Client Input Interface - The Recommender System

Waleed Abdeen and Michael Unterkalmsteiner
Department of Software Engineering
Blekinge Institute of Technology
Karlskrona, Sweden
waleed.abdeen @bth.se, michael.unterkalmsteiner @bth.se

Abstract—Requirements traceability to downstream software
artifacts is beneficial in producing software products that align
with customer requirements. In practice, traceability may not
be implemented due to the challenges associated with creating
and maintaining trace links. In previous work package (WP), we
proposed Taxonomic Trace Links that create trace links between
two elements by introducing indirection. This report for WP4,
presents a semi-automated way of implementing taxonomic trace
links.

Index Terms—Taxonomic Trace Links, Traceability, Classifi-
cation

I. INTRODUCTION

Requirements traceability to downstream system artifacts,
e.g., design models, is beneficial in producing software prod-
ucts that align with customer requirements. Current require-
ments traceability techniques in general [1] and tools [3] in
particular suffer from challenges that hinder the adoption of
requirements traceability. In this report, we show how we
built the recommender system to classify requirements using
a domain-specific taxonomy in order to enable requirements
traceability.

II. TAXONOMIC TRACE LINKS APPROACH

We introduced in Work Package 2 (WP2) the Taxonomic
Trace Link (TTL) approach that creates trace links between
two elements using a taxonomy [6]. TTL can connect elements
of the same (e.g., requirements with requirements) or different
artifacts (e.g., requirements with design models). The TTL
approach aims to overcome the barriers that are faced when
introducing traceability between different project artifacts,
mainly the misalignment between the documents’ abstraction
level, structure, and time of creation.

Applying TTL requires the association of requirements and
design models with classes from a domain-specific taxonomy.
The association of requirements with classes from the taxon-
omy (requirements classification), needs to be done only once
per requirement. This association can be used later for tracing
the same requirement to multiple design models (from the
same or different project). We use two taxonomies from the
construction domain, also referred to as classification systems,
to implement our approach, SB11 and CoClass.

In WP2 we validated the TTL approach on a set of 27
requirements, 10 generic from TDOK and 17 from the Eastlink
project. The purpose of the validation study was to investigate

the applicability and practical challenges associated with TTL
when applied in practice. The results of the validation study
show that it is possible to implement TTL to trace design
models to generic and project-specific requirements. However,
this depends on the quality of requirements and the taxonomy,
and the proper association of codes with both requirements and
design models.

III. METHODOLOGY

In this WP we build a recommender system to semi-
automate the process of requirements classification. The rec-
ommender analyses the requirement and proposes classes from
SB11 or CoClass. Then, the domain experts or requirements
engineers decide on the correct classification. According to
Misirh et al. [4], a recommendation system has two dimen-
sions, 1) input fed by the user or imported from other systems,
2) output is the recommendation provided by the recommen-
dation system. In our case, the inputs are a natural language
requirement and a classification system, while the outputs are
the suggested classes from the classification system.

A. Building the recommender system

Building the recommender system is usually achieved by
training a model using machine learning algorithms on labeled
data. A difficult part is finding the labeled data. In our case, we
would need a set of requirements from the construction domain
classified with SB11 or CoClass. This classification needs to
be done with the help of experts with domain knowledge. This
is challenging, especially if we need to have a large enough
dataset to train the model properly.

Song et al. [S] have proposed a dataless approach for hier-
archical text classification. In their study, they classify emails
from newsgroups using a topic taxonomy with two levels.
They use natural language processing to analyze the text,
extract info, then find similarities between two documents.
Their results show that it is possible to build a text classifier
without the need for labeled data. In this WP, we reuse their
approach with some modifications to fit our goal.

B. Building the Ground Truth

Although unsupervised learning algorithms do not require
training data set to build a model, a test set, which is usually
smaller than the training data set, is required to evaluate the
model’s performance. Walker et al. [8] advise against building

the training data set, which is referred to as the ground truth,
automatically and list three options to determine it: 1) ask
humans to build it; