance. These performance bottlenecks should be identified, quantified, and 

avoided. We have built a testbed using VMware. We have tested and analyzed 

vCPU over-allocation as well as no over-allocation scenarios; we have also 

compared the performance of a small number of VMs with many vCPUs with a 

larger number of VMs with fewer vCPUs each. In this study we have used a large 

industrial telecommunication application and measured the performance of the 

application under different conditions. The results of this study will help virtual 

environment service providers to decide how many virtual CPUs should be 

allocated to each VM.  

6.2 Related Work 

Over-allocating of resources has been used to increase the application 

performance during worst case demand. However, since servers operate most of 

the time at very low utilization level, most of these resources become wasted in 

non-peak times. Zhu et al. [12] and Liu et al. [13] designed resource controllers to 

modify CPU cycles in order to control CPU utilization of VMs. Padala et al. [14] 

studied over-allocation of the CPU resources on virtualized servers and build a 

model to control the CPU allocation dynamically to the individual VM. Espadas 

et al. [4] establish measurements for under and over provisioning of virtualized 

resources. They have also proposed a resource allocation mechanism in order to 

deploy Software-as-a-Service (SaaS) applications. Our work is distinct from their 

experiment in terms of the application that we have used; we have used a real-

time telecommunication application while they have used web applications. Yu et 

al. [5] proposed try-before-buy technique which is a thin-provisioning approach 

for resource allocation on the Xen hypervisor. In their approach, the try-step is 

when a minor share of physical resources will be allocated to the VM and 

performance will be measured. Then according to the conducted results, in the 

buy-step the amount of allocated resources will be increased if necessary. Watson 

et al. [15] proposed a probabilistic performance model which can based on 

performance measurements on the application, predicts how much CPU resources 

needs to be allocated to VMs to get better performance. Both [5] and [15], have 

used the Xen hypervisor while we have used VMware. Garg et al. [16] have 

considered resource allocation, and proposed a model in a datacenter that runs 
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different type of applications. However, none of their applications were real-time 

telecommunication applications. Wang et al. [17] investigate the impact of 

software resource allocation such as thread pool size on throughput in various 

servers (e.g., Apache web server). Later, Li et al. [18] designed an algorithm to 

find the best software resource allocations. Heo et al. [19] studied memory over-

allocation and presented their experimental results. Pooja et al. [1] provided 

performance measurements of memory intensive applications under different 

conditions, e.g., size of the memory allocated to each virtual machine changes 

under the given load, using windows server 2008 R2 and 2012. Their results 

indicate that when the number of page faults per second becomes constant, 

allocating more memory will not improve performance. In our experiment we 

have used a CPU intensive application. Larcheveque and Dubois [20] proposed 

an algorithm to keep the CPU utilization of a physical machine at 66% and when 

a physical machine becomes overloaded they migrate VMs to balance the load.  

6.3 Experimental Setup 

6.3.1 Testbed  

Eight servers have been used as the hosts. On these hosts we run VMware 

ESXi 5.5.0. On top of VMware, RedHat Enterprise Linux, version 6.2 has been 

installed as the guest OS. Each server is equipped with 128 GB of RAM, two 6-

core CPUs (2x Intel XEON 2.0 GHz) with hyperthreading enabled in each core 

(i.e., a total of 24 logical cores) [21][22][23].  

In order to reduce the time for live migration one would like that all servers in 

a cluster share the same disk; in this case no files need to be moved during a live 

migration of a VM. Having one large physical disk (or disk array) for a large 

cluster can, however, become a single point of failure and a performance 

bottleneck. A strong trend in virtualization and cloud computing is to use the so 

called distribute storage systems.  

In a distributed storage system the disks are physically distributed to the 

servers in the cluster, thus avoiding the single point of failure and performance 

bottleneck problems. However, a software layer creates an image of one shared 

virtual disk, thus avoiding the need to migrate files during live migration. One 

high performing distributed storage systems is the Compuverde system [24]. 

All servers in our cluster are connected to Compuverde distributed storage 
system. As shown in Figure 6.1, the distributed storage system consists of two 
components: 1) Compuverde software, that is installed inside a VM and 2) data 
storage which consists of SSD cache (7x Intel 330 60 GB (RAID 10+hotspare)) 
and disk persistent storage (8x Intel 330 60 GB (RAID 5(7+1))). As shown in  
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Figure 6.1. Compuverde storage system. The numbers (1-3) indicate the order in 

which an access to disk is handled. 1) a VM makes a disk access. 2) the 

hypervisor forwards the request to the Compuverde software that runs in a VM. 

3) the Compuverde software makes the actual disk access possibly including 

accesses to multiple distributed disks. In case of a read, the result is returned 

back to the requesting VM in reversed order. 

Figure 6.2, all Compuverde VMs communicate with each other in order to 
maintain and share information about stored data. 

The Compuverde software is responsible for managing distribution of data 
between all storage nodes in different hosts and it has been designed so that it 
treats all the SSD caches and disks as a virtual Network Attached Storage 
(vNAS). E.g., during write process, each virtual machine will write data to 
VMware ESXi, VMware communicates with the Compuverde software through 
the NFS protocol, and then the Compuverde software will communicate with 
other Compuverde instances on the other hosts in order to distribute data, and 
finally it will send data to the storage which is combination of SSD cache and 
disk storage (see steps 1-3 on the Hypervisor 1 in Figure 6.1).  

The same large real-time telecommunication application is installed in all 
VMs. The application, referred to as telecom server in the reminder of this paper, 
handles billing related requests. It consists of several hundreds of thousands lines 
of code.  

Another separate server runs a simulator that impersonates a requesting 
system in order to generate load towards the telecom servers. The simulator is not 
shown in Figure 6.2. All communications are through Ethernets (Intel X520 
SFP+ 10 GB). All clusters are monitored using VMware vCenter (see Figure 6.2). 
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Figure 6.2. Testbed setup 

For both the over-allocation and the no over-allocation test cases we used two 
VMware ESXi hosts and on each host we have created various numbers of VMs. 
As discussed previously, there are eight physical servers in the cluster, and all 
these servers contain disks and SSDs that are used by the distributed storage 
system, i.e., all eight servers are potentially involved in disk accesses. However, 
in these measurements we only run the application workload on two of the 
servers. 

Each host has 128 GB RAM in total, for both over-allocation and no over-
allocation test cases we have allocated 14 GB RAM to each virtual machine; 14 
GB RAM is the minimum RAM that is recommended for the application.  

On each host 24 cores are available, in order to avoid any interference 
between the virtual machine that contains the Compuverde software and other 
VMs, we have created two resource pools, one with 4 cores and the other one 
with 20 cores. The VM containing Compuverde software was bound to the 
resource pool with 4 cores and the other VMs are bound to the resource pool that 
contains 20 cores. 

6.3.2 Test cases 

We have measured CPU utilization, disk utilization and average response time 
for cases with and without over-allocation (see Table 6.1 for CPU and disk 
utilization and response time command API).  
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6.3.2.1 No over-allocation 

There are 20 CPU cores available for virtual machines on each host. For the 
case with no over-allocation we have divided 20 vCPUs equally between the 
VMs. Here we defined two test cases: one with a small (two) number of VMs and 
one with many (five) VMs. 

6.3.2.1.1 Two Virtual Machines 

In this case we have allocated 10 vCPUs to each virtual machine. 

6.3.2.1.2 Five Virtual Machines 

In this case we have allocated 4 vCPUs to each virtual machine. 

6.3.2.2 Over-allocation 

In this case we have allocated 10 or 20 vCPUs to each virtual machine.  

6.3.2.2.1 Two Virtual Machines 

In this case we have allocated 20 vCPUs to each virtual machine. 

6.3.2.2.2 Five Virtual Machines 

In this case we have allocated 10 vCPUs to each virtual machine. 

6.3.2.2.3 Five Virtual Machines 

In this case we have allocated 20 vCPUs to each virtual machine; we have 
called this case, massive over-allocation. 

6.4 Experimental Results 

Figure 6.3 shows the CPU utilization on the hypervisor level for all five cases. 
The CPU utilization on the hypervisor level shows how much the VMs are using 
the CPU resources that are available on the physical machine. In addition, we 
have measured CPU usage inside VMs, and we have observed that for the case 
with no over-allocation (solid blue line in Figure 6.3), CPU usage inside VMs 
and CPU utilization on the hypervisor level were more or less identical, which 
was expected since there was no over-allocation in this case. In the case with 
over-allocation (dashed green line in Figure 6.3) the average CPU usage inside 
VMs was roughly half of the CPU utilization on hypervisor level, which was also 
expected since there were twice as many vCPUs as physical cores in this case. 
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Also for the case with massive over-allocation (dashed blue line in Figure 6.3) the 
CPU utilization on hypervisor was roughly four times higher than the average 
CPU usage inside VMs, and in this case there were four times as many vCPUs as 
physical cores.  

If we compare the two red lines (solid and dashed) in Figure 6.3, we see that, 
in both cases (over-allocation and no over-allocation), the CPU utilizations are 
almost identical. However, the case with over-allocation has slightly higher CPU 
utilization for the same workload. When we compare two blue lines (solid and 
dashed), we see that the CPU utilization when there is over-allocation is much 
higher compare with the case with no over-allocation (see Figure 6.3). Figure 6.3 
also shows that the dashed green line is roughly in the middle between the solid 
blue line and the dashed blue line. One reason that we could not reach higher load 
than 5600 req/s in case of five virtual machines and 20 vCPUs could be the high 
CPU utilization on hypervisor, because when the load is 5600 req/s the CPU 
utilization is already 82%. If we compare the case with less over-allocation 
(dashed green line), we can observe that the CPU utilization is less than the case 
with massive over-allocation (dashed blue line), therefore it reaches the limit 
(82%) later so we could increase the load up to 6125 req/s. 

In Figure 6.4, the write rate to disk is measured on the hypervisor level; we 
have measured the write rate towards the NFS shared storage. For each VM, the 
application itself will add an extra write on disk even if there is no load coming in 
to the telecom application. The extra write for each VM can be observed in the 
graph and this explains the difference between red lines and the blue/green lines 
(red lines are representing the cases with two virtual machines while blue/green 
lines are representing the cases with five virtual machines).  

Table 6.1. Command API used for performance measurements 

VMware 

Virtualization 

System 

Command Interface 

CPU Utilization 

(%) 

Disk Utilization 

(kb/s) 

Response Time 

(ms) 

Inside 
Hypervisor  

vCenter Server- 

performance 

graphs 

vCenter Server- 

performance 

graphs 

Write Latency 
from vCenter 

Server- 

performance 
graphs  

Inside  

Virtual Machine 
ssh + sar ssh + iostat 

Inside the 

application 

The application is designed so that when the disk write latency is low (when 
writing to the disk is fast), it writes more frequently and may write the same data 
several times (the application keeps track of the write latency and throttles the 
write frequency according to that). If we compare the two red lines in Figure 6.4, 
we see that for the case with no over-allocation, the VMs write around 2000 kb/s 
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more compared to the case with over-allocation. The reason is that the write 
latency is lower in the case of no over-allocation. The higher write latency in case 
of over-allocation is probably due to the fact that the two VMs time share the 
physical cores (in the case of no over-allocation, there is no or very little time 
sharing). Time sharing and overhead for context switching increase the write 
latency.  

The same happened when we had five VMs. When comparing the two blue 
lines (dashed line with solid line), we see that when we had no over-allocation the 
write rate was higher compared to the case with over-allocation. The same 
discussion applies for the case with five VMs and 10 vCPUs (dashed green line); 
if we compare this case with the case with five virtual machines and 20 vCPUs 
(dashed blue line), we see that they are almost identical. While we expect the 
green dashed line with less over-allocation to be higher than the case with 
massive over-allocation (dashed blue line). The reason for this behavior is the 
disk write latency. We have measured the disk write latency and observed that for 
all three cases when we had over-allocation the write latency is higher compared 
to other cases with no over-allocation.  

This means that the write latency decreases when we have five VMs 
compared to having two VMs. When there are only two VMs the load is divided 
between those two VMs, e.g., when the load is 3000 req/s and we have two VMs, 
each VM will receive 1500 req/s. However, when there are five VMs the same 
load will be distributed equally between these five VMs, i.e., when the load is 
3000 req/s and we have five virtual machines, each VM will receive 600 req/s. 
Figure 6.4 shows that the write latency is smaller for many VMs with lower load 
on each VM compared to few VMs with higher load on each VM. Also, Figure 
6.4 shows that the cases with no over-allocation (the solid lines) have smaller 
write latency compare to the cases with over-allocation. 

Figure 6.5 shows the average response time of the application. If we compare 
the cases with five VMs with the cases with two VMs, we see that for five VMs 
the average response time is a bit lower than the cases with two VMs except for 
the case with less over-allocation (dashed green line), the response time is lower 
that all other cases. However, the response time differences are rather limited. 

6.5 Conclusion 

In this paper, we have presented a detailed comparison between over-
allocation and no over-allocation of vCPU resources to the VMs and how it 
affects the performance. We have measured the performance in terms of CPU and 
disk utilization inside hypervisor as well as response time of the large industrial 
telecommunication application.  

By allocating more virtual CPUs (vCPUs) than there are physical processor 
cores to the VMs we can allow live migration of VMs without ending up in a 
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situation where there are less vCPUs than physical cores on some server, i.e., by 
having over-allocation we can avoid under-allocation after live migration. 
However, we have shown that over-allocation of vCPU can result in significant 
CPU overhead. The overhead increases with the degree of over-allocation. Our 
measurements show that the cases with 2.5 and 5 times over-allocation results in 
more overhead compared to the case with 2 times more vCPUs compared to 
physical cores. 

The reason for the increased overhead is that when we have over-allocation 
the VMs need to time-share the physical cores. In the case of a balanced 
allocation (or under-allocation) a physical core can be permanently allocated to a 
VM. Time sharing of physical cores results in context switches, and context 
switches result in overhead. 

In this paper, we have quantified the cost of having different amounts of over-
allocation. Providers of virtualized service can use this quantification in order to 
do a balanced trade-off between the flexibility offered by over-allocation and the 
performance penalty. Our results indicate that it is in many cases wise to use a 
moderate level of over-allocation (not exceeding a factor of two) which gives 
some flexibility at a very modest performance cost. 

Our measurements also show that the write latency decreases with the number 
of VMs sharing the physical server (seen indirectly as by considering that the 
amount of writes to disk increases with the number of VMs sharing the same 
physical server - due to write throttling in the application). Over-allocation 
increases the write latency (seen indirectly as by considering that the amount of 
writes to disk increases with over-allocation - due to write throttling in the 
application). There was no clear connection between the application level 
response time with neither the number of VMs nor with the degree of over-
allocation.
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Figure 6.1. CPU utilization inside the hypervisor Figure 6.2. Write-Rate inside the hypervisor 
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Figure 6.3. Average response time of the application 
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7 Comparing Automatic Load Balancing using VMware 

DRS with a Human Expert 

Abstract 

In recent years, there has been a rapid growth of interest in dynamic 

management of resources in virtualized systems. Virtualization provides great 

flexibility in terms of resource sharing but at the same time it also brings new 

challenges for load balancing using automatic migrations of virtual machines. In 

this paper, we have evaluated VMware’s Distributed Resource Scheduler (DRS) 

in a number of realistic scenarios using multiple instances of a large industrial 

telecommunication application. We have measured the performance on the hosts 

before and after the migration in terms of CPU utilization, and compared DRS 

migrations with human expert migrations. According to our results, DRS with the 

most aggressive threshold gave us the best results. It could balance the load in 

40% of cases while in other cases it could not balance the load properly. DRS did 

completely unnecessary migrations back and forth in some cases. 

7.1 Introduction 

There are number of benefits with virtualization. One of the advantages of 
virtualization is dynamic migration of virtual machines (VMs) on a cluster of 
physical machines. VM migrations [1][2] can be used for balancing the utilization 
of server host resources in order to avoid having heavily loaded hosts while 
lightly loaded are available [3]. Load balancing helps to maximize resource by 
optimizing the mapping of VMs to hosts [4]. 

Virtualization technologies such as VMware [6][7] try to address load 
balancing issues. VMware’s Distributed Resource Scheduler (DRS) is a tool 
provided by VMware to automatically balance resource utilization across 
hardware resources. 

7.1.1 Distributed Resource Scheduler (DRS) 

VMware’s DRS [6][7] is a tool that monitors utilization of system resources 
and migrates VMs to balance the load using VMware VMotion commands. In 
order for DRS to balance the entire system, all hosts should be added to a DRS 
cluster. VMware Virtual Center (vCenter) continuously monitors CPU and 
memory usage for all hosts and VMs in the cluster. DRS migrates VMs within 
the cluster ensuring an even distribution of load among the hosts. When the 
utilization of a physical machine is beyond a fixed threshold, the machine is 
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deemed overloaded, and DRS will automatically select a VM on that physical 
machine to be moved to a lightly loaded physical machine [8]. 

DRS takes resource management decisions according to metrics related to 
VMs, hosts and cluster both for memory and CPU (network and storage not taken 
into consideration). According to different levels of aggressiveness for DRS the 
threshold for migration will change. VMware defines five DRS aggressiveness 
levels, namely: conservative (level 1), moderately conservative (level 2), 
moderate (default) (level 3), moderately aggressive (level 4), and aggressive 
(level 5). In this paper, we have built a testbed with number of VMs using 
VMware virtualization technology. In order to trigger VM migrations we did one 
or more load shifts were we used load generators to change the work that each 
WM is doing. We have compared migrations triggered by DRS algorithm with 
human expert migration decisions. In this study we have used a large industrial 
telecommunication application and measured the performance of the application 
in different conditions; before load shift when DRS is turned off, after migration 
when DRS is still turned off, after DRS is tuned on and after human expert 
migration.  

This paper is organized as follows: in Section 7.2 we present some related 
works. In Section 7.3, we present our experimental setup and different test 
scenarios configurations. Section 7.4 is the core part of the paper, in which we 
present our results and make a comparison. Section 7.5 concludes the paper. 

7.2 Related Work 

Arzuaga and Kaeli [5] propose an algorithm for load-balancing and compared 
their algorithm with VMware’s DRS. Their results indicate that they can 
outperform VMware’s DRS and improve performance up to 5%. 

 In [7], the authors tested the effectiveness of VMware’s DRS algorithm. The 
difference between their test cases and our test cases is that here we have used a 
more complex application and run our tests using three hosts with more complex 
load scenarios; while in their work they have only tested the VMware’s DRS 
algorithm during one test case (when they add a new host to the VMware’s DRS 
cluster).  

Lazri et al. [8] did experiments on how an attacker can influence the resource 
management system to make it trigger VM migrations using VMware’s DRS. 
Parts of their study related to VMware’s DRS analysis are similar to our study. 
However, they have only considered live migrations from a security perspective 
while in our work we have looked at performance and focused on comparison 
between human expert decisions and live migrations triggered by DRS. 

Lu et al. [9] proposed a performance management tool and compared it with 
VMware’s DRS. The authors only considered resource settings at the individual 
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VM level or at the resource pool level. Our work differs from their work; we have 
compered how smart the VMware’s DRS algorithm is compared to human expert 
migration decisions.  

In [10], the authors proposed an approach which automatically finds 
thresholds close to the optimal, i.e., threshold which yields an optimal number of 
VM migrations. However in their experiment they have done their experiment 
using UML (User Mode Linux) VMs while we have used VMware.  

In [11], the authors proposed an algorithm for automated VM migration in 
order to balance the load. Kochut and Beaty [11], also presented an analytical 
model of virtual machine migration. The authors did their experiments using 
VMware and XenServer hypervisors. However, none of them considered 
VMware’s DRS.  

In [13], the authors explain that a physical host needs to have a higher 
remaining capacity in order to accommodate incoming VMs; therefore they have 
designed their migration metric based on maximizing the variance of remaining 
capacities of the physical servers and also consider the cost of migration. Their 
work is very similar to [5], one difference is that in [13], they have considered 
cost of migration.  

In addition to these studies, there are several DRS products and projects that 
have been developed by research institutions, like: Entropy [14], Sandpiper [15], 
Smart-DRS [16] and so on. 

7.3 Experimental Setup 

7.3.1 Testbed Setup 

The experimental setup is shown in Figure 7.4. It consists of three physical 
hosts running VMware ESXi 5.5.0. On top of VMware ESXi 5.5.0, RedHat 
Enterprise Linux, Version 6.2 has been installed as a guest OS. Each host is 
equipped with 128 GB of RAM, two 6-core CPUs (2x Intel XEON 2.0 GHz) with 
hyperthreading enabled in each core (i.e., a total of 24 logical cores). These hosts 
create a DRS cluster. All hosts in our DRS cluster are connected to the 
Compuverde [17] distributed storage system which provides 2.55 terabyte (TB) 
vNAS storage. The Compuverde distributed storage system consists of two 
components, 1) Compuverde software, that is installed inside a virtual machine 
and 2) data storage which consists of SSD cache (7x Intel 330 60 GB (RAID 
10+hotspare)) and disk persistent storage (8x Intel 330 60 GB (RAID 5(7+1))). 

A large industrial real-time telecommunication application is installed in all 
the VMs. The application handles billing related requests in a telecommunication 
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system. The application works as an active-passive cluster which means that each 
active server is clustered together with one passive  

server (in Figure 7.4, VM 1-1 and VM 1-2 are one application cluster, VM 1-1 is 
the active server and VM 1-2 is the passive server, and same pattern used for the 
rest of the VMs).  Both the active and the passive server can receive requests. 
However, all traffic received by the passive server is forwarded to the 
corresponding active server. The active server then sends the response back to the 
passive server. Finally, the passive server sends the response to the requesting 
system. Traffic going directly to the active server is handled without involving 
the passive server. A separate host runs a simulator that generates load towards 
the servers running in the clusters. The simulator is located in the same LAN, but 
is not shown in Figure 7.4. All communications are done using Ethernet (Intel 
X520 SFP+ 10 GB). All hosts in the DRS cluster are monitored using VMware 
Virtual Center 5.5.0. 

We have created 12 VMs. Inside these VMs we have installed our application, 
i.e., in total we have 6 active-passive application clusters. We have allocated 10 
vCPU and 14 GB RAM (14 GB RAM is the minimum that is recommended for 
the application) to each of these VMs. Inside each host 24 vCPUs are available. 

 

Figure 7.4: Experimental Setup 

In order to avoid any interference between the VM that contains the 
Compuverde software and other VMs, we have created two different resource 
pools, one with 4 vCPUs and the other one with 20 vCPUs. The VM containing 
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the Compuverde software has been bound to the resource pool with 4 vCPUs and 
the rest of the VMs are bound to the resource pool that contains 20 vCPUs. 

7.3.2 Test Scenarios 

We have designed our test scenarios in such a way that there is always a good 
solution to balance the load. Here are our test scenarios: 

1. There are three hosts and each host contains 4 VMs. All VMs receive 

the same number of requests per second (700, 500, and 300). 

Suddenly we increase the load on one VM (up to 2100, 1500, and 900 

req/s). 

2. There are three hosts and each host contains 4 VMs. All VMs receive 

the same number of requests per second (600, 500, and 300). 

Suddenly we increase the load on two VMs on two different hosts (up 

to 2500, 2000, and 900 req/s). 

3. There are two hosts and each host contains 6 VMs. All VMs receive 

the same number of requests per second (600, 500 and 300). Suddenly 

we add a new empty host to the DRS cluster. 

4. There are three hosts and each host contains 4 VMs. All VMs receive 

the same number of requests per second (700, 500 and 300). Suddenly 

we decrease the load on one VM and increase the load on another 

VM, on two different hosts. This test scenario simulates the situation 

when one VM stops working. As we have mentioned earlier the 

application works as an active-passive cluster, so if the active server 

stops working the passive server will become active and handle all 

requests. 

5. There are three hosts and each host contains 4 VMs. All VMs receive 

the same number of requests per second (700, 500 and 300). Suddenly 

we place one of the hosts in maintenance mode. 

For all test scenarios, we have used the DRS automatic placement and 
repeated each test for three different levels of aggressiveness, level 1 
(conservative), level 3 (default/moderate), and level 5 ( most aggressive). 

We have measured the CPU utilization for each test scenario. The 
measurements were done during four different states: 

1. Sending the same amount of load to all virtual machines while DRS is 

turned off. 
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2. Shifting the load on one or two VMs (depending on the scenario) 

while DRS is still turned off. 

3. After having turned on DRS (using three different levels of 

aggressiveness). 

4. After a human expert has done the migrations manually. 

For test scenarios 3 and 5, there was no second state (load shift); we have only 
measured the performance at states 1, 3, and 4. 

7.4 Comparing VMware’s DRS Migrations with Human 

Expert Migrations 

7.4.1 Test Case 1 

In this case, there are four VMs inside all three hosts. All VMs receive the 
same number of requests per second, then suddenly we increase the load on one 
of the VMs (VM 1-1) on Host 1 (ESXi Server 1) and send two times higher load 
to this VM. We have done this test for three different load scenarios and three 
different DRS migration threshold levels. 

As seen in Table 7.1, after the load shift, DRS only performed migration in 
two of the cases (500 and 300 req/s) with migration threshold set to level 5 
(aggressive). In both cases only one VM was migrated, and it migrated from Host 
1 to Host 3. Table 7.2 shows that for the lowest load (300 req/s), the CPU 
utilization is around 27% before load shift on all three hosts. After the increase of 
the load on VM 1-1 to 600 req/s, the CPU utilization on the Host 1 (ESXi Server 
1) increases to 34%. Since the passive server (VM 1-2) is running on Host 2 
(ESXi Server 2), Table 7.2, shows that the CPU utilization on Host 2 has 
increased to 28%. For level 5, and 500 and 300 req/s, a human expert would do 
the same as DRS (migrate one VM from Host 1 to Host 3) (see Table 7.1). So, in 
this case DRS did a good job. 

For the case of medium load (500 req/s), Table 7.2 shows that when the load 
was the same on all VMs, the CPU utilization was around 38% on all three hosts. 
After we increased the load on VM 1-1 to 1000 req/s, the CPU utilization on Host 
1 and Host 2 increased to 49% and 40%, respectively.  Then we have enabled 
DRS with its threshold set to level 1, and then we have changed migration 
threshold to level 3 (moderate/default) and level 5 (aggressive). DRS only started 
the migration when the threshold was set to the level 5 (aggressive) (see Table 
7.1). In this case, same as previous case (low load 300 req/s), DRS migrated one 
VM from Host 1 to Host 3 (see Table 7.1). If we compare the CPU utilization on 
three hosts, we can observe that after DRS migration CPU utilization on Host 1 
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has been decreased to 44% and CPU utilization on Host 3 has been increased up 
to 44%, while CPU utilization on Host 2 remained unchanged. As we have 
discussed earlier this is similar to what human expert would do in this situation. 
Therefore, the CPU utilization on all hosts after human expert migration is 
identical with the CPU utilization after DRS migration (see Table 7.2) in this 
case. 

However, when the load was high (700 req/s), DRS did not migrate any of the 
VMs (see Table 7.1) which was unexpected, because as it can be observed from 
Table 7.2, CPU utilization on the Host 1 was very high, 67%, while on Host 3 the 
CPU utilization was quiet low 49%, so obviously one VM should have been 
migrated from Host 1 to Host 3. In this case, a human expert would migrate one 
VM from Host 1 to Host 3 (see Table 7.1), to balance the CPU utilization across 
all hosts; so CPU utilization became around 57% on Host 3, 58% on Host 1 and 
52% on Host 2 (see Table 7.2). The reason why DRS did not migrate any VM 
could be that the DRS system did not find any “good” host for receiving a VM, 
i.e., it did not find any host with a low enough load. However, in this case DRS 
did not do a very good job. 

7.4.2 Test Case 2 

In Test case 2, we do a more complex load shift. In this case, we have 
increased the load on two VMs running on two different hosts at the same time, 
while all other VMs are receiving the same amount of load. In this case, all hosts 
could not support our previous high load which was 700 req/s, therefore we 
needed to decrease the high load to 600 req/s, but the other load scenarios are 
remained unchanged. As seen in Table 7.3, VMware’s DRS performed the 
migration only for migration threshold level 5 (aggressive). For the case with 
high load (600 req/s), after we have increased the load on two VMs (VM 1-1 and 
VM 2-1), up to 1800 req/s, and turned on the DRS, we have observed that DRS 
started to migrate one VM from Host 1 to Host 2 and after some time it started to 
migrate another VM from Host 2 back to Host 1 (see Table 7.3), we call this the 
“ping-pong” effect. DRS repeated this behavior for a while and at the end we 
concluded that it had difficulties to balance the load. Here we should mention that 
nothing happened when we have selected DRS migration threshold level 1 
(conservative) and level 3 (moderate) (see Table 7.3). In this case a human expert 
would migrate one VM from Host 1 to Host 2 (e.g., VM 3-2) and one VM from 
Host 3 to Host 2 (e.g., VM 6-2) (see Table 7.3). It can also be observed from 
Table 7.4, that the CPU utilization after DRS migration did not change, while 
after human expert migration the CPU utilization became around 62% on all 
hosts. For the case with medium load (500 req/s), DRS had the same behavior, it 
migrated VMs back and forth, i.e., the “ping-pong” effect (see Table 7.3). As can 
be seen in Table 7.4, the CPU utilization remained unchanged after DRS 
migration while after human expert migration the CPU utilization became around 
53%. In these cases, DRS did not do a very good job. 
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For the case with low load (300 req/s), we have increased the load on both 
VM 1-1 and VM 2-1) to 900 req/s. DRS performed a migration only when the 
migration threshold was set to level 5 (aggressive); in this case it migrated one 
VM from Host 1 to Host 2 but no migration from/to Host 3 (see Table 7.3). In 
this case we can say that DRS did a reasonably good job but it only could balance 
part of the load. As can be seen in Table 7.4, the CPU utilization after the DRS 
migration became 34% on both Host 1 and Host 2 while it was still high (38%) 
on Host 3. In order to balance the load completely DRS should have migrated a 
VM from Host 3 to Host 2 in addition to the previous migration, which was what 
a human expert would do in this situation (see Table 7.3). As can be observed 
from Table 7.4, after the human expert migrations, the CPU utilization on all 
hosts became around 34%. 

7.4.3 Test Case 3 

In Test case 3, we had two hosts and each host contained six VMs; we sent the 
same load to all VMs, so there was no load shift in this case, instead we have 
added an empty server. (Similar to the previous case, we could not reach 700 
req/s, so instead we have used 600 req/s as the high load.) 

In this case for the highest load (600 req/s), when the migration threshold for 
DRS was level 3 (moderate/default) it started to migrate two VMs from Host 1 to 
Host 3 and two VMs from Host 2 to Host 3, and at the end it migrated back one 
of the VMs from Host 3 to Host 2, i.e., the “ping-pong” effect (see Table 7.5). As 
can be seen in Table 7.5, the CPU utilization of Host 1, Host 2, and Host 3 after 
DRS migration became 36%, 53%, and 48% when the threshold for migration 
was set to moderate (level 3). The human expert migrations were two VMs from 
Host 1 to Host 3 and two VMs are migrated from Host 2 to Host 3 (see Table 
7.5). At the end we can observe that the CPU utilization has been evenly 
distributed to all hosts after human expert migration (see Table 7.6). For the same 
load (600 req/s), when the DRS migration threshold has been set to level 5 
(aggressive), DRS migrated two VMs from Host 1 to Host 3 and two VMs from 
Host 2 to Host 3, but after sometime migrated back one of the VMs from Host 3 
to Host 2, i.e., the “ping-pong” effect (see Table 7.5).  

In the case with medium load (500 req/s), when the DRS migration threshold 
was set to level 3 (moderate/default), DRS migrated two VMs from Host 1 to 
Host 3 and one VM from Host 2 to Host 3 (see Table 7.5). Table 7.6 shows that 
after DRS migration the CPU utilization on Host 1 decreased to 31% while on 
Host 2 it became 47% and on Host 3 it became 42%. If we compare this with 
what a human expert would do, we can observe that after human expert migration 
the CPU utilization will become around 40% on all hosts. For the same load (500 
req/s) and the DRS migration threshold, level 5 (aggressive), DRS migrated two 
VMs from Host 1 to Host 3 and one VM from Host 2 to Host 3. After some time 
DRS migrated one more VM from Host 2 to Host 3 (see Table 7.5).  
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So at the end we can observe from the Table 7.6, that CPU utilization on the 
Host 1 became 37% while on the Host 2 and the Host 3, CPU utilization became 
41%. Although DRS migration was different from what human expert would 
migrate, DRS could almost balance the CPU utilization on all hosts (see Table 
7.6). If we compare DRS migration with human expert migration, we can say that 
after human expert migration the CPU utilization on all three hosts became 
around 40% which was slightly better than DRS.  

For the case of low load (300 req/s), when the migration threshold was set to 
level 3 (moderate), DRS only migrated two VMs to Host 3, one VM from Host 1 
and one VM from Host 2 (see Table 7.5). As it can be observed from Table 7.6, 
the CPU utilization after DRS migration became 33% on Host 1, 34% on Host 2 
and 20% on Host 3. So DRS migration did not balance the CPU utilization 
properly. As seen in Table 7.6, after human expert migration the CPU utilization 
on all hosts became around 28%. For the same load (300 req/s) and the DRS 
migration threshold, level 5 (aggressive), we have observed that DRS migrated 
two VMs from Host 1 to Host 3 and two VMs from Host 2 to Host 3 (see Table 
7.5). Although DRS migrated two VMs from each host to Host 3 which is the 
same decision that a human expert would make the result was slightly different. 
The reason was that DRS migrated one active server and one passive server from 
Host 1 to Host 3 and at the same time two active servers from Host 2 to Host 3, 
while a human expert would migrate one active and one passive server from each 
hosts to Host 3 to balance the load (see Table 7.5). Therefore, at the end we can 
observe from Table 7.6 that, after human expert migration the CPU utilization 
became around 28% on all hosts while after the DRS migration, CPU utilization 
on Host 3 is different.  

7.4.4 Test Case 4 

In Test case 4, we have simulated the scenario where one VM (the active 
server in an application cluster) stops working and the passive server becomes 
active and handles all requests. So, in our test environment we have turned off 
VM 1-1, in this way all requests will be forwarded to VM 1-2.  

For the case with high load, 700 req/s, and when we set the threshold level to 
the most aggressive (level 5), DRS migrated one VM from Host 2 to Host 1 (see 
Table 7.7). Table 7.8 shows that after we have turned off VM 1-1 on Host 1, the 
CPU utilization became 40% on Host 1 and 63% on Host 2. After the DRS 
migration, the CPU utilization became 48% on Host 1 and 55% on Host 2. A 
human expert would migrate one active server from Host 2 to Host 1 and one 
passive server from Host 1 to Host 2 (see Table 7.7). If we compare the results of 
human expert migrations and DRS, we see that after human expert migrations the 
CPU utilization on all hosts became around 52% while after DRS migrations, the 
CPU utilization on Host 2 was still higher than the two other hosts (see Table 
7.8). Although DRS was not able to balance the load completely, we see that 
DRS could balance the load to some extent. For the case with medium load (500 
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req/s), when the DRS migration threshold was set to level 5 (aggressive), DRS 
migrated one active server from Host 2 to Host 1 and one passive server from 
Host 1 to Host 2, which was the same as what human expert would do in this 
situation (see Table 7.7). Table 7.8 shows that the CPU utilization on all hosts 
after both the human expert and the DRS migration became around 40%. For the 
case with low load, 300 req/s, DRS did not migrate any VM for all three different 
migration threshold levels (see Table 7.4). In this case, as it can be observed from 
the Table 7.8, that CPU utilization on all hosts after the load shift is remained 
unchanged. While after human expert migration we can observe from the Table 
7.8 that the CPU utilization became around 29% on all hosts. Here we should 
mention that DRS was not able to make proper decisions comparing to human 
expert decisions in most of the cases with different migration threshold levels. 
Only in one of the cases it worked when the load was medium (500 req/s) and the 
migration threshold level was 5 (aggressive). 

7.4.5 Test Case 5 

In Test case 5, we wanted to put Host 3 in maintenance mode. In this scenario 
all VMs on Host 3 should be migrated to other hosts.  

In the case with high load (700 req/s), after we have turned on the DRS and 
set the migration threshold to level 1 (conservative), it started to migrate two 
VMs from Host 3 to Host 1 and two VMs from Host 3 to Host 2. DRS migrated 
the same VMs to the same hosts for other levels of aggressiveness (level 3 and 
level 5) (see Table 7.9). For the case with medium load (500 req/s), DRS 
migrated again the same VMs to the same hosts for all three different levels of 
aggressiveness (see Table 7.9). In both of these cases we can say that DRS did a 
good job and made the same decision as a human expert. As seen in Table 7.10, 
after DRS migration the CPU utilization on both Host 1 and Host 2 became the 
same. 

However, when the load was low (300 req/s), after we have turned on the 
DRS and set the migration threshold to level 1 (conservative) and level 3 
(moderate), DRS migrated three VMs from Host 3 to Host 2 and one VM from 
Host 3 to Host 1 (see Table 7.9). Table 7.10 shows that after DRS migration the 
CPU utilization on Host 2 is 47% and the CPU utilization on Host 1 is 38%. This 
means that DRS could not distribute the load between the hosts equally and DRS 
migration was not successful in this case. However, when the migration threshold 
was set to level 5 (aggressive) for the same load (300 req/s), we see that DRS 
migrated two VMs from Host 3 to Host 1 and two VMs from Host 3 to Host 1, 
similar to what a human expert would do (see Table 7.9). From Table 7.10, it can 
be seen that the CPU utilization both after DRS migration and after human expert 
migration became around 40%. Although DRS decisions did not work in two of 
the cases, we see that in the other cases, DRS was able to make good decisions. 
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7.5 Conclusions 

In this study, our goal was to compare VMware’s DRS migrations versus 
human expert migrations using various test scenarios. The test scenarios were 
designed so that there are always optimal solutions for balancing the load all over 
the hosts; we wanted to see how close DRS migrations are compared to human 
expert migrations. 

We considered five test cases, and three different loads for each of these test 
cases. For each load and test case we tested three different levels of 
aggressiveness in DRS. This means that we looked at 5*3*3 = 45 cases. In 23 of 
these cases DRS did nothing. In 11 cases it did (more or less) the same decision 
as a human expert. In 7 cases DRS could balance the load to some extent, but in 4 
cases DRS suffered from the “ping-pong” effect and did completely unnecessary 
migrations back and forth.  

When the migration threshold was set to level 1 (conservative) or level 3 
(moderate/default) DRS did not migrate any virtual machine in most of the cases 
(Test cases 1, 2, and 4). However, in Test case 5, DRS starts to migrate virtual 
machines even when the migration threshold was set to level 1 (conservative). 
One reason could be that VMware have considered similar test scenarios when 
they have designed the DRS algorithm (evacuating a physical machine for 
maintenance is a very common scenario); however for some more complex test 
scenarios VMware’s DRS was unreliable, according to our results (e.g., Test case 
2). Overall if we compare the system performance after DRS migration we can 
observe that we have obtained better results - more close to human expert 
migrations - with the aggressive threshold (level 5). In the 15 cases were we uses 
level 5, we got no migrations in two cases, good (human expert quality) 
migrations in 7 cases, reasonably good migrations in three cases, and the 
undesirable “ping-pong” effect in three cases. So even if the migrations are better 
in general using level 5, the risk of suffering from the “ping-pong” effect is also 
considerably higher compared to the other levels of aggressiveness.  

Our study shows that there is still considerable room for improvement of 
VMware’s state-of-the-art DRS load balancing systems. In particular the load 
balancing needs to be more robust in the sense that completely unnecessary 
migrations such as the “ping-pong” effect should be avoided.  
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Table 7.1. Summary of the Results of the Test Case 1 

Load (req/s) Level of Aggresivness 
Human Expert 

All VMs One VM Level 1 Level 3 Level 5 

700 1400 - - - 

VM 2-2 from Host 1 to Host 3 500 1000 - - VM 2-2 from Host 1 to Host 3 

300 600 - - VM 5-2 from Host 1 to Host 3 

Table 7.2. Test Case 1 Results, CPU Utilization 

 

CPU Utilization (%) 

a. Low Load (300req/s) b. Medium Load (500req/s) c. High Load (700req/s) 

Same 

Load 

Load 

Shift 

DRS 

Migration 

Human 

Expert 

Same 

Load 

Load 

Shift 

DRS 

Migration 

Human 

Expert 

Same 

Load 

Load 

Shift 

DRS 

Migration 

Human 

Expert 

Host 1 27 34 31 31 38 49 44 44 49 67 67 58 

Host 2 27 28 28 28 38 40 40 40 49 51 51 52 

Host 3 26 26 30 30 37 38 44 44 48 49 49 57 
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Table 7.3. Summary of the Results of the Test Case 2 

Load (req/s) Level of Aggresivness 
Human Expert 

All VMs Two VMs Level 1 Level 3 Level 5 

600 1800 - - 

VM 3-2 from Host 1 to Host 2 

VM 5-2 from Host 2 to Host 1 
(ping-pong) 

VM 3-2 from Host 1 to Host 2 

VM 6-2 from Host 3 to Host 2 
500 1500 - - 

VM 3-2 from Host 1 to Host 2 

VM 5-2 from Host 2 to Host 1 

(ping-pong) 

300 900 - - VM 2-2 from Host 1 to Host 2 

Table 7.4. Test Case 2 Results, CPU Utilization 

 

CPU Utilization (%) 

a. Low Load (300req/s) b. Medium Load (500req/s) c. High Load (600req/s) 

Same 
Load 

Load 
Shift 

DRS 
Migration 

Human 
Expert 

Same 
Load 

Load 
Shift 

DRS 
Migration 

Human 
Expert 

Same 
Load 

Load 
Shift 

DRS 
Migration 

Human 
Expert 

Host 1 28 38 34 34 40 60 60 54 46 72 72 63 

Host 2 28 29 34 36 40 41 41 53 47 47 47 62 

Host 3 27 38 38 34 39 59 59 51 46 72 72 62 
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Table 7.5. Summary of the Results of the Test Case 3 

Load (req/s) Level of Aggresivness Human Expert 

All VMs Level 1 Level 3 Level 5  

600 - 

VM 2-1 from Host 2 to Host 3 
VM 1-1 from Host 1 to Host 3 
VM 4-1 from Host 2 to Host 3 
VM 3-1 from Host 1 to Host 3 
VM 4-1 from Host 3 to Host 2 

(ping-pong) 

VM 2-2 from Host 1 to Host 3 
VM 6-1 from Host 2 to Host 3 
VM 1-1 from Host 1 to Host 3 
VM 2-1 from Host 2 to Host 3 
VM 2-2 from Host 3 to Host 2 

(ping-pong) 

VM 1-2 from Host 2 to Host 3 
VM 2-1 from Host 2 to Host 3 
VM 5-1 from Host 1 to Host 3 
VM 6-2 from Host 1 to Host 3 

500 - 
VM 5-1 from Host 1 to Host 3 
VM 2-1 from Host 2 to Host 3 
VM 1-1 from Host 1 to Host 3 

VM 1-1 from Host 1 to Host 3 
VM 3-1 from Host 1 to Host 3 
VM 2-1 from Host 2 to Host 3 
VM 3-2 from Host 2 to Host 3 

300 - 
VM 3-1 from Host 1 to Host 3 
VM 2-1 from Host 2 to Host 3 

VM 6-1 from Host 2 to Host 3 
VM 3-1 from Host 1 to Host 3 
VM 2-1 from Host 2 to Host 3 
VM 6-2 from Host 1 to Host 3 

Table 7.6. Test case 3 results, CPU utilization 

 

CPU Utilization (%) 

a. Low Load (300req/s) b. Medium Load (500req/s) c. High Load (600req/s) 

Same 

Load 

DRS 

Migration 

(moderate) 

DRS 

Migration 

(aggressive) 

Human 

Expert 

Same 

Load 

DRS 

Migration 

(moderate) 

DRS 

Migration 

(aggressive) 

Human 

Expert 

Same 

Load 

DRS 

Migration 

(moderate) 

DRS 

Migration 

(aggressive) 

Human 

Expert 

Host 1 43 33 29 28 64 31 37 41 73 36 46 46 

Host 2 44 34 24 29 63 47 41 40 73 53 42 45 

Host 3 3 20 34 28 4 42 41 39 4 48 49 44 
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Table 7.7. Summary of the Results of the Test Case 4 

Load (req/s) Level of Aggresivness Human Expert 

All VMs Level 1 Level 3 Level 5 
 

700 - - VM 4-2 from Host 2 to Host 1 

VM 6-1 from Host 2 to Host 1 
VM 2-2 from Host 1 to Host 2 

500 - - 
VM 3-1 from Host 2 to Host 1 
VM 1-1 from Host 1 to Host 2 

300 - - - 

Table 7.8. Test Case 4 Results, CPU Utilization 

 

CPU Utilization (%) 

a. Low Load (300req/s) b. Medium Load (500req/s) c. High Load (700req/s) 

Same 
Load 

Load 
Shift 

DRS 
Migration 

Human 
Expert 

Same 
Load 

Load 
Shift 

DRS 
Migration 

Human 
Expert 

Same 
Load 

Load 
Shift 

DRS 
Migration 

Human 
Expert 

Host 1 28 22 22 29 40 31 40 40 53 40 48 52 

Host 2 28 34 34 29 39 49 41 41 51 63 55 52 

Host 3 27 27 27 28 38 38 38 38 51 50 50 51 
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Table 7.9. Summary of the Results of the Test Case 5 

Load (req/s) Level of Aggresivness Human Expert 

All VMs Level 1 Level 3 Level 5 
 

700 

VM 3-2 from Host 3 to Host 2 
VM 6-2 from Host 3 to Host 1 
VM 2-1 from Host 3 to Host 1 
VM 5-1 from Host 3 to Host 2 

VM 3-2 from Host 3 to Host 2 
VM 6-2 from Host 3 to Host 1 
VM 2-1 from Host 3 to Host 1 
VM 5-1 from Host 3 to Host 2 

VM 3-2 from Host 3 to Host 2 
VM 6-2 from Host 3 to Host 1 
VM 2-1 from Host 3 to Host 1 
VM 5-1 from Host 3 to Host 2 

VM 3-2 from Host 3 to Host 2 
VM 6-2 from Host 3 to Host 1 
VM 2-1 from Host 3 to Host 1 
VM 5-1 from Host 3 to Host 2 

500 

VM 3-2 from Host 3 to Host 2 
VM 6-2 from Host 3 to Host 1 
VM 2-1 from Host 3 to Host 1 
VM 5-1 from Host 3 to Host 2 

VM 3-2 from Host 3 to Host 2 
VM 6-2 from Host 3 to Host 1 
VM 2-1 from Host 3 to Host 1 
VM 5-1 from Host 3 to Host 2 

VM 3-2 from Host 1 to Host 2 
VM 5-2 from Host 2 to Host 1 
VM 5-2 from Host 1 to Host 2 
VM 3-2 from Host 2 to Host 1 

300 

VM 3-2 from Host 3 to Host 2 
VM 6-2 from Host 3 to Host 1 
VM 2-1 from Host 3 to Host 2 
VM 5-1 from Host 3 to Host 2 

VM 3-2 from Host 3 to Host 2 
VM 6-2 from Host 3 to Host 1 
VM 2-1 from Host 3 to Host 2 
VM 5-1 from Host 3 to Host 2 

VM 3-2 from Host 3 to Host 2 
VM 6-2 from Host 3 to Host 1 
VM 2-1 from Host 3 to Host 1 
VM 5-1 from Host 3 to Host 2 

Table 7.10. Test Case 5 Results, CPU Utilization 

 

CPU Utilization (%) 

a. Low Load (300req/s) b. Medium Load (500req/s) c. High Load (700req/s) 

Same 
Load 

DRS Migration 
(level 1 and 3) 

DRS Migration 
(aggressive) 

Human 
Expert 

Same 
Load 

DRS 
Migration 

Human 
Expert 

Same 
Load 

DRS 
Migration 

Human 
Expert 

Host 1 28 38 42 42 40 63 63 52 85 85 

Host 2 28 47 38 38 40 63 63 51 85 85 

Host 3 27 4 4 4 39 4 4 50 4 4 
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8 Performance Implications of Resource Over-Allocation 

During the Live Migration 

Abstract 

As the number of cloud users are increasing, it becomes essential for cloud 

service providers to allocate the right amount of resources to virtual machines, 

especially during live migration. In order to increase the resource utilization and 

reduce waste, the providers have started to think about the role of over-allocating 

the resources. However, the benefits of over-allocations are not without inherent 

risks. In this paper, we conducted an experiment using a large telecommunication 

application that runs inside virtual machines, here we have varied the number of 

vCPU resources allocated to these virtual machines in order to find the best 

choice which at the same time reduces the risk of under-allocating resources after 

the migration and increases the performance during the live migration. During 

our measurements we have used VMware’s vMotion to migrate virtual machines 

while they are running. The results of this study will help virtualized environment 

service providers to decide how much resources should be allocated for better 

performance during live migration as well as how much resource would be 

required for a given load. 

8.1 Introduction  

Live migration is the process of moving a virtual machine from one physical 
machine to another physical machine, while the virtual machine is executed with 
(almost) no interruption [9]. Live migration is an essential feature in virtual 
environments. Load balancing, online maintenance, fault tolerance and energy 
reduction are all dependent on live migration of virtual machines [8]. This feature 
is supported by VMware (vMotion), Xen (XenMotion), Microsoft Hyper-V and 
Redhat KVM [10]. There are several studies comparing live migration in 
VMware, KVM, Xen and Hyper-V [5] [19]. 

The common approach for live virtual machine migration is pre-copy [9]. 
During the pre-copy process in VMware vMotion, a shadow virtual machine 
created on the destination host, and then each used memory page (known as dirty 
pages) is copied from the source to the destination. , as each round takes some 
time and in the meantime the virtual machine is still running on the source host, 
some pages may be dirtied and have to be re-sent, so this iterative memory 
copying is continued until no changed pages remain, at this point the last stage is 
stopping the virtual machine on the source and resume it on the destination [11]. 
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Live migration cost is classified into performance overhead on the physical 
machine and live migration execution cost [18]. In order to measure the 
performance overhead on the physical machine, there are a number of parameters 
that need to be considered, such as CPU and disk utilization, and network 
bandwidth. Execution costs are total migration time and migration downtime. The 
total migration time is the time it takes from when the migration initiated for a 
virtual machine on the source host until the virtual machine is resumed on the 
destination host, while the downtime is the time it takes for the source host to 
suspend execution of virtual machine until the destination host resumes it [9]. 

In data centers, migrations are based on pre-defined rules and without 
involving a human operator. VMware’s Distributed Resource Scheduler (DRS) 
[11] is one example of automatic load balancing which can provide high and even 
resource utilization over a cluster of physical servers. Although live virtual 
machine migration is generally fast, it is highly resource-intensive; therefore it 
can affect the application performance and resource usage of the migrating virtual 
machine as well as other virtual machines which are sharing the same physical 
hardware [15]. One important challenge in modern data centers where virtual 
machines migrate from host to host all the time is efficient resource utilization. 

One solution could be to over-allocate resources to the virtual machines in a 
way such that after live migration we still are able to use all physical resources, 
E.g., assume there are two hosts each with 24 CPU cores, and there are four 
virtual machines running on each host and each VM has 6 virtual CPUs (vCPUs). 
If one VM is migrated to the other host, the total number of VMs on the source 
host becomes three, and they will only have a total of 18 vCPUs, i.e., six of the 
virtual CPU cores will not be used. However, if each VM had 24 vCPUs 
allocated to it, there would be enough vCPUs to utilize the physical cores. 

An important issue in data centers is management of virtual machines, in 
terms of resource allocation and de-allocation, and virtual machine migration. 
The system administrator in a data center has control over executing applications 
and resource requirements. Therefore the system administrator has a good 
opportunity to make sure that different virtual machines meet their performance 
and service level objectives while hardware resources are utilized effectively 
[14].  

The system administrator can benefit from over-allocation of resources by 
allocating more resources to the virtual machines than they required, so in this 
way the virtual machine will still perform well even after migration.  

As we have discussed there are some advantages with over-allocation of 
resources especially during live migration. However, there is a risk of achieving 
poor performance which we have discussed in our previous study [12]. In [12], 
we have quantified the cost of having different amounts of over-allocation. 
According to our results, using a moderate level of over-allocation gives some 
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flexibility at a very modest performance cost. In our previous study we did not 
consider the effect of over-allocating resources on the live migration overhead.  

In this paper, we have built a testbed containing ten virtual machines hosted 
on two physical servers and varied the number of virtual CPUs allocated to the 
virtual machines. We have used a large industrial telecommunication application 
to run inside these virtual machines and we have measured the performance in 
terms of CPU utilization, downtime and total migration time of the application 
during the live migration.  

This paper is organized as follows: in Section 8.2 we present some related 
works. In Section 8.3, we present our experimental setup and different test cases 
configurations. Section 8.4 is the core part of the paper, in which we present our 
results and discuss the impact of over-allocation during live migration. And 
Section 8.5 concludes the paper. 

8.2 Related Work 

In [1], the authors developed a new technique for resource allocation in 
virtualized data centers. However they did not consider the over-allocation of 
resources. 

M. Elsaid and C. Meinel [7] studied the impact of live migration on the 
datacenter. The authors have considered network resources and power 
consumption. In our work we have focused on CPU utilization, migration down 
time and total migration time. 

Both Xiao et al. [16] and Vishnupriya et al. [17] have used virtual machine 
live migration for dynamic resource allocation in a virtualized environment. They 
did not consider the over-allocation. 

Elsaid and Meinel [18] have done some experiments using different migration 
cost models for VMware vMotion. Their focus was to predict the live migration 
CPU and network overhead.  

However, little research has been done in considering the over-allocation of 
resources during the live migration. Therefore, in this study we will investigate 
the effect of resource over-allocation on the down time and total migration time 
of a large industrial real-time application. 

8.3 Experimental Setup 

In this section, we present our experimental setup and test cases. 
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8.3.1 Testbed setup 

Two servers have been used as hosts to test the performance of VMware ESXi 
5.5.0. On top of VMware, RedHat Enterprise Linux, version 6.2 has been 
installed as the guest OS. Each server is equipped with 128 GB of RAM, two 6-
core CPUs (2x Intel XEON 2.0 GHz) with hyperthreading enabled in each core 
(i.e., a total of 24 logical cores [2] [3] [4]). 

In order to reduce the time for live migration one would like that all servers in 
a cluster share the same disk; in this case no files need to be moved during a live 
migration of a VM. Having one large physical disk (or disk array) for a large 
cluster can, however, become a single point of failure and a performance 
bottleneck. The latest trend in virtualization and cloud computing is that one uses 
so called distribute storage systems. In a distributed storage system the disks are 
physically distributed to the different servers in the cluster, thus avoiding the 
single point of failure and performance bottleneck problems. Based on the 
physically distributed disks, a software layer creates an image of one shared 
virtual disk, thus avoiding the need to migrate files during a live migration. One 
of the high performing distributed storage systems is the Compuverde system [5] 
[6].  

All servers in our cluster are connected to the Compuverde distributed storage 
system which provides vNAS storage. The Compuverde distributed storage 
system consists of two components, 1) Compuverde software, that is installed 
inside a virtual machine and 2) data storage which consists of SSD cache (7x 
Intel 330 60 GB (RAID 10+hotspare)) and disk persistent storage (8x Intel 330 
60 GB (RAID 5(7+1))). All virtual machines containing Compuverde software 
are communicating with each other in order to maintain and share information 
about data. The Compuverde software is responsible for managing distribution of 
data between all storage nodes in different hosts and it has been designed so that 
it treats all the SSD caches and disks as a virtual Network Attached Storage 
(vNAS).  

The same large industrial real-time telecommunication application is installed 
in all the VMs. The application, referred to as telecom server in the reminder of 
this paper, handles billing related requests in a telecommunication system. 

The application consists of several hundreds of thousands lines of code and it 
works as an active-passive cluster. Each active telecom server is clustered 
together with one passive telecom server. Both the active and the passive telecom 
servers in a cluster can receive requests. However, all traffic received by the 
passive telecom server is forwarded to the corresponding active telecom server. 
The active telecom server then sends the response back to the passive telecom 
server. Finally, the passive telecom server sends the response to the requesting 
system. Traffic going directly to the active telecom server is handled without 
involving the passive telecom server. 
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Another separate server runs a load generator that impersonates a requesting 
system in order to generate load towards the telecom servers running in the 
clusters. The load generator is also located in the same LAN. All communications 
are done through Ethernets (Intel X520 SFP+ 10 GB). The two hosts are 
configured in a cluster that is managed by VMware vCenter. 

8.3.2 Test configurations 

For different live migration and over-allocation test cases we used two 
VMware ESXi hosts and on each host we have created five virtual machines. As 
discussed previously, these two physical servers contain disks and SSDs that are 
used by the distributed storage system. Each host has 128 GB RAM in total and 
we have allocated 14 GB RAM to each virtual machine; 14 GB RAM is the 
minimum RAM that is recommended for the application.  

In addition, allocating a lot of RAM resources to the virtual machines could 
affect the total performance, since the hypervisor may not get enough RAM. Over 
provisioning of RAM resources is not the focus of this study. Inside each host 24 
vCPUs are available, in order to avoid any interference between the virtual 
machine that contains the Compuverde software and other virtual machines, we 
have isolated them by creating two different resource pools, one with 4 vCPUs 
and the other one with 20 vCPUs. The virtual machine containing Compuverde 
software has been bound to the resource pool with 4 vCPUs and the rest of the 
virtual machines are bound to the other resource pool that contains 20 vCPUs. 

8.3.3 Test cases 

We have measured performance during live migration in terms of migration 
downtime and total migration time, as well as, CPU utilization (see Table  for 
CPU utilization, downtime/response time and total migration command APIs). 
Our goal was to measure how different allocations of vCPUs to each virtual 
machine affect the performance during live migration. We also measure how 
other virtual machines are affected during migration of one virtual machine. In 
order to measure these aspects, we defined six different test cases (see Table ) and 
for each test case, we varied the number of vCPUs allocated to each virtual 
machine and measured the performance during live migration of one virtual 
machine. 

In addition, we varied the load that is sent to each virtual machine (here we 
only sent the load to the active telecom servers). So one scenario was when we 
sent low load (100 req/s) to one virtual machine (one active telecom server) and 
higher load (1900 req/s) to other virtual machines (another active telecom 
servers) and then migrate the virtual machine with the low load (100 req/s) from 
the source host to the destination host. Another scenario was when we sent heavy 
load (1900 req/s) to one virtual machine and lower load (1000 req/s) to the other 
virtual machines and migrate the virtual machine with the heavy load (1900 req/s) 
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from the source host to the destination host. As it can be observed from Table , 
we varied the number of vCPUs allocated to each virtual machine (5, 10, 20 
vCPUs) and repeated the two different load scenarios for each case. 

8.3.3.1 Test case 1 

Here we allocated 5 vCPUs to each virtual machine, in total we have allocated 
25 vCPUs which is higher than number of vCPUs that we have available (20 
vCPUs). So here we have little over-allocation. And we tested two different load 
scenarios, 

Table 8.1. Command API used for performance measurements 
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Table 8.2: Test cases 

Test ID 
Load Scenarios (req/s) 

vCPUs One Virtual 

Machine 

Other Virtual 

Machines  

1.1 1900 1000 
5 vCPUs 

1.2 100 1900 

2.1 1900 1000 
10 vCPUs 

2.2 100 1900 

3.1 1900 1000 
20 vCPUs 

3.2 100 1900 

8.3.3.1.1 Test case 1.1 

In this case we sent 1900 req/s to one virtual machine and 1000 req/s to the 
other virtual machines and we migrated the virtual machine with 1900 req/s load 
from the source host to the destination host. 
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8.3.3.1.2 Test case 1.2 

In this case we sent 100 req/s to one virtual machine and 1900 req/s to the 
other virtual machines and we migrated the virtual machine with 100 req/s load 
from the source host to the destination host. 

8.3.3.2 Test case 2 

Here we allocated 10 vCPUs to each virtual machine, in total we have 
allocated 50 vCPUs which is higher than number of vCPUs that we have 
available (20 vCPUs). So here we have medium over-allocation. And we tested 
two different load scenarios, 

8.3.3.2.1 Test case 2.1 

 In this case we sent 1900 req/s to one virtual machine and 1000 req/s to the 
other virtual machines and we migrated the virtual machine with 1900 req/s load 
from the source host to the destination host. 

8.3.3.2.2 Test case 2.2 

 In this case we sent 100 req/s to one virtual machine and 1900 req/s to the 
other virtual machines and we migrated the virtual machine with 100 req/s load 
from the source host to the destination host. 

8.3.3.3 Test case 3 

Here we allocated 20 vCPUs to each virtual machine to in total we have 
allocated 100 vCPUs which is higher than number of vCPUs that we have 
available (20 vCPUs). So here we have massive over-allocation. And we tested 
two different load scenarios, 

8.3.3.3.1 Test case 3.1 

 In this case we sent 1900 req/s to one virtual machine and 1000 req/s to the 
other virtual machines and we migrated the virtual machine with 1900 req/s load 
from the source host to the destination host. 

8.3.3.3.2 Test case 3.2 

 In this case we sent 100 req/s to one virtual machine and 1900 req/s to the 
other virtual machines and we migrated the virtual machine with 100 req/s load 
from the source host to the destination host. 
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8.4 Impact of over-allocation during live migration 

8.4.1 Experimental Results 

The CPU utilization for the test cases 1.1 and 2.1 and 3.1 are shown in Figure 
8.1.a, c and e. From the Figure 8.1.a, it can be observed that, the CPU utilization 
on both the source and the destination host is around 50% before the migration 
starts. Since the load on the virtual machine that is going to be migrated to the 
other host is around 100 req/s the difference between CPU utilization on the 
source and the destination host is not significant. During the virtual machine 
migration it can be observed from the Figure 8.1.a that the CPU utilization is 
increased to around 65% both on the source and the destination host. After the 
migration is completed, we can see that the CPU utilization on the source host 
decreases again to around 50%, while it increases on the destination host to 
around 55%. The reason for the higher CPU utilization on the destination host is 
that one virtual machine has been added, so there are in total six virtual machines 
running on the destination host and four virtual machines are remained on the 
source host. If we compare this figure with two other figures (Figure 8.1.c and e), 
it can be observed that the CPU utilization before the migration starts is higher 
for the 

Table 8.3: Downtime and Total migration time results 

Test ID 
Downtime/ Maximum 

Response Time (sec) 

Total Migration 

Time (sec) 

1.1 2.214 30 

1.2 4.013 38 

2.1 2.166 48 

2.2 4.938 52 

3.1 2.923 48 

3.2 4.482 53 

cases with 10 vCPU (60%) and 20 vCPU (65%) compared with the case with 5 
vCPU (50%) and the reason for that is the amount of over-allocation that we have 
and the variation is the cost of this over-allocation. After the migration completed 
CPU utilization on the source host became around 55% (Figure 8.1.c) and 60% 
(Figure 8.1.e), while on the destination host it became around 63% (Figure 8.1.c) 
and 68% (Figure 8.1.e). In Figure 8.1.b we can observe that the CPU utilization 
before the migration starts is higher on the source host than on the destination 
host.  

The variation is caused by the load (around 1900 req/s) that we are sending to 
the virtual machine that we are going to migrate to the other host. As it can be 
observed from Figure. 8.1.b, after the migration is completed the CPU utilization 
on the source host decreases to 30% while it increases on the destination host 
(becomes around 55%).  Comparing Figure. 8.1.a and b, we can observe that 
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when the virtual machine is heavily loaded (Figure. 8.1.b), the CPU utilization 
has more fluctuation compare to a low loaded VM. 

The same testing sequence has been followed for all other test cases with the 
different number of vCPU allocation and different load scenarios. In general, it 
can be observed after comparison between Figure 8.1.a, c and e, that the CPU 
utilization on the source host has not been changed dramatically after the 
migration for the test case 1.1, because the over-allocation is medium and after 
the migration four virtual machines with 5 vCPUs allocated to each are remained 
which will use in total 20 vCPUs and that is all the vCPUs that we have available 
in the source host. However, for test case 2.1 and 3.1, the difference becomes 
more noticeable, around 5% after the migration has finished, which still is not 
very significant (see Figure 8.1.c and e). So the conclusion would be that when 
there is a need to migrate a low loaded virtual machine, there is no dramatic 
difference between having 5vCPU, 10vCPU or 20vCPUs allocated to virtual 
machines. 

Table  shows that, for the cases with little over-allocation (Test cases 1.1 and 
1.2), when the load increases it effects both the downtime and the total migration 
time. The downtime was increased by 2 seconds and the total migration time was 
increased by 8 seconds. For the cases with medium and massive over-allocation, 
Table  shows that, in general, the total migration time and downtime is higher for 
both the low and heavy loaded VM. However, in the case with medium over-
allocation, the total migration time was increased by only 4 seconds for the heavy 
load and which is half of the time increase compared to the case with little over-
allocation. This means that the case medium over-allocation has improved the 
live migration performance which is very important for the real-time applications. 
While the downtime has not highly affected by the heavy load, it has been 
increased by only 2.7 seconds. For the case with the massive over-allocation 
(Test cases 3.1 and 3.2), the results of total migration time and downtime for both 
heavy and low loaded VM is very similar to the case with medium over-
allocation. 

8.5 Conclusion 

In this study, we have measured the performance in terms of CPU utilization, 
migration down time and total migration time of a large telecommunication 
application during the live migration. We have built a testbed containing ten 
virtual machines hosted on two physical servers and varied the number of virtual 
CPUs allocated to the virtual machines. We have designed six different test cases 
in order to figure out how different allocation of vCPUs to each virtual machine 
will affect the performance during live migration, also how other virtual 
machines in the background are affected during the live migration of one virtual 
machine from the source host to the destination host. 



 

121 

According to our results, over-allocation has a small effect on the CPU 
utilization of the low loaded VMs, while it highly effects the downtime and total 
migration time. However, once we have reached a certain amount of over-
allocation, then having more over-allocation does not have noticeable effect even 
on the downtime and the total migration time. This means that in the case of low 
loaded VMs it would be possible to have a massive over-allocation. Having 
massive over-allocation gives more flexibility in terms of number of VMs that 
can be migrated and also reduce the risk of ending up in the situation when there 
is an under-allocation of resources. 

However, according to our results, for the test cases with heavy loaded VMs, 
CPU utilization fluctuation is a lot for both before and after the live migration. 
Except for one of the test cases with heavy loaded VM and small amount of over-
allocation (Test DI 1.2), for two other test cases with medium and high over-
allocation we have got lots of request failures due to the very long downtime. 
This means that live migration of a heavy loaded VM is not recommended when 
the amount of over-allocation is medium or massive and there is a very high risk 
of getting request failures especially for large real-time applications.  
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Figure 8.1. CPU utilization on the source host and the destination host before and after the live migration: Test cases 1.1 and 

1.2 are shown in a and b. Test cases 2.1 and 2.2 are shown in c and d, Test cases 3.1 and 3.2 are shown in e and f. 
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9 Performance Evaluation of Container and Virtual 

Machine Running Cassandra Workload 

Abstract 

Today, scalable and high-available NoSQL distributed databases are largely 

used as Big Data platforms. Such distributed databases typically run on a 

virtualized infrastructure that could be implemented using Hypervisor-based 

virtualization or Container-based virtualization. Hypervisor-based virtualization 

is a mature technology but imposes overhead on CPU, memory, networking, and 

disk. Recently, by sharing the operating system resources and simplifying the 

deployment of applications, container-based virtualization is getting more 

popular. Container-based virtualization is lightweight in resource consumption 

while also providing isolation. However, disadvantages are security issues and 

I/O performance. As a result, today these two technologies are competing to 

provide virtual instances for running big data platforms. Hence, a key issue 

becomes the assessment of the performance of those virtualization technologies 

while running distributed databases.  

This paper presents an extensive performance comparison between VMware 

and Docker container, while running Apache Cassandra as workload. Apache 

Cassandra is a leading NoSQL distributed database when it comes to Big Data 

platforms. As baseline for comparisons we used the Cassandra’s performance 

when running on a physical infrastructure. Our study shows that Docker had 

lower overhead compared to the VMware when running Cassandra. In fact, the 

Cassandra’s performance on the Dockerized infrastructure was as good as on the 

Non-Virtualized. 

9.1 Introduction 

Hypervisor-based virtualization began in 1960s and since then it has been 
widely used in Cloud Computing. Hypervisors, also called Virtual Machine 
Monitors (VMM) share the hardware resources of a real machine between 
multiple Virtual Machines (VMs). By virtualizing system resources such as 
CPUs, memory and interrupts, it became possible to run multiple Operating 
Systems (OS) concurrently. Most commonly used hypervisors are Kernel Virtual 
Machine (KVM), Xen Server, VMware and Hyper-V. Hypervisor-based 
virtualization enables new features such as performance management, elastic 
resource scaling, and reliability services to be applied without requiring 
modifications to applications or operating systems. It also enables virtual machine 
migration for load balancing to eliminate hotspots and consolidation to improve 
resource utilization and energy efficiency. However hypervisor level 
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virtualization introduce performance overheads as studied in [4][5][6][7][8] and 
still limits it from being used in performance critical domains [1][2][3]. 

Recently, container-based virtualization has gained more popularity than 
hypervisor-based virtualization. A container is a light weight operating system 
running inside the host system. An application running in a container has an 
unshared access to a copy of the operating system. In other words, containers 
virtualize the operating system while hypervisors virtualize the hardware 
resources. Therefore, container-based virtualization is well-known for providing 
savings in resource consumption without the overhead of hypervisor-based 
virtualization while also providing isolation [9]. The main difference between 
Virtual Machine and Container architecture is that, for the virtual machines, each 
virtualized application includes an entire guest operating system and necessary 
Binaries/Libraries, while for the containers; the Container engine contains just the 
application and its dependencies (Binaries/Libraries).  

The Container-based virtualization is not a new concept; it has been offered 
before by FreeBSD Jails (available since 2000) and Solaris Zones (available since 
2004). In the beginning of 2008 a new Linux kernel was released replacing the 
earlier variations in the form of Linux container (LXC) [10][11][12]. Other 
alternatives to Linux-based containers are Open VZ [13][14][15] and Docker 
[16][17][18]. Recently, there have been several studies on performance of 
container-based virtualization technologies, especially Docker containers 
[19][20]. Docker containers are designed to run a single application per container 
while LXC containers are more like virtual machines with a fully functional 
operating system [16]. The Container-based architecture is rapidly becoming a 
popular development and deployment paradigm because of advantages such as 
low overhead and portability. Disadvantages in using containers are: security 
issues (which will not be the focus in this study [21]); the limitations of not being 
able to run a different OS or kernels; and the maturity level of management tools 
(e.g. for live migration, snapshotting and resizing) is lower than for virtual 
machines. 

Since both containers and hypervisors have their set of benefits and drawbacks, 
one of the key point to select the proper virtualization technology for big data 
platforms is to assess the performance of virtualized or containerized databases 
and how this relates to physical ones [22]. This paper answer to this need 
providing a detailed performance comparison running a distributed database on a 
cluster of physical server, on a VMware cluster of virtual machine, and on a 
Docker cluster. As database, we selected Apache Cassandra [23][24][25] an 
open-source NoSQL distributed database widely adopted by companies using 
Docker and VMware for production and widely used in Big Data applications. 
Cassandra is a leading transactional, scalable, and highly-available. It is known to 
manage some of the world’s largest datasets on clusters with many thousands of 
nodes deployed across multiple data centers. Also, Cassandra Query Language 
(CQL) is user-friendly and declarative [26][27].  
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Our experimental results show that the Dockerized version had lower overhead 
compared to the VMware Virtualized. In fact, the performance of the Dockerized 
version was as good as Non-Virtualized. 

The presented work is organized as follows: In Section 9.2 we discuss related 
work. Section 9.3 describes the experimental setup and test cases. Section 9.4 
presents the experimental results and we conclude our work in Section 9.5. 

9.2 Related Work 

Virtual machine is a mature technology which was introduced by IBM 
mainframes in the 70s [28]. Virtual Machines have benefited from decades of 
hardware and software optimizations. Hypervisor-based cloud computing 
platforms such as KVM, VMware, Xen, and Hyper-V introduce an overhead 
which has been well-studied [4][5][6][7][8]. 

Recently, container-based virtualization technologies such as, Docker and 
Linux Container (LXC) have gained a lot of interest [29][30][31]. The major 
advantage of container is in achieving near-native performance. There are a 
number of studies comparing hypervisor-based virtualization versus container-
based virtualization. In [32] the authors compared the performance of KVM and 
Xen hypervisors with Docker container on the ARM architecture. According to 
their results containers had better performance in CPU bound workloads and 
request/response networking, while hypervisors had better performance in disk 
I/O operations (because of the hypervisor’s caching mechanisms) and TCP 
streaming benchmark. Similarly, in [33] and [34], the authors compared the 
performance of container-based virtualization with hypervisor-based 
virtualization for HPC. According to their result, container-based solution 
delivered better performance than hypervisor-based solution. Our work has some 
similarities to these works however in our study we considered performance of 
the Cassandra a distributed NoSQL database.  

In [35] the authors characterized the performance of three common hypervisors 
KVM, Xen, VMware ESXi and an open source container LXC across two 
generations of GPUs and two host microarchitectures, and across 3 sets of 
benchmarks. According to their results KVM achieved 98-100% of the base 
system’s performance while VMware and Xen achieved only 96-99%. The 
difference between their work and our work is that we considered performance of 
Cassandra database in terms of CPU utilization, disk utilization and latency while 
they were more interested in performance of different generations of GPUs. In 
[13] the authors compared the performance of an open source container 
technology OpenVZ and Xen hypervisor. According to their results, container-
based virtualization outperforms hypervisor-based virtualization. Their work is 
similar to our study. However, they considered Wide-Area Motion Imagery 
(WAMI), Full Motion Video (FMV), and text data, while in our case study we 
were more interested in the performance of the Cassandra database. Also in our 
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study, we used KVM as a hypervisor-based virtualization and as a container-
based virtualization we considered Docker and LXC which are different from 
what they have considered in their study.  

In [2] the authors compared the execution times of AutoDock3 (a scientific 
application) for both Docker container and in virtual machines created using 
OpenStack. According to their results, the overall execution times for container-
based virtualization systems are less than in hypervisor-based virtualization 
systems due to differences in start-up times. In [9] the authors analyzed the 
process handling, file systems and namespace Isolation for container-based 
virtualization systems such as Docker, Linux Containers (LXC), OpenVZ and 
Warden. From their assessment, containers have an advantage over VMs because 
of performance improvements and reduced start-up times. In [3] the authors 
demonstrated that container-based systems are more suitable for usage scenarios 
that require high levels of isolation and efficiency such as HPC Clusters. Their 
results indicate that container-based systems perform two times better for server-
type workloads than hypervisor-based systems. 

Databases are often chosen to store and query large amount of data. 
Traditionally, SQL databases were used in most of datacenters. However, 
because of scalability issues, NoSQL databases have gained popularity since 
2007 [36]. NoSQL databases support large demands of data in a scalable and 
flexible manner. Currently, in the majority of datacenters online applications with 
NoSQL databases are hosted on virtual machines. Therefore, there is a need to 
evaluate NoSQL database performance in virtual environments. There are various 
studies trying to assess the performance impacts of virtualization on SQL and 
NoSQL databases.  

In [37] the authors compared performance of three databases: a SQL database 
PostgreSQL, and two NoSQL databases MongoDB and Cassandra using a sensor 
data storage. They also compared running these databases on a Physical machine 
and a Virtual machine. According to their results, virtualization has a huge effect 
on Cassandra read performance while it has a moderate performance impact on 
MongoDB, and increase the write performance on PostgreSQL. The difference 
between their work and our work is that, we were more interested in comparison 
between performance impacts of container-based virtualization and hypervisor-
based virtualization on the Cassandra database. Another difference is that they 
have used only one machine to run their experiment while in our work we have 
used multiple machines. In [38] the authors compared the performance of Docker 
container and KVM hypervisor using the MySQL database. According to their 
results, container show equal or better performance than virtual machine in 
almost all cases. Their work is similar to our work. However, we chose to 
evaluate Cassandra because it is a popular NoSQL database and it is widely used 
in the cloud. In [39] the authors compared the performance of two NoSQL 
databases MongoDB and Cassandra using different virtualization techniques, 
VMware (full virtualization) and Xen (paravirtualization). According to their 
results VMware provides better resource utilization for NoSQL databases. Their 
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work is different from our work; in our case study we considered performance of 
Cassandra on KVM hypervisor, and container-based virtualization. 

9.3 Evaluation 

The goal of the experiment was that of comparing the performance of 
VMware virtual machines and Docker containers when running Cassandra. As 
baseline for the comparison we used the performance of Cassandra running on 
physical servers. 

9.3.1 Experimental Setup 

All our tests were performed on three HP servers DL380 G7 with a total of 16 
processor cores (plus HyperThreading), 64 GB of RAM and disk of size 400 GB. 
Cassandra 3.0.8 run on RHEL7 and this setup was identical for all test cases: 
Non-Virtualized, Virtualized, and Dockerized. In total, three Cassandra nodes 
were configured in a cluster with default settings. The same version of Cassandra 
was used on the load generators as well. VMware ESXi 6.0.0 was installed in 
case of Cassandra-Virtualized. 

9.3.2 Workload 

To generate workload, we used Cassandra-stress tool. The Cassandra-stress 
tool is a Java-based stress utility for basic benchmarking and load testing of a 
Cassandra cluster. Creating the best data model requires significant load testing 
and multiple iterations. The Cassandra-stress tool helps us in this endeavor by 
populating our cluster and supporting stress testing of arbitrary CQL tables and 
arbitrary queries on tables. The Cassandra package comes with a command-line 
stress tool (Cassandra-stress tool) to generate load on the cluster of servers, the 
cqlsh utility, a python-based command line client for executing Cassandra Query 
Language (CQL) commands and the nodetool utility for managing a cluster. 
These tools are used to stress the servers from the client and manage the data in 
the servers. 

The Cassandra-stress tool creates a keyspace called keyspace1 and within that, 
tables named standard1 or counter1 in each of the nodes. These are automatically 
created the first time we run the stress test and are reused on subsequent runs 
unless we drop the keyspace using CQL. A write operation inserts data into the 
database and is done prior to the load testing of the database. Later, after the data 
are inserted into the database, we run the mix workload, and then split up the mix 
workload and run the write only workload and the read only workload. 
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Table 9.1. Cassandra-stress Tool Sample Commands 

 Command 

Populate the 

Database 

dsc-cassandra-3.0.8/tools/bin/cassandra-stress write n=40000000 -pop seq=1..40000000 -node -schema 

"replication(strategy=NetworkTopologyStrategy, datacenter1=3)" 

Mix-Load 
dsc-cassandra-3.0.8/tools/bin/cassandra-stress mixed ratio\(write=1, read=3\) duration=30m -pop 

seq=1..40000000 -schema keyspace="keyspace1" -rate threads=100 limit=op/s –node  

Read-Load 
dsc-cassandra-3.0.8/tools/bin/cassandra-stress read duration=30m -pop seq=1..40000000 -schema 

keyspace="keyspace1" -rate threads=100 limit=op/s –node  

Write-Load 
dsc-cassandra-3.0.8/tools/bin/cassandra-stress write duration=30m -pop seq=1..40000000 -schema 

keyspace="keyspace1" -rate threads=100 limit=op/s –node  

Below we described in detail each workload as well as the commands we used for 
generating the workloads: 

9.3.2.1 Mix-Load 

To analyze the operation of a database while running both read and write 
operations during one operation, a mixed load command is used to populate the 
cluster. A mixed load operation consists of 75% read requests and 25% write 
requests (three reads and one write) and generated for duration of 30 minutes onto 
the three-node Cassandra cluster. The command used for generating the mixed 
load is described in Table 9.1. 

9.3.2.2 Read-Load 

 In addition to the mix workload, we measured the performance of the 
database for the read-only workload. In this case, a read load command is used to 
populate the cluster. A read load operation consists of 100%  read requests 
generated for duration of 30 minutes onto the three-node Cassandra cluster. The 
command used for generating the read-load is described in Table 9.1. 

9.3.2.3 Write-Load 

In addition to the mix and read workload, we measured the performance of the 
database for the write-only workload. In this case, a write load command is used 
to populate the cluster. A write load operation consists of 100% write requests 
generated for duration of 30 minutes onto the three-node Cassandra cluster. The 
command used for generating the write-load is described in Table 9.1. 

Short descriptions of the Cassanrda-stress tools input parameters (used in Table 
9.1) is noted below:  

• mixed: Interleave basic commands with configurable ratio and 

distribution. The cluster must first be populated by a write test. Here 

we selected a mixed load operation of 75% reads and 25% write. 
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• write: Multiple concurrent writes against the cluster. 

• read: Multiple concurrent reads against the cluster. 

• n: Specify the number of operations to run. Here we chose 

n=40000000 to generate 10 GB database. 

• pop: Population distribution and intra-partition visit order. In this case 

we chose seq= 1…40000000. 

• node: To specify the address of the node to which data is to be 

populated. 

• schema: Replication settings, compression, compaction, and so on. 

Here for the write operation we have modified the replication strategy 

to “NetworkTopologyStrategy” and set the number of replication for 

datacenter 1 to 3. Later for the mixed load we just set the name of the 

default keyspace which is “keyspace1”. 

• duration: It specifies the time in minutes to run the load.  

• rate: Thread count, rate limit, or automatic mode (default is auto). In 

order to control the incoming traffic, we set the number of threads to 

100. We have also limited the number of operations per second, so that 

we can measure the CPU utilization, write rate and the latency mean 

for different number of Transactions Per Seconds(tps) (40k, 80k, 120k, 

160k, and 200k tps).  

9.3.3 Performance metrics 

The performance of Docker container and VMware versus the non-virtualized 
solution are measured using the following metrics:  

• CPU utilization,  

• disk and write rate, and  

• mean latency.  

The CPU utilization and the disk throughput are measured directly on the 
server nodes by means of sar and iostat respectively. The latency is measured on 
the client side, that is measured by the stress test tool. 
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9.3.4 Test cases 

9.3.4.1 Cassandra-Non-Virtualized:  

In this case, three servers are allocate and on each server we run Cassandra 
application. All servers are connected and create a three-node Cassandra cluster. 

9.3.4.2 Cassandra-Virtualized:  

In this case, one virtual machine is created on each host, in total three virtual 
machines. 

9.3.4.3 Cassandra-Dockerized:  

In this case, one container is created on each server, in total three containers. 
In each container we run Cassandra application. All Cassandra nodes are 
connected and a three node Cassandra cluster in configured. 

In each test case, we first experiment with Cassandra different workload 
scenarios, Mix, Read and Write workload. Second, we experiment with various 
replication-factor configurations for the Cassandra cluster. In Cassandra, the input 
splits are replicated among the nodes based on a user-set replication-factor (RF). 
This design prevents data loss and helps with fault tolerance in case of node 
failure [40]. In our experiments, we investigate three different replication-factor 
setup, RF=1, RF=2, and RF=3. In our test environment with three Cassandra 
node cluster, replication factor three means that each node should have a copy of 
the input data splits. For the case of RF=2, the seed node decides based on some 
algorithms where to store replicas. In the case of RF=1, each node only receives 
part of the input data and no replicas. We repeat the same test cases for all three 
different technologies, Non-virtualized, Virtualized, and Dockerized. 

9.4 Experimental Results 

In this section, we present the results of the experiments. 

9.4.1 Mix-Load 

Figure 9.2 shows the results of running the three node Cassandra cluster in a 
Non-virtualized, Virtualized and Dockerized environment while having a Mix-
Load. The result show that both Cassandra Non-Virtualized and Dockerized with 
RF=1 can handle maximum 200k (tps). While Cassandra Virtualized with RF=1 
can only handle 160k (tps). Considering the CPU overhead for the virtual 
machines when run the mix workload. CPU overhead measured from subtraction 
of CPU utilization of Virtualized-Cassandra and Non-Virtualized-Cassandra. For 
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the Virtualized-Cassandra case the CPU overhead is up to 29%. One reason for 
getting very high overhead could be due to additional layers of processing 
required by the virtualization software e.g. VMware [41]. 

For the case with RF=2, we could reach a higher throughput than Non-
virtualized with Docker. One reason could be that the write latency was higher on 
the Non-virtualized compared with the Docker. It can be observed from the 
Figure 9.2 (g, h, i). This slightly higher latency could be one reason for the 
Cassandra to not perform as good on the Non-virtualized as it did on the Docker.  

In general, for all different deployments, RF=1 is always performing better 
than RF=2 and RF=3. One reason is that when the RF in set to one, only one copy 
of data is written and this process is very fast in Cassandra. As it can be seen also 
from the Write rate figures (Figure 9.2 (d, e, f)), less number of packets are 
written to the disk when the RF is equal to one. Respectively, latency mean for 
RF=1 is lower than RF=2 and RF=3. Although RF=1 is fast but from high 
availability point of view the data center providers prefer to have RF=2 or RF=3. 
However, Cassandra is using different Consistency Levels in order to wait for the 
respond from several nodes, and in our case we set the consistency level to be 
Quorum. Quorum means that Cassandra node returns the record after a quorum of 
replicas has responded from any datacenter. So, in our case as it can also be seen 
from the figures, for cases with RF=2 and RF=3 the performance is almost 
identical in terms of CPU utilization. Except for RF=2 in Dockerized which 
performed better than RF=3 in Dockerized (Figure 9.2 (a)). In terms of Write rate 
and latency, RF=2 is lower than RF=3. 

9.4.2 Write-Load 

Figure 9.3 shows the results of running the Cassandra application inside 
VMware virtual machines, Docker containers and bare-metal while running the 
write-load. Comparing Figure 9.3 and Figure 9.2, we can observe that, the CPU 
utilization is very low in general in Figure 9.3 (less than 50%) compared with 
Figure 9.2 (more than 90%). Respectively, as it can be seen from latency mean 
figures in Figure 9.3, latency mean is also very low (around 1) compared with the 
latency mean in Figure 9.2.  

In conclusion we can say that write-load is very quick in Cassandra. One 
reason could be the way data is written in Cassandra. During a write process in 
Cassandra, data is written in the commit log and mem table, then flushing data 
from the mem table and storing data on disk in SSTables. In this process, 
Cassandra does not need to wait for any acknowledgment from other nodes 
regarding replicas. 
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9.4.3 Read-Load 

In Figure 9.4, we show the result of running Cassandra inside a three node 
cluster using different deployments such as: Dockerized, Virtualized and bare-
metal while running the read-load. Comparing the results of the Read-load 
presented in Figure 9.4 with Figures 9.2 and 9.3, we can observe that the read 
process is consuming a lot of CPU resources. And according to the latency mean 
figures, read process is much slower than write process in Cassandra. One reason 
for that could be the read process in Cassandra. During a read process, Cassandra 
processes data at several stages on the read path to discover where data is stored, 
such as checks the mem table, checks the row cache, checks Bloom filter, checks 
partition key cache. All these processes consume CPU resources and has major 
impact on the latency. In summary, Docker container performed better than 
Cassandra-Virtualized and except one case, it performed as good as Non-
Virtualized in terms of throughput. 

In terms of CPU utilization, Non-virtualized show the lowest CPU utilization 
and then Docker show a slightly higher CPU utilization with the overhead of 
around 10% and then Cassandra-Virtualized show the highest CPU utilization 
with the overhead of around 30%. In terms of the write rate, Cassandra-
Virtualized write rate is slightly higher than the Cassandra-Non-Virtualized and 
the Cassandra-Dockerized. In terms of the latency mean, Cassandra-Virtualized 
has higher latency compared to the Non-Virtualized and the Docker. 

9.5 Conclusions and Future Work 

In this paper, we try to address the problem of which solution is better for 
distributed databases such as Cassandra, Non-Virtualized, Virtualized (VMware) 
or Docker? The overall result showed that the biggest issue with running the 
Cassandra-Virtualized, is the significant resource and operational overheads of 
the virtualization layer which affects the performance of the application too. 
However, Cassandra-Dockerized seems to address the challenges of virtualization 
and that is done mostly by packaging the applications and their dependencies into 
lightweight containers. According to the result, Cassandra-Dockerized consumed 
fewer resources and operational overheads compared to the Cassandra-
Virtualized (see Table 9.2). In addition, the performance of Cassandra-
Dockerized was as good as Cassandra-Non-Virtualized. 

Even though container solution is showing very low overhead and system 
resource consumption, it suffers from securing stored data which is crucial for 
database protection. Comparing containers architecture with virtual machines, 
containers cannot be secure candidate for databases because all containers share 
the same kernel and are therefore less isolated than virtual machines. A bug in the 
kernel affects every container and results in data loss. On the other hand, 
hypervisor-based virtualization is a mature and secure technology. Virtual 
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machines are able to partition and distribute resources viably in the hypervisor 
without relying on kernel support or separate hardware. 

However, according to our results, hypervisor-based virtualization suffers 
from noticeable overhead which effects the performance of the databases. Since 
both containers and virtual machines have their set of benefits and drawbacks, an 
alternative solution could be to combine the two technologies. In the future, we 
plan to investigate the alternative solution by running containers inside virtual 
machines running Cassandra workload. In this way, we can get the benefits of 
both security of the virtual machine with the execution speed of containers. 
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Figure. 9.2: Mix-load workload. Docker, Non-virtualized and Virtualized scenarios are compared using the mean value of 

CPU utilization, write rate and latency. 
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Figure. 9.2: Mix-load workload. Docker, Non-virtualized and Virtualized scenarios are compared using the mean value of 

CPU utilization, write rate and latency. 
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Figure. 9.3: Write-load workload. Docker, Non-virtualized and Virtualized scenarios are compared using the meand value 

of CPU utilization, write rate and latency. 
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Figure. 9.3: Write-load workload. Docker, Non-virtualized and Virtualized scenarios are compared using the meand value 

of CPU utilization, write rate and latency. 
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Figure. 9.3: Write-load workload. Docker, Non-virtualized and Virtualized scenarios are compared using the meand value 

of CPU utilization, write rate and latency. 
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Figure. 9.4: Read-load workload. Docker, Non-virtualized and Virtualized scenarios are compared using the mean value of 

CPU utilization, write rate and latency.  
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Figure. 9.4: Read-load workload. Docker, Non-virtualized and Virtualized scenarios are compared using the mean value of 

CPU utilization, write rate and latency.  
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Table 9.2. Summary of the Performance Results 

RF Workload 

Docker Non-Virtualized Virtualized 

CPU Util 

(%) 

Write Rate 

(wkb/s) 

Latency 

(msec) 

CPU Util 

(%) 

Write Rate 

(wkb/s) 

Latency 

(msec) 

CPU Util 

(%) 

Write Rate 

(wkb/s) 

Latency 

(msec) 

1 

Mix (80K tps) 55 2201 1.35 46 2190 1.2 75 2633 1.9 

Read (60k tps) 39 2 0.9 32 3 0.9 57 15 1.2 

Write (20k tps) 14 1811 0.7 12 1816 0.6 24 2210 0.8 

2 

Mix (80k tps) 70 5032 1.9 59 5050 2.1 86 5407 4.4 

Read (60k tps) 50 2 1.5 41 3 1.4 65 16 1.6 

Write (20k tps) 22 3815 0.7 18 3748 0.7 36 3667 0.9 

3 

Mix (80k tps) 74 7860 2.2 64 7888 2.1 84 8849 5.45 

Read (60k tps) 54 2 1.9 45 2 1.9 68 18 1.6 

Write (20k tps) 26 5772 0.8 22 5835 0.8 41 5828 1 
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10 Performance Comparison between Horizontal Scaling of 

Hypervisor and Container Based Virtualization using 

Cassandra NoSQL Database 

Abstract 

Cloud computing promises customers the on-demand ability to scale in face of 

workload variations. There are different ways to accomplish scaling, one is 

vertical scaling and the other is horizontal scaling. The vertical scaling refers to 

buying more power (CPU, RAM), buying a more expensive and robust server, 

which is less challenging to implement but exponentially expensive. While, the 

horizontal scaling refers to adding more servers with less processor and RAM, 

which is usually cheaper overall and can scale very well. The majority of cloud 

providers prefer the horizontal scaling approach, and for them would be very 

important to know about the advantages and disadvantages of both technologies 

from the perspective of the application performance at scale. In this paper, we 

compare performance differences caused by scaling of the different virtualization 

technologies in terms of CPU utilization, latency, and the number of transactions 

per second. The workload is Apache Cassandra, which is a leading NoSQL 

distributed database for Big Data platforms. Our results show that running 

multiple instances of the Cassandra database concurrently, affected the 

performance of read and write operations differently; for both VMware and 

Docker, the maximum number of read operations was reduced when we ran 

several instances concurrently, whereas the maximum number of write operations 

increased when we ran instances concurrently. 

10.1 Introduction 

Today’s modern data centers are increasingly virtualized where applications 
are hosted on one or more virtual servers that are then mapped onto physical 
servers in the data center. Virtualization provides a number of benefits such as 
flexible allocation of resources and scaling of applications. Scalability 
corresponds to the ability of a system uniformly to handle an increasing amount 
of work [1] [2] [3]. Nowadays, there are two types of server virtualization 
technologies that are common in data center environments, hardware-level 
virtualization and operating system level virtualization. Hardware-level 
virtualization involves embedding virtual machine software (known as hypervisor 
or Virtual Machine Monitor (VMM)) into the hardware component of a server. 
The hypervisor controls processor, memory, and other components by allowing 
several different operating systems to run on the same machine without the need 
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for a source code. The operating system running on the machine will appear to 
have its own processor, memory, and other components. Virtual machines are 
extensively used in today’s practice. However, during the last few years, much 
attention has been given to operating system level virtualization (also known as 
container-based virtualization or containerization). Operating system level 
virtualization refers to an operating system feature in which the kernel allows the 
existence of multiple isolated user-space instances (also known as partitions or 
containers) instead of just one. As has been shown in Figure 10.2, containers are 
more light weight than virtual machines, various applications in container share 
the same operating system kernel rather than launching multiple virtual machines 
with separate operating system instances. Therefore, container-based 
virtualization provides better scalability than the hypervisor-based virtualization 
[4]. 

Currently, two concepts are used to scale virtualized systems, vertical and 
horizontal scaling [5] [6] [7][8]. Vertical scaling corresponds to the improvement 
of the hardware on which application is running, for example addition of 
memory, processors, and disk space. While horizontal scaling corresponds to 
duplication of virtual servers to distribute the load of transactions. Horizontal 
scaling approach is almost always more desirable because of its advantages such 
as, no limit to hardware capacity, easy to upgrade, and easier to run fault-
tolerance. 

 

Figure 10.2. Different of Virtual Machines and Containers Architecture 

In our previous study, we explored the performance of a real application, 
Cassandra NoSQL database, on the different environments. Our goal was to 
understand the overhead introduced by virtual machines (specifically VMware) 
and containers (specifically Docker) relative to non-virtualized Linux [9]. In this 
study, our goal is to provide an up-to-date comparison of containers and virtual 
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machine environments using recent software versions. In addition, explore how 
much horizontal scaling of virtual machines and containers will improve the 
performance in terms of the system CPU utilization, latency, and throughput. In 
this work, we have used multiple instances of the Cassandra running concurrently 
on the different environments. 

The presented work is organized as follows: In Section 10.2 we discuss related 
work. Section 10.3 describes the experimental setup and test cases. Section 10.4 
presents the experimental results and we conclude our work in Section 10.5. 

10.2 Related Work 

Both container-based and virtual machine-based virtualization technologies 
have been growing at a rapid space, and research work evaluating the 
performance aspects of these platforms provides an empirical basis for comparing 
their performance. Our previous research [9], has compared performance 
overheads of Docker containers, VMware virtual machines versus Non-
virtualized. We have shown that, Docker had lower overhead compared to the 
VMware. In this paper, we try to expand our previous work and compare the two 
technologies; Container-based and Virtual Machine-based virtualization in terms 
of their scalabilities running Cassandra workload. There have not been many 
studies on both scalability and performance comparison between the two 
technologies. A comparison between Linux containers and AWS ec2 virtual 
machines is performed in [10]. According to their results, containers 
outperformed virtual machines in terms of both performance and scalability.  

In [11], the authors evaluated the performance differences caused by the 
different virtualization technologies in data center environments where multiple 
applications are running on the same servers (multi-tenancy). According to theirs 
study, containers may suffer from performance in multi-tenant scenarios, due to 
the lack of isolation. However, containers offer near bare-metal performance and 
low footprint. In addition, containers allow soft resource limits which can be 
useful in resource over-utilization scenarios. In [12], the authors studied 
performance implications on the NoSQL MongoDB during the horizontal scaling 
of virtual machines. According to their results, horizontal scaling affects the 
average response time of the application by 40%. 

10.3 Evaluation 

The goal of the experiment was that of comparing the performance scalability 
of the Cassandra while running it on multiple virtual machines versus on multiple 
containers concurrently. 
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Figure 10.3. Experimental Setup  

10.3.1 Experimental Setup 

All our tests were performed on three HP servers DL380 G7 with processors 
for a total of 16 cores (plus HyperThreading) and 64 GiB of RAM and disk of 
size 400 GB. Red Hat Enterprise Linux Server 7.3 (Maipo) (Kernel Linux 3.10.0-
514.e17.x86_64) and Cassandra 3.11.0 are installed on all hosts as well as virtual 
machines. Same version of Cassandra used on the load generators. To test 
containers, Docker version 1.12.6 installed and in case of virtual machines 
VMware ESXi 6.0.0 installed. In total 4 times 3-node Cassandra clusters 
configured for this study (see Figure 10.3). 

10.3.2 Workload 

To generate workload, we used Cassandra-stress tool. The Cassandra-stress 
tool is a Java-based stress utility for basic benchmarking and load testing of a 
Cassandra cluster. Creating the best data model requires significant load testing 
and multiple iterations. The Cassandra-stress tool helps us in this endeavor by 
populating our cluster and supporting stress testing of arbitrary CQL tables and 
arbitrary queries on tables. The Cassandra package comes with a command-line 
stress tool (Cassandra-stress tool) to generate load on the cluster of servers, the 
cqlsh utility, a python-based command line client for executing Cassandra Query 
Language (CQL) commands and the nodetool utility for managing a cluster. 
These tools are used to stress the servers from the client and manage the data in 
the servers. 

The Cassandra-stress tool creates a keyspace called keyspace1 and within that, 
tables named standard1 or counter1 in each of the nodes. These are automatically 
created the first time we run the stress test and are reused on subsequent runs 
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unless we drop the keyspace using CQL. A write operation inserts data into the 
database and is done prior to the load testing of the database. Later, after the data 
are inserted into the database, we run the mix workload, and then split up the mix 
workload and run the write only workload and the read only workload. In [9] [1], 
we described in detail each workload as well as the commands we used for 
generating the workloads, in this paper we have used the same approach for 
generating the workload. 

10.3.3 Performance Metrics 

The performance of Docker containers and VMware virtual machines are 
measured using the following metrics: 

• CPU Utilization (percentage), 

• Maximum Transactions Per Second (TPS), and 

• Mean Latency (milisecond). 

The CPU utilization is measured directly on the server nodes by means of sar 
command. The latency and maximum transactions per second (TPS) are 
measured on the client side, that are measured by the stress test tool. The term 
transactions per second refers to the number of database transactions performed 
per second. 

10.3.4 Test Cases 

10.3.4.1 One-Cassandra-three-node-cluster 

In this case, one virtual machine/container deployed on each host running 
Cassandra application. All virtual machines/containers configured as one 3-node 
cluster. 

10.3.4.2 Two-Cassandra-three-node-clusters 

In this case, two containers/virtual machines deployed on each host running 
Cassandra application. Each container/virtual machine on each host belongs to its 
own 3-node cluster, so in total two 3-node clusters configured to run 
concurrently. 

10.3.4.3 Four-Cassandra-three-node-clusters 

In this case, four containers/virtual machines deployed on each host running 
Cassandra application. Each container/virtual machine on each host belongs to its 
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own 3-node cluster, so in total four 3-node clusters configured to run 
concurrently. 

In this experiment, we compare the performance of virtual machines and 
containers running different Cassandra workload scenarios, Mix, Read and Write. 
However, unlike our previous study [9], here we decided to set the replication-
factor as three. In our test environment with three-node clusters, replication factor 
three means that each node should have a copy of the input data splits. 

10.4 Performance and Scalability Comparison 

10.4.1 Transactions per second (tps) 

Figure 10.3 shows transactions per second (tps) during write, read and mixed 
load. In this figure we summarized the total transactions per second from 
different number of Cassandra clusters running on Docker containers and 
VMware virtual machines. According to the results, overall in all cases Docker 
containers could handle higher number of database transactions per second than 
VMware virtual machines. In the case of the mixed load, Docker containers could 
handle around 25% more transactions per second than VMware virtual machines. 
In the case of only write load the difference is around 19% more for containers 
than virtual machines. While in the case of only read load, there is a huge 
difference of around 40% in the number of transactions per second between 
virtual machines and containers. Another aspect to consider according to the 
transactions per second results is that, running multiple instances of the 
Cassandra database concurrently, affected the performance of read and write 
operations differently; for both VMware and Docker, the maximum number of 
read operations was reduced when we ran several instances concurrently, whereas 
the maximum number of write operations increased when we ran instances 
concurrently. Note that increasing the number of Cassandra clusters did not have 
any significant impact on the number of transactions per second in the case of the 
mixed-load.  

10.4.2 CPU utilization 

Figure 10.4 shows the results of CPU utilization of multiple number of 
Cassandra clusters running on virtual machines and containers during write, read, 
and mix workloads. According to the results, in general CPU utilization of one 
cluster of virtual machines/containers are lower than two clusters and CPU 
utilization of two clusters is less than three clusters. It can be observed from the 
figures that, the overhead of running multiple clusters in terms of CPU utilization 
is around 10% for both containers and virtual machines. This overhead decrease 
as the load increases, one reason for this can be the background jobs that are 
running in Cassandra and as the load increases Cassandra by default delays these 
jobs since there are not enough resources available for executing the jobs. In 
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addition, it can be observed from the figures that, the overall CPU utilization of 
containers is lower than virtual machines for all different workloads. Considering 
the mix workload CPU utilization of containers is around 15% lower than CPU 
utilization of virtual machines. The difference between CPU utilization of 
containers and virtual machines is around 12% for the write workload which is 
very close to the difference that we saw for the mix workload case. However, this 
difference is significantly higher for the read workload up to around 40%. 
According to these results, read operations utilize more CPU cycles on virtual 
machines than on containers. 

10.4.3 Latency 

Figure 10.5 shows the results of latency mean of multiple number of 
Cassandra clusters running on virtual machines and containers during write, read, 
and mix workloads. As it can be observed from the figures, in general, the latency 
of containers is 50% lower than virtual machines as the load increases.  

In the case of the mixed workload, the latency difference between having one 
cluster and two clusters is negligible. However, the latency difference between 
having one or two clusters compared with four clusters is around 33%. In the case 
of the write workload the difference between having containers. 

However, for virtual machines, the latency becomes around 10ms in the case 
of 4 clusters when the tps is only 80k. Also, in the case of two clusters and 
1cluster, since the cluster did not handle the load of 80k tps the latency is only 
shown for 40k tps which is around 2-3 ms. In the case of read workload, for the 
virtual machines the latency increases up to around 50% higher for the case with 
two clusters compared with one cluster. The latency increases up to around 20% 
for the case of four clusters compared with the case of two clusters and there is an 
increase of up to around 60% compared to the case of only one cluster. 
According to these results scaling would be very expensive for virtual machines 
in terms of latency mean which will have a negative impact on the application 
performance. However, in the case of containers the cost in terms of latency 
difference for having multiple clusters compared with one cluster is up to around 
23%. According to the results, running multiple clusters inside containers will 
have less impact on the latency and the performance of the application (in this 
case Cassandra) than running multiple clusters inside virtual machines. The 
latency difference increases exponentially as the number of clusters increases as 
well as the load increases. The latency difference increases up to around 23% on 
containers and up to around 60% on virtual machines while having 100% read 
workload. The latency difference is negligible in the case of write workload. 
Also, there is a moderate latency difference in the case of mixed workload which 
is up to around 20% for virtual machines when the tps is 80k and up to around 
25% for containers when the tps is 120k.  
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10.5 Discussions and Conclusions 

In this study, we have compared the performance of running multiple clusters 
of the NoSQL Cassandra database inside Docker containers and VMware virtual 
machines. We have measured the performance in terms of CPU utilization, 
Latency mean and the maximum number of Transactions Per Second (TPS). 
According to our results, running Cassandra inside multiple clusters of VMware 
virtual machines was showing less performance in terms of maximum number of 
transactions per second compared to the Docker containers. The performance 
difference was around 20% lower during the mixed workload, around 16% lower 
during the write-only workload and around 29% lower during read-only 
workload. One reason for this could be that containers are lighter-weight 
compared to virtual machines, therefore there is a less overhead of the 
virtualization layer and this helps the application to get more resources and 
performs better on containers than virtual machines. Another reason can be how a 
write and a read operation procedure works in Cassandra. In Cassandra, a write 
operation in general performs better than a read operation because it does not 
involve too much I/O. A write operation is completed when the data has been 
both written in the commit log (file) and in memory (memtable). However, a read 
operation may require more I/O for different reasons. A read operation first 
involves reading from a filter associated to sstable that might save I/O time 
saying that a data is surely not present in the associated sstable and then if filter 
returns a positive value, Cassandra starts seeking the sstable to look for data. In 
terms of CPU Utilization, the Cassandra application performs better on containers 
than on virtual machines.  According to our results, the difference between CPU 
utilization on virtual machines is around 16% higher than containers during the 
mixed workload, around 8% higher during the write-only workload and around 
32% higher during the read-only workload. In addition, the Cassandra application 
running inside virtual machines got up to around 50% higher latency than 
containers during the mixed workload. The difference became up to around 40% 
higher on virtual machines during the write-only workload compared to 
containers, also up to around 30% higher on virtual machines during the read-
only workload compared to containers. As it has been discussed before in general 
the read-only workload is showing less performance than the write-only 
workload, and the impact of the different types of workloads on the performance 
in terms of CPU utilization is higher on virtual machines than containers. 

However, considering the scalability aspects of the virtual machines and the 
containers, according to our results, containers scale better without loosing too 
much performance while virtual machines overhead is very high, and it has a 
negative impact on the performance of the application. This might differ 
depending on the application and the type of workload as we have seen during 
our experiments. Therefore, cloud providers need to investigate this issue while 
deploying both virtual machines and containers across data centers also at larger 
scale. 
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11 Scheduling Tasks with Hard Deadlines in Virtualized 

Software Systems 

Abstract 

There is scheduling on two levels in real-time applications executing in a 

virtualized environment: traditional real-time scheduling of the tasks in the real-

time application, and scheduling of different Virtual Machines (VMs) on the 

hypervisor level. In this paper, we describe a technique for calculating a period 

and an execution time for a VM containing a real-time application with hard 

deadlines. This result makes it possible to apply existing real-time scheduling 

theory when scheduling VMs on the hypervisor level, thus making it possible to 

guarantee that the real-time tasks in a VM meet their deadlines. If overhead for 

switching from one VM to another is ignored, it turns out that (infinitely) short 

VM periods minimize the utilization that each VM needs to guarantee that all 

real-time tasks in that VM will meet their deadlines. Having infinitely short VM 

periods is clearly not realistic, and in order to provide more useful results we have 

considered a fixed overhead at the beginning of each execution of a VM. 

Considering this overhead, a set of real-time tasks, the speed of each processor 

core, and a certain processor utilization of the VM containing the real-time tasks, 

we present a simulation study and some performance bounds that make it 

possible to determine if it is possible to schedule the real-time tasks in the VM, 

and in that case for which periods of the VM that this is possible. 

11.1 Introduction 

Most real-time services were originally designed for physical (un-virtualized) 

computer systems. However, the trend towards virtualization pushes, for cost 

reasons, more and more systems onto virtualized machines, and at some point one 

would also like to run real-time systems with hard deadlines in a virtualized 

environment. Moving a real-time system with hard deadlines to a virtualized 

environment where a number of Virtual Machines (VMs) share the same physical 

computer is a challenging task. The original real-time application was designed 

so that all tasks were guaranteed to meet their deadlines provided that the 

physical computer was fast enough. In a system with faster processors, and more 

cores, one would like to put several VMs on the same hardware and some (or all) 

of these VMs may contain real-time tasks with hard deadlines. In such a system 

there will be scheduling at two levels [6]: traditional real-time scheduling of the 

tasks within a VM, and hypervisor controlled scheduling of several VMs on the 

same physical server. In [25] and [32] the authors refer to this technique as 
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Component-based design. This technique is also known as Hierarchical 

scheduling [21] [22] [31] [32] [34]. 

Traditional scheduling of tasks on a physical uni-processor computer is well 

understood, and a number of useful results exist [9], e.g., it is well known that 

Earliest Deadline First (EDF) is optimal when we allow dynamic task priorities. 

Similarly, it is well-known that Rate-Monotonic Scheduling (RMS) where tasks 

are assigned priorities based on their deadlines is optimal for the case when we 

use static task priorities. These priority scheduling algorithms are based on a 

number of parameters for each task τi. These parameters are typically, the period 

Ti the worst-case execution time Ci, and the deadline Di, for task τi. Often, we 

assume that Di = Ti, and in that case we only need two parameters for each task, 

namely,  Ti and Ci. Priority assignment schemes such as EDF and RMS are 

typically used in the original real-time scheduling applications, i.e., in the 

applications that will be running in a VM.  

If we ignore the overhead for context switching from one VM to another and 

if we use (infinitely) small time slots, we could let a VM get a certain percentage 

of the physical computer, e.g., two VMs where each VM uses every second time 

slot. This kind of situation could be seen as two VMs running in parallel with 

50% of full speed each. In that case, the real-time application would meet all 

deadlines if the processor on the physical computer is (at least) two times as fast 

as the processor for which the original real-time application was designed for. 

However, the overhead for switching from one VM to another cannot be ignored 

and the time slot lengths for this kind of switching can obviously not be infinitely 

small. In order to minimize the overhead due to switching between VMs we 

would like to have relatively long time periods between switching from one VM 

to another VM. In order to share the physical hardware between as many VMs as 

possible we would also like to allocate a minimum percentage of the physical 

CPU to a VM, i.e., we would only like to allocate enough CPU resources to a VM 

so that we know that the real-time application that runs in that VM meets all its 

deadlines.  

In order to use EDF, RMS or similar scheduling algorithms also on the 

hypervisor level, i.e., when scheduling the different VMs to the physical 

hardware, we need to calculate a period TVM and a (worst-case) execution time 

CVM for each VM that share a physical computer. It can be noted that also most 

real-time multiprocessor scheduling algorithms are based on the period and the 

worst-case execution time [8] [20]. This is important since most modern 

hardware platforms, i.e., most platforms on which the VMs will run, are 

multiprocessors. 

VMs with one virtual processor will, for several reasons, be a very important 

case. Many existing real-time applications with hard deadlines have been 
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developed for uniprocessor hardware. Moreover, even when using state-of-the-art 

multiprocessor real-time scheduling algorithms, one may miss deadlines for task 

sets with processor utilization less than 40% [8]. For the uni-processor case it is 

well known that when using RMS we will always meet all deadlines as long as 

the processor utilization is less than ln(2) = 69.3% [9]. This indicates that, 

compared to having a small number of VMs with many virtual cores each, it is 

better to use a larger number of VMs with one virtual core each on a multicore 

processor (we will discuss this in Section 10.2). We will present our results in the 

context of VMs with one virtual core. However, the results could easily be 

extended to VMs with multiple virtual cores as long as each real time task is 

allocated to a core (we will discuss this in Section 11.9). Systems that use global 

multiprocessor scheduling of real-time tasks, i.e., systems that that allow tasks to 

migrate freely between processors, are not considered here. 

In this paper we will, based on an existing real-time application and the 

processor speed of the physical hardware, calculate a period TVM and an 

execution time CVM such that the existing real-time application will meet all 

deadlines when it is executed in a VM, provided that the VM executes (at least) 

CVM time unites every period of length TVM. We will show, and it is also well 

known from previous studies, that if overhead for switching from one VM to 

another is ignored, it turns out that (infinitely) short VM periods minimizes the 

utilization that each VM needs to guarantee that all real-time tasks in that VM 

will meet their deadlines. Having infinitely short VM periods is clearly not 

realistic, and in order to provide more useful results we consider a fixed overhead 

at the beginning of each execution of a VM. Considering this overhead, a set of 

real-time tasks, the speed of the each processor core, and a certain processor 

utilization of the VM containing the real-time tasks, we present a simulation 

study and some performance bounds that make it possible to determine if it is 

possible to schedule the real-time tasks in the VM, and in that case for which 

periods of the VM that this is possible. We will base our calculations on the case 

when we use static priorities, and thus RMS, in the original real-time 

applications. However, we expect that our approach can easily be generalized to 

cases when other scheduling policies, such as EDF, are used in the original real-

time applications (we will discuss this in Section 11.2).  

11.2 Related Work 

Today, most physical servers will contain multiple processor cores. Modern 

virtualization systems, such as KVM, VMware and Xen, make it possible to 

define VMs with a number of (virtual) cores, thus allowing parallel execution 

within a VM. This means that one can use the physical hardware in different 

ways: one can have a large number of VMs with one (virtual) core each on a 

physical (multi-core) server, or a smaller number of VMs with multiple (virtual) 

cores each (or a combination of these two alternatives). It is also possible to make 
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different design decisions in the time domain, e.g., allowing a VM with one 

virtual core to execute for relatively long time periods, or restricting a VM with 

multiple cores to relatively short execution periods. Real-time scheduling theory 

(for non-virtualized systems) shows that the minimum processor utilization for 

which a real-time system can miss a deadline, using fixed priority scheduling, 

decreases as the number of processors increases, e.g., 69.3% for one processor 

systems [7] (using RMS) and 53.2% for two processor systems [8] and then down 

to as little as 37.5% for systems with (infinitely) many processors [8]. 

Consequently, compared to multiprocessor systems, the processor utilization 

is in general higher for systems with one processor. This is one reason why we 

have assumed that the VM containing the original real-time application only has 

one (virtual) processor. Also, most existing real-time applications are developed 

for systems with one processor.  

In this paper we have assumed that the real-time application in the VM uses 

RMS. If we assume some other scheduling policy, e.g., EDF we can use the same 

technique. The only difference is that the formula Ri  =  Ci +  ∑ ⌈Ri Tj⁄ ⌉Cj
i−1
j=1  (see 

Section 11.3), needs to be replaced with the corresponding analysis for EDF.  

Very little has been done in the area of scheduling real-time tasks with hard 

deadlines in virtualized systems. Some results on real-time tasks with soft 

deadlines exist [1] [16]. 

There are a number of results concerning so called proportional-share 

schedulers [2] [3] [4] [18]. These results look at a real-time application that runs 

inside an operating system process. The proportional-share schedulers aim at 

dividing the processor resource in predefined proportions to different processes. 

In [10] the authors look at a model for deciding which real-time tasks to 

discard when the cloud system’s resources cannot satisfy the needs of all tasks. 

This model does, however, not address the problems associated with hard 

deadlines. 

In [11] the authors ran an experiment using a real-time e-learning distributed 

application for the purpose of validating the IRMOS approach. The IRMOS uses 

a variation of the Constant Bandwidth Server (CBS) algorithm based on EDF. 

Furthermore in [17] the authors developed their particular strategy in the context 

of IRMOS project. They tried to consider isolation and CPU scheduling effects 

on I/O performance. However, in IRMOS they do not consider hard real-time 

tasks scheduled using the RMS. 

Reservation-based schedulers are used as hypervisor level schedulers. In [12] 

and [19] the authors used CPU reservation algorithm called, Constant Bandwidth 
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Server (CBS) in order to prove that the real time performance of the VMs running 

on the hypervisor is affected by both the scheduling algorithm (CBS) and VM 

technology (in this case KVM). However, the authors do not present a method for 

how to schedule different VMs running on the hypervisor.  

In [13] the authors presented two algorithms for real-time scheduling. One is 

the hypervisor scheduling algorithm and the other is the processor selection 

algorithm. However they only consider scheduling VMs on the hypervisor level, 

they do not investigate scheduling of the hard real-time tasks that run inside the 

VMs. 

Eucalyptus is open-source software for building private and hybrid clouds. 

There are several algorithms already available in Eucalyptus for scheduling VMs 

with some advantages and disadvantages. In [14] the authors proposed a new 

algorithm for scheduling VMs based on their priority value, which varies 

dynamically based on their load factors. However they consider dynamic priority 

based scheduling not static priority.  

In [15], a priority based algorithm for scheduling VMs is proposed. The 

scheduler is first distinguishing the best matches between VMs and empty places 

and then deploying the VMs onto the corresponding hosts. The authors did a 

comparison between their priority algorithm and First Come First Serve (FCFS) 

algorithm, they concluded that the resource performance of their algorithm is not 

higher than the FCFS algorithm all the time but it has higher average resource 

performance. Nevertheless, they do not consider periodic tasks and static priority 

assignment.  

The VSched system, which runs on top of Linux, provides soft real-time 

scheduling of VMs on physical servers [5]. However, the problems with hard 

deadlines are not addressed in that system.  

In [21], the authors proposed a hierarchical bounded-delay resource model 

that constructs multiple levels resource partitioning. Their approach is designed 

for the open system environment. Their bounded-delay resource partition model 

can be used for specifying the real-time guarantees supplied from a parent model 

to a child model where they have different schedulers, while in [22] and [32], the 

authors proposed a resource model that can provide a compositional manner such 

that if the parent scheduling model is schedulable, if and only, its child 

scheduling models are schedulable. However, none of the proposed resource 

models consider scheduling in virtualized environment. 

In [23] and [31], the authors presented a methodology for computing exact 

schedulability parameters for two-level framework while in [24] they did an 

analysis on systems where the fixed priority pre-emptive scheduling policy is 

used on both level. Further in [26], the authors presented a method for analysis of 
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platform overheads in real-time systems. Similar work by [33] represents that 

their proposed approach can reduce pre-emption and overhead by modifying the 

period and execution time of the tasks.  

In [25], the authors developed compositional real-time scheduling framework 

based on the periodic interface, they have also evaluated the overheads that this 

periodic interface incur in terms of utilization increase. Later in [41], the authors 

proposed an approach to eliminate abstraction overhead in composition. In their 

latest study the authors have improved their previous works and proposed a new 

technique for the cache-related overhead analysis [40]. 

In [27], the authors implemented and evaluated a scheduling framework that 

built on Xen virtualization platform. Another similar work has been done by [29]; 

they represent an implementation of compositional scheduling framework for 

virtualization using the L4/Fiasco micro kernel which has different system 

architecture compared to Xen. The authors calculated clock cycle overhead for 

the L4/Fiasco micro kernel. In [28], the authors proposed and compare the results 

of overhead of an external scheduler framework called ExSched that is designed 

for real time systems. In [30], the authors presented and compared several 

measurements of overheads that their implemented hierarchical scheduling 

framework imposes through its implementation over VxWorks.  

Compositional analysis framework based on the explicit deadline periodic 

resource model has been proposed by [38]. They have used EDF and Deadline 

Monotonic (DM) scheduling algorithm and their model supports sporadic tasks.  

In [39], the authors present the RM schedulability bound in a periodic real time 

system which is an improvement to the earlier bound that has been proposed by 

[7]. However, none of these works consider the overhead in their models. 

11.3 Problem Definition 

We consider a real-time application consisting of n tasks. Task τi  (1 ≤ i ≤
n ) has a worst-case execution time Ci  (1 ≤ i ≤ n ), and a period Ti  (1 ≤ i ≤
n ). This means that task τi generates a job at each integer multiple of Ti and each 

such job has an execution requirement of Ci time units that must be completed by 

the next integer multiple of Ti. We assume that each task is independent and does 

not interact (e.g., synchronize or share data) with other tasks. We also assume that 

the first invocation of a task is unrelated to the first invocation of any other task, 

i.e., we make no assumptions regarding the phasing of tasks with equal or 

harmonic periods. We assume that the deadline Di is equal to the period, 

i.e., Di  =  Ti (1 ≤ i ≤ n). The tasks are executed using static task priorities, and 

we use RMS scheduling, which means that the priority is inversely proportional 

to the period of the task (i.e., tasks with short periods get high priority). This 

static priority assignment scheme is optimal for the uni-processor case [9].  
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The real-time application is executed by a VM with one virtual processor. The 

real-time tasks may miss their deadlines if the VM containing the tasks is not 

scheduled for execution by the hypervisor during a certain period of time. For 

instance, if some period that the VM is not running exceeds some Ti, it is clear 

that the corresponding task τi will miss a deadline. Also, if the VM gets a too low 

portion of a physical processor, the tasks may also miss their deadlines since 

there will not be enough processor time to complete the execution time before the 

next deadline.  

In a traditional real-time application, a task τi will voluntarily release the 

processor when it has finished its execution in a period, and Ci denotes the 

maximum time it may execute before it releases the processor. In the case with 

real-time scheduling of VMs on the hypervisor level it is more natural to assume 

that the hypervisor preempts VMj and puts VMj in the blocked state when it has 

executed for CVMj
 time units in a period. The hypervisor then moves VMj to the 

ready state at the start of the next period. As mentioned before, the length of the 

period for VMj is TVMj
. 

On the hypervisor level one may use any scheduling policy as long as one can 

guarantee that each VM is executed CVM, during each period TVM. On multicore 

processors one could for instance bind each VM to a core and let the VMs that 

share the same core share it using RMS, or one could let the VMs share a global 

ready queue, i.e., a VM could be executed on different cores during different time 

periods.  

11.4 Defining Tvm And Cvm  

Without loss of generality, we order the tasks τi (1 ≤ i ≤ n ) such that Ti  ≤
 Ti+1. This means that τ1 has the highest priority and τn has the lowest priority 

using RMS. Let Ri denote the worst-case response time for taskτi. From previous 

results we know that 

                                  Ri  =  Ci +  ∑ ⌈Ri Tj⁄ ⌉Cj
i−1
j=1         (1) 

on a physical uni-processor server (or when the VM has uninterrupted access 

to a physical processor). In order to obtain Ri from Equation (1) one needs to use 

iterative numeric methods [9]. In order to meet all deadlines, we must make sure 

that Ri  ≤  Ti (1 ≤ i ≤ n).  

Consider a time period of length t, which may extend over several 

periods TVM. The scenario with minimum execution of the VM during period t, 
starts with a period of 2(TVM −  CVM) with no execution (see Figure 11.1) 

[37][25], i.e., the period starts exactly when the VM has executed CVM time units 
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as early as possible in one of its periods. Following this line of discussion, it is 

also clear that for the worst-case scenario ⌊(t − 2(TVM −  CVM)) TVM⁄ ⌋ is the 

number of whole periods of length TVM (each containing a total execution 

of CVM) that is covered by t.  

Let t′ denote the minimum amount of time that the VM is running during a 

time period of length t. From Figure 10.1 we get the minimum t’ as: 

t′ =  ⌊
(t−2(TVM− CVM))

TVM
⌋ CVM + min ((t − 2(TVM −  CVM) − ⌊

(t−2(TVM− CVM))

TVM
⌋ TVM) , CVM) (2) 

In Equation (2), the first term (⌊(t − 2(TVM −  CVM)) TVM⁄ ⌋CVM) corresponds 

to the full periods, and the last term to the remaining part. The term t −

2(TVM −  CVM) − ⌊(t − 2(TVM − CVM)) TVM⁄ ⌋TVM is the time that the VM has 

access to a physical processor during the part of t that exceeds the full periods.  

 

Figure 11.1 : Worst-case scenario when scheduling a VM with period 𝑻𝑽𝑴 and 

(worst-case) execution time 𝑪𝑽𝑴. 
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The minimum comes from the fact that time that the VM has access to a 

physical processor during the time interval that exceed the full periods cannot be 

more than CVM. This means that t′ is a function of three parameters, i.e., t′  =
f (t, TVM, CVM). For fixed TVM and CVM, t′  = f (t, TVM, CVM) is a continuous 

increasing function in t, consisting of straight line segments from ((2(TVM −

 CVM) +  nTVM ), nCVM) to ((2(TVM −  CVM) +  (n + 1)TVM) , (nCVM + TVM)) 

for any n = 0, 1, 2, … and horizontal lines connecting them. 

Figure 11.1 displays a general piece of the curve, and the points Pn  =

 ((2(TVM −  CVM) +  nTVM) , CVM) are the lower corners in the graph.  

We now define the inverse function  

                     t =  f −1(f (t, TVM, CVM), TVM, CVM)            (3) 

By looking at Figure 10.2 we see that 

       f −1(t, TVM, CVM) = 2(TVM −  CVM) +  t + ⌊t CVM⁄ ⌋(TVM − CVM)        (4) 

 

Figure 11.2 : The function 𝒇−𝟏(𝒕, 𝑻𝑽𝑴, 𝑪𝑽𝑴); 𝒕  is the parameter on the x-axis in 

the graph. 
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From previous results on Ri (see [9] and above), and from the definition of 

f −1 we get that the worst-case response time for task τi is 

                Ri =  f −1 ((Ci +  ∑ ⌈Ri Tj⁄ ⌉Cj
i−1
j=1 ), TVM, CVM)        (5) 

 For example if we have two tasks and T1 = 8, C1 = 1, and T2 = 15, C2 = 3, 

and TVM = 6 and CVM = 3 we get 7 = R1 =  f −1(1, 6, 3) and 14 =  R2 =

 f −1((3 + ⌈14/8⌉ ∗ 1), 6, 3). 

In order to solve Equation (5), one needs to use numeric and iterative 

methods, i.e., a very similar approach as the well-known method used for 

obtaining Ri in the non-virtualized case [9] (this approach can easily be 

implemented in a program that calculates the Ri values). In order to meet all 

deadlines for all tasks τi, we need to select  TVM and CVM so that Equation (5) ≤
 Ti(1 ≤ i ≤ n). 

11.5 Example 

Consider the following small real-time application with three tasks. 

Table 11.1:  Example of a small real-time application with three tasks. 

Task Period (Ti) Worst-case execution time  (Ci) Utilization (Ui) 

τ1 16 2 2/16 = 0.125 

τ2 24 1 1/24 = 0.042 

τ3 36 4 4/36 = 0.111 

 ∑ = 0.278 

As discussed above, we use fixed priorities and RMS priority assignment. If 

we let the VM that executes this application use 40% of a CPU resource, i.e., 

if CVM TVM = 0.4 ⁄ , we can use Equation (4) to calculate the maximum TVM so 

that all three tasks will meet their deadlines. When CVM TVM = 0.4 ⁄ we can 

replace CVM with 0.4TVMin Equation (4), thus obtaining the function 

f −1(t, TVM) = 1.2TVM +  t +  ⌊t 0.4TVM⁄ ⌋(0.6TVM) . 

We start by looking at τ1. We need to find the maximal TVM so that R1 =

 f −1 ((C1 + ∑ ⌈R1 Tj⁄ ⌉Cj
0
j=1 ), TVM) =  f −1(C1, TVM) = f −1(2, TVM)  ≤  T1 = 16. 

In general, f −1 is solved using a numeric and iterative approach in a similar way 

as Ri is obtained in the non-virtualized case [9]. However, we will see that for 

this τ1 the ⌊t CVM⁄ ⌋(TVM − CVM) part of f −1 can be ignored. In that case, we get 

the following equation for the maximum TVM: 1.2TVM +  2 = 16, and from this 

we get TVM =  14 1.2 =⁄ 11.7. If we have a period of 11.7 we get a CVM =
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0.4 × 11.7 = 4.68, and (as predicted above) since CVM >  C1, we know that we 

do not have to consider the ⌊t CVM⁄ ⌋(TVM −  CVM) part of f −1. 

We now look at τ2. We want to find the maximal TVM so that R2 =

 f −1 ((C2 + ∑ ⌈R2 Tj⁄ ⌉Cj
1
j=1 ), TVM) ≤  T2 = 24. It is clear that τ2  will miss its 

deadline with TVM =  14 1.2 =⁄ 11.7 (which is the maximal TVM period for 

which τ1 will meet its deadlines); if we use TVM =  14 1.2 =⁄ 11.7, the first 

execution period will (in the worst-case, see Figure 11.1) start at time 2(TVM −
CVM) = 1.2TVM = 14. Since T1 = 16 and C1 = 2 we see that τ1 will execute 

two times back-to-back in this interval, i.e., after the first execution of τ1 it will 

be released again at time 16. Consequently, τ2 cannot start executing until time 

18, and the first execution period of the VM will end at 2TVM − CVM (see Figure 

10.1) = 1.6TVM = 1.6 × 11.7 = 18.7, and since C1 = 1, τ2 cannot complete 

during the first execution period of the VM. The second period of the VM starts 

at time 3TVM −  2CVM (see Figure 11.1) =  2.2TVM = 2.2 × 11.7 = 25.7, 

which is after the deadline of τ2(T2 = 24). 

By using our formulas, we see that in order for τ2 to meet its deadlines TVM 

cannot be larger than 13 1.2⁄ = 10.8. This means that we now know that the real-

time application can at most have TVM = 10.8 when CVM TVM = 0.4⁄ . For TVM =
10.8 and CVM TVM = 0.4⁄ , the corresponding CVM is 0.4 × 10.8 = 4.33. 

We finally look at τ3. We need to find the maximum TVM so that R3 =

 f −1 ((C3 + ∑ ⌈R3 Tj⁄ ⌉Cj
2
j=1 ), TVM) ≤  T3 = 36. In this case we see that τ3 will 

not meet its deadline when TVM = 13 1.2⁄ = 10.8. The reason for this is that 

both τ1 and τ2 will cause interference on τ3, and τ3 will as a consequence of this 

not complete in the first TVM cycle, since C1 + C2 + C3 = 2 + 1 + 4 = 7 >
4.33. The second TVM cycle will complete at time 3TVM − CVM(see Figure 

10.1) = 3 × 10.8 − 4.33 = 28.07. Before the end of this cycle both τ1 and τ2 

will have had one new release each (τ1 at time 16 and τ2 at time 24). This means 

that τ3 will not complete during the second cycle of TVM since2C1 + 2C2 + C3 =
4 + 2 + 4 = 10 > 2 × 4.33 = 8.66. 

In the worst-case scenario (see Figure 11.1), the third cycle of TVM  will start 

at time 4TVM − 2CVM = 4 × 10.8 − 2 × 4.33 = 34.54. At time 32 there is a 

new release of task τ1, and since τ1 has higher priority than τ3, task τ1 will 

execute for two time units starting at time 34.54. 

Since T3 = 36, we see that τ3 will miss its deadline. This means that we need 

a shorter period TVM in order to guarantee that also τ3 will meet its deadlines.  

When using our formulas, we see that TVM = 10 is the maximal period that τ3 

can tolerate in order to meet its deadline when CVM TVM  = 0.4⁄ , i.e., for  
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Figure 11.2 : The upper bound for 𝑻𝑽𝑴 / T1 

CVM TVM  = 0.4⁄  we get TVM = 10, and τ3 is the task that requires the shortest 

period TVM.When CVM TVM  = 0.5⁄  we can use our formulas to calculate a  TVM. 

In this case we get a maximal TVM of 14 for task τ1, and the calculations for tasks 

τ2 and τ3 will result in larger values on the maximal TVM. 

This means that τ1 is the task that requires the shortest period TVM, i.e., TVM =
14 when CVM TVM  = 0.5⁄ . In general, the period TVM will increase when the 

utilization CVM TVM ⁄  increases, and the task that is “critical” may change when 

CVM TVM⁄  changes (e.g., task τ3 when CVM TVM  = 0.4⁄  and task 

τ1when CVM TVM  = 0.5⁄ ). 

11.6 Simulation Study 

In Section 11.5 we saw that the maximal TVM, for which a task set inside the 

VM is schedulable increases when CVM TVM⁄  increases. In this section we will 

quantify the relation between the maximal TVMthe utilization CVM TVM⁄ . 

We will do a simulation study where we consider two parameters:  

• n – the number of tasks in the real-time application 

• u – the total utilization of the real-time application 
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The periods TI are taken from a rectangular distribution between 1000 and 

10000. The worst-case execution time CI for task τI is initially taken from a 

rectangular distribution between 1000 and Ti.  

All worst-case execution times are then scaled by a factor so that we get a 

total utilization u. For each task, we then find the maximum TVM using Equation 

(5) so that all tasks meet their deadlines. We refer to this period as Tmax, and we 

then select the minimum of the n different Tmax values (one value for each task). 

For each pair of n and u, we calculate the minimum Tmax for (CVM TVM  = 0.9⁄ ), 

(CVM TVM  = 0.8⁄ ), (CVM TVM  = 0.7⁄ ), (CVM TVM  = 0.6⁄ ), (CVM TVM  = 0.5⁄ ), 

(CVM TVM  = 0.4⁄ ), (CVM TVM  = 0.3⁄ ), (CVM TVM  = 0.2⁄ ), (CVM TVM  = 0.1⁄ ) 

for 10 randomly generated programs (we generate the programs using the 

distribution and the technique described above). We look at n = 10, 20, and 30, 

and u = 0.1, 0.2 and 0.3. This means that we look at 3*3 = 9 combinations of n 

and u, and for each of these nine combinations we look at 9 different values 

on CVM TVM⁄ . This means that we looked at 3*3*9 = 81 different scenarios. For 

each such scenario we generated 10 programs using a random number generator. 

11.7 Results 

In the worst-case scenario (see Figure 11.1), the maximum time that a virtual 

machine may wait before its first execution is 2(TVM − CVM). In order for the 

real-time tasks not to miss their deadlines the maximum waiting time,  2(TVM −
CVM) must be less than the shortest period, T1 (i.e., 2(TVM − CVM) < T1). For 

each value of CVM TVM⁄ , we can replace  CVM and calculate the  TVM T1⁄   using 

the formula above. For example, if CVM TVM = 0.7⁄  then we can replace CVM by 

0.7TVM in 2(TVM − CVM) < T1 so we have 2(TVM − 0.7TVM) < T1 , from that 

we get 0.6TVM < T1 , this means that TVM T1⁄ <  1 0.6⁄ = 1.66. By continuing 

this we can calculate the values of   TVM T1⁄  for each value of  CVM TVM⁄ . The 

corresponding graph is presented in Figure 11.2. These values are clearly the 

upper bound for all the values of TVM T1⁄  , and our simulation study shows that, 

for all combinations of u, n, and CVM TVM ⁄ , TVM T1⁄  is less than this upper 

bound.  

11.7.1 Total Utilization of 0.1 

In Figure 11.4, we see that the standard deviation is very small for u = 0.1. For 

n = 10 we get values around 0 and for n = 20, we get 0.006 and for n = 30, we get 

0.009.  

As shown in Figure 11., for different number of the tasks (n = 10, 20 and 30) 

TVM / T1 increases when CVM TVM⁄  increases. The first observation is thus that 

the maximum TVMfor which the task set inside the VM is schedulable increases 
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when the VM gets a larger share of the physical processor, i.e., when CVM TVM⁄  

increases. The second observation is that the curves in Figure 11. are below, but 

very close to, the upper bound in Figure 11.2.  Also, when total utilization (u) is 

0.1, we observe that TVM / T1 is zero when CVM TVM⁄ = 0.1 . This means that the 

task set inside the VM is not schedulable when CVM TVM⁄ = 0.1. 

11.7.2 Total Utilization of 0.2 

Figure 11. shows that the standard deviation divided with the average is 

almost zero except when CVM TVM⁄ = 0.3. This means that for CVM TVM⁄ = 0.3 

(and n = 10, 20, and 30) some task sets are schedulable with TVM / T1  close to 

the upper bound (0.71, see Figure 11.2), but other task sets need a much shorter 

TVM . When is CVM TVM⁄  larger than 0.3, all task sets are schedulable with TVM / 
T1  close to the upper bound. 

Figure 11. shows that the maximum TVM, for which the task set inside the VM 

is schedulable, increases when CVM TVM⁄  increases. When CVM TVM⁄  is larger 

than 0.3 the curves in Figure 11. are very close to the upper bound in Figure 11.2. 

When CVM TVM⁄ = 0.1, and 0.2, Figure 11. shows that the task set inside the VM 

is not schedulable (i.e., TVM / T1 = 0 for these values). When CVM TVM⁄ = 0.3, 

Figure 11. shows that the average TVM / T1 are significantly below the upper 

bound. As discussed above, the reason for this is that when CVM TVM⁄ =
0.3 some task sets are schedulable with TVM / T1 close to the upper bound, but 

other task sets need a much shorter TVM.  

11.7.3 Total Utilization of 0.3 

Figure 11. shows that the standard deviation divided with the average is 

almost zero except when CVM TVM⁄ = 0.4 (for n = 10, 20, and 30), and when 

CVM TVM⁄ = 0.5 (for n = 10).  

This means that for CVM TVM⁄ = 0.4 (and n = 10, 20, and 30) some task sets 

are schedulable with TVM / T1 close to the upper bound (0.83, see Figure 11.2), 

but other task sets need a much shorter TVM. For n = 10, we have a similar 

situation when CVM TVM⁄ = 0.5. In general, the standard deviation decreases 

when n increases. 

11.8 Considering Overhead  

In our previous model presented in Section 10.3, we neglected the overhead 

induced by switching from one VM to another. However, in reality this is not the 

case. So in this section we consider overhead at the beginning of execution of 

each VM. 
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11.8.1 Defining Overhead  

By considering the overhead we can rewrite the Equation (4) as  

f −1(t, TVM, CVM, X) = (TVM − CVM) + t + ⌈
t

(CVM−X)
⌉ (TVM − CVM + X)     (6) 

where X denotes the overhead (see Figures 11.10 and 11.11). So, in the worst-

case scenario considering this overhead model, the first execution of task τ1   is 

after 2(TVM − CVM) + X time units (see Figure 11.10). Our model is obviously 

valid for non-preemptive scheduling since we have considered overhead at the 

beginning of the execution of each task [35]. The overhead model can also be 

used in systems with preemptive scheduling, since one can put a bound on the 

number of preemptions in RM and EDF schedulers [36]. By multiplying the 

maximum number of preemptions with the overhead for a preemption, and then 

making the safe (but pessimistic) assumption that all this overhead occurs at the 

start of a period, we arrive at the model considered here.  

 

Figure 11.3 : Worst-case scenario when considering context switches overheads. 
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In [26][25] and [41] the authors calculated a different kind of overhead for 

periodic tasks; using our notation they calculated the ratio ((CVM TVM⁄ ) – u)/u 

(which for fixed CVM TVM⁄  and u is an increasing function of TVM). 

In [26] and [40] the authors considered different overhead models (including 

overhead due to cache misses) on the task level in compositional analysis of real-

time systems. Our model considers overhead on the hypervisor level, and our 

overhead analysis is in thus orthogonal to the overhead analysis on the task level 

(i.e., both models could be applied independently).  

11.8.2 Prediction Model 

For any task set, if CVM TVM⁄  is given, it is possible to predict a range where 

we can search for values of TVM that can make the task set inside the VM 

schedulable (i.e., a value of TVM such that all tasks meet their deadlines). For 

values of TVM that are outside of this interval, we know that there is at least one 

task that will not meet its deadline. In Figure 11.12(a) and (b), the solid line 

represents Maximum Ri Ti⁄  (1 ≤ i ≤ n) versus different values of TVM, for 

given values of CVM TVM⁄   and overhead X. As long as Maximum Ri Ti⁄ ≤ 1 we 

know that the task set is schedulable. If we can find two values of TVM such that 

Maximum Ri Ti⁄  = 1, Figure 11.12(a) indicates that the interval between these 

two values is the range of values of TVM for which the task set is schedulable.  

We now define a prediction model consisting of three lines that will help us to 

identify the range of values that will result in a schedulable task set. We will refer 

to these three lines as: the left bound, the lower bound and the schedulability 

limit. These three lines will produce a triangle. The intersection between the 

schedulability limit line and the left bound will give us the first point and the 

intersection between the schedulability limit line and the lower bound will give us 

the second point.  

We consider the corresponding TVM  values of these two points on the x-axis 

and the interval between these two values (see Figure 11.12(a) and (b)). If the 

intersection between the lower bound and the schedulability limit is left of the 

intersection of the left bound and the schedulability limit (see Figure 11.12(b)), 

then it is not possible to find a TVM that will make the task set schedulable. 

In order to find the left bound we use the equation below: 

                            (
(CVM−X)

TVM
) ≥ Total Utilization        (7) 

According to Equation (7) a TVM value must be selected so that (
(CVM−X)

TVM
) ≥ 

Total Utilization. Here X represents the amount of overhead and (CVM −
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X) represents the effective execution of the VM in one period. 

Obviously, (
(CVM−X)

TVM
) should be higher than or equal to total utilization since in 

order to successfully schedule all tasks in the VM, the utilization of the VM 

should be a value that is the same as the total utilization or higher.    

In order to calculate the lower bound we consider the Maximum Ri Ti⁄  (1 ≤ i ≤
n ) value. Our previous experiments showed that it is often (but not always) the 

task with the shortest period that restricts the length of TVM. τ1 is the task in the 

task set which has the shortest period T1, and obviously R1 T1⁄  ≤  
Maximum Ri Ti⁄ . We have R1 T1⁄ =  (2(TVM − CVM) + X + C1) T1⁄ , and if we 

rewrite this equation and consider TVM as a variable then we can calculate the 

lower bound using the equation below: 

                f(TVM) =
2(TVM−CVM)

T1
+

(C1+X)

T1
        (8) 

 

Figure 11.4 : The function 𝒇−𝟏(𝒕, 𝑻𝑽𝑴, 𝑪𝑽𝑴, 𝑿); 𝒕  is the parameter on the x-axis 

in the graph. 
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By considering the common form of a linear equation  f(x) = mx + b where 

m and b are constant values and m represents the slope of the line and b 

represents the offset, we can rewrite the Equation (8) if the value of CVM TVM⁄  is 

given, e.g., CVM TVM⁄ = 0.54, we can rewrite the Equation (8) as f(TVM) =
2(1−0.54)

T1
(TVM) +

(C1+X)

T1
,. Thus the slope of the line becomes m=

2(1−0.54)

T1
 and the 

offset is b=
(C1+X)

T1
.  

The schedulability limit is represented by a horizontal line at 

Maximum Ri Ti⁄ = 1. Ri Ti⁄  (1 ≤ i ≤ n ).  

In order to calculate the value Maximum Ri Ti⁄ , we first calculate Ri Ti⁄  for 

each task τi (1 ≤ i ≤ n ), and then Maximum Ri Ti⁄  (1 ≤ i ≤ n )is selected for 

the entire task set.  

For instance in Figure 11.12(a), total utilization U = 0.3, CVM TVM⁄ = 0.54 

and X = 1, so to calculate the left bound using Equation (7), for TVM = 1, we will 

get (0.54TVM − 1) TVM =⁄ (0.54(1) − 1) 1 =⁄ − 0.46 for TVM = 2 we get 0.04, 

for TVM = 3 we get 0.206 and for TVM = 4 we will have 0.29 while for TVM = 5 

we will get 0.34. So in this case for TVM = 5 we get the value of 0.34 which is 

higher than total utilization (0.3) so we know that for TVM values that are higher 

than 5 we have a chance to find the suitable TVM for the entire task set.  

However for different values of X the same TVM value may not be valid 

anymore, e.g., if we consider X = 2, then for TVM = 5 we will get 
(CVM−X)

TVM
=

 0.14. For TVM = 9 we get 
(CVM−X)

TVM
= 0.31 which is higher than total utilization 

(0.3). 

In Figure 11.12(b), for total utilization u = 0.1, CVM TVM⁄ = 0.2 and X = 16, 

if we calculate the left bound using Equation (7), then for TVM = 160 we get 

(0.2TVM − 1) TVM =⁄ (0.2(160) − 16) 160 =⁄ 0.1 which is equal to total 

utilization (0.1) (i.e., TVM = 160 is the left bound).  

For the lower bound, if we consider the first task in the task set has the 

shortest period T1 = 157, and its execution time is C1 = 2. Using Equation (8), 

we can get the slope of the line  
2(1−0.54)

T1
=  

2(0.46)

157
≈ 0.006 and the offset will be 

(C1+X)

T1
=  

(2+1)

157
≈ 0.02 so we can plot a line which changes in proportional to 

TVM values f(TVM) = 0.006(TVM) + 0.02 (see Figure 11.12 (a)).  

In Figure 11.12 (b), we can consider a task in the task set with the shortest 

period, T = 161 and execution time C = 2, so we will have the linear equation 
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f(TVM) = 0.009(TVM) + 0.11 which corresponds to the lower bound and 

changes in proportional to TVM values. As it can be observed from Figure 11.12 

(b), if the intersection between the left bound and the lower bound become above 

the schedulability limit line there is no chance of finding any TVM value that can 

schedule this task set when the overhead is X = 16. 

In order to validate our model, in the next section we have presented different 

experiments with different number of task sets and various values of total 

utilizations and CVM TVM⁄ . We have also considered different amounts of 

overhead (X). 

11.8.3 Overhead Simulation Study 

During overhead simulation we had 10 task sets of 10 tasks each, n = 10 (we 

saw no major difference when increasing the number of tasks). Each task 

τI (1 ≤ I ≤ n )has a period TI (1 ≤ I ≤ n ) and execution time  CI (1 ≤ I ≤ n ). 

Each task‘s period TI  is randomly generated in the range of [100, 1000] and the 

execution time CI  is randomly generated in the range of [100, TI ]. The CI values 

are then multiplied with a factor to get the desired utilization u. Different values 

have been considered for overheads X = 1, 2, 4, 8, 16 . Different values for total 

utilization u and CVM TVM⁄  are also considered (see Table 11.2).  

Given X,  u and CVM TVM⁄ , and using Equation (6) we calculate Ri for all 

different values of  TVM  in the range of [0, 500]. We then calculate  Ri Ti⁄  (1 ≤
i ≤ n ) for each task for each value of TVM, and then we obtain the 

Maximum Ri Ti⁄  (1 ≤ i ≤ n )for each value of TVM (see Figures 11.13 – 11.15). 

The figures show the average value of the 10 task sets. 

Table 11.2 : Overhead simulation, different values for Total utilization (u) 

and 𝑪𝑽𝑴 𝑻𝑽𝑴⁄   . 

 𝐂𝐕𝐌 𝐓𝐕𝐌⁄  

T
o

ta
l 

U
ti

li
za

ti
o

n
 (

𝐮
) 0.1 0.14 0.16 0.18 0.2 

0.2 0.28 0.32 0.36 0.4 

0.3 0.42 0.48 0.54 0.6 
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11.8.3.1 Total Utilization of 0.1 

Figure 11.13 shows that for total utilization of 0.1 and overhead values are 

more than 4 (X = 8 and X = 16), the task sets are not schedulable.  

However, for small value of overhead X = 1, the task sets are always 

schedulable for the values of CVM TVM⁄   considered here. When the overhead 

values are X = 2 and X = 4, the task sets are schedulable only when CVM TVM⁄  

= 0.2. 

11.8.3.2 Total Utilization of 0.2 

Figure 11.14 shows the Maximum Ri Ti⁄  values for different TVM and 

overhead values when total utilization is 0.2. As we can observe in the figures, 

the task sets are not schedulable when X = 16 (even for  CVM TVM⁄  = 0.4). For 

other overhead values (X = 1, 2, 4 ), we see that in most of the cases the task sets 

are schedulable. When the value of  CVM TVM⁄  = 0.4, even task sets with overhead 

value of X = 8 are schedulable. 

11.8.3.3 Total Utilization of 0.3 

For total utilization of 0.3, Figure 11.15 shows that when  CVM TVM⁄  is 0.54 

and 0.6, all tasks in the task set will meet their deadlines for at least some TVM 

value. 

11.9 Conclusions  

We consider a real time application consisting of a set of n real-time tasks 

τi(1 ≤ i ≤ n) that are executed in a VM; the tasks are sorted based on their 

periods, and τ1has the shortest period. We have defined a function 

f −1(t, TVM, CVM) such that a real-time application that uses fixed priorities and 

RMS priority assignment will meet all deadlines if we use a VM execution time 

CVM and a VM period TVM such that Ri =  f −1 ((Ci +

 ∑ ⌈Ri Tj⁄ ⌉Cj
i−1
j=1 ), TVM, CVM) ≤  Ti(1 ≤ i ≤ n). This makes it possible to use 

existing real-time scheduling theory also when scheduling VMs containing real-

time applications on a physical server.  

The example that we looked at in Section 10.5 shows that there is a trade-off 

between on the one hand a long TVM period (which reduces the overhead for 

switching between VMs), and low processor utilization (i.e., low CVM TVM ⁄ ). The 

example also shows that the “critical” task, i.e., the task which puts the toughest 
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restriction on the maximal length of TVM, may be different for different values 

on CVM TVM ⁄ .  

From the simulation results shown in Section 10.6, we see that increasing the 

number of the tasks (n) does not affect the maximum TVM for which the task set 

inside the VM is schedulable (see Figure 11., Figure 11. and Figure 11.). The 

simulation results also show that the standard deviation of the maximum TVM is 

almost zero except when CVM TVM ⁄  is slightly above the total utilization (u) of 

the task set (see Figure 11.4, Figure 11. and Figure 11.).  

We have also presented an upper bound on the maximum TVM  for which the 

task set inside the VM is schedulable (see Figure 11.2). The simulation results 

show that the maximum TVM  is very close to this bound when CVM TVM ⁄  is 

(significantly) larger than the total utilization (u) of the task set inside the VM. 

If overhead from switching from one VM to another is ignored, the simulation 

study in Section 11.6 shows those infinitely small periods ( TVM) are the best, 

since they minimize processor utilization. In order to provide more realistic 

results, we included and evaluated an overhead model that makes it possible to 

consider the overhead due to context switches between VMs. Along with the 

model we also defined two performance bounds and a schedulability line, each 

representing a straight line in a figure that plots the Maximum Ri Ti⁄  as a function 

of the period of the VM (TVM). These three lines form a triangle and we show that 

the intersection between the performance bounds and the schedulability lines 

defines an interval where valid periods (i.e., periods that could result in all tasks 

meeting their deadlines) can be found. This performance model also makes it 

possible to easily identify cases when no valid TVM can be found. 

We have also done a simulation study that shows how the overhead for 

switching from one VM to another affects the schedulability of task set running 

in the VM. 

Our method is presented in the context of VMs with one virtual core. 

However, it is easily extendable to VMs with multiple cores as long as each real-

time task is allocated to one of the (virtual) cores. In that case we need to repeat 

the analysis for each of the virtual cores and make sure that all real-time tasks on 

each core meet their deadlines. 



 

 

1
8

5
 

 

Figure 11.4 : Standard deviation for 𝑇𝑉𝑀 divided with 

average 𝑇𝑉𝑀when the total utilization u = 0.1. 

 

Figure 11.5 : Average 𝑇𝑉𝑀 𝑇1⁄  when the total utilization u = 

0.1. 
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Figure 11.6 : Standard deviation for 𝑇𝑉𝑀 divided with 

average 𝑇𝑉𝑀when the total utilization u = 0.2. 

 

Figure 11.7 : Average 𝑇𝑉𝑀 𝑇1⁄  when the total utilization u = 

0.2. 
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Figure 11.8 :  Standard deviation for 𝑇𝑉𝑀 divided with 

average 𝑇𝑉𝑀when the total utilization u = 0.3 

 

Figure 11.9 : Average 𝑇𝑉𝑀 𝑇1⁄  when the total utilization u = 

0.3. 
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a. 

 

b. 

Figure 11.12 : (a)Prediction Model for 𝑪𝑽𝑴 𝑻𝑽𝑴⁄ = 𝟎. 𝟓𝟒, 𝒖 = 𝟎. 𝟑 𝒂𝒏𝒅 𝑿 = 𝟏 and (b) Prediction Model for 𝑪𝑽𝑴 𝑻𝑽𝑴⁄ =
𝟎. 𝟐, 𝒖 = 𝟎. 𝟏 𝒂𝒏𝒅 𝑿 = 𝟏𝟔 
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a. 

 

b. 

Figure 11.13. Overhead simulation results for 𝑪𝑽𝑴 𝑻𝑽𝑴⁄ = 𝟎. 𝟏𝟒, 𝟎. 𝟏𝟔, 𝟎. 𝟏𝟖, 𝟎. 𝟐 when total utilization 𝒖 = 𝟎. 𝟏 
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c. 

 

d. 

Figure 11.13. Overhead simulation results for 𝑪𝑽𝑴 𝑻𝑽𝑴⁄ = 𝟎. 𝟏𝟒, 𝟎. 𝟏𝟔, 𝟎. 𝟏𝟖, 𝟎. 𝟐 when total utilization 𝒖 = 𝟎. 𝟏 
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a. 

 

b. 

Figure 11.14. Overhead simulation results for 𝑪𝑽𝑴 𝑻𝑽𝑴⁄ = 𝟎. 𝟐𝟖, 𝟎. 𝟑𝟐, 𝟎. 𝟑𝟔, 𝟎. 𝟒 when total utilization is 𝒖 = 𝟎. 𝟐 
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c. 

 

d. 

Figure 11.14. Overhead simulation results for 𝑪𝑽𝑴 𝑻𝑽𝑴⁄ = 𝟎. 𝟐𝟖, 𝟎. 𝟑𝟐, 𝟎. 𝟑𝟔, 𝟎. 𝟒 when total utilization is 𝒖 = 𝟎. 𝟐 
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a. 

 

b. 

Figure 11.15. Overhead simulation results for 𝑪𝑽𝑴 𝑻𝑽𝑴⁄ = 𝟎. 𝟒𝟐, 𝟎. 𝟒𝟖, 𝟎. 𝟓𝟒, 𝟎. 𝟔 when total utilization is 𝒖 = 𝟎. 𝟑 
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c. 

 

d. 

Figure 11.15. Overhead simulation results for 𝑪𝑽𝑴 𝑻𝑽𝑴⁄ = 𝟎. 𝟒𝟐, 𝟎. 𝟒𝟖, 𝟎. 𝟓𝟒, 𝟎. 𝟔 when total utilization is 𝒖 = 𝟎. 𝟑 
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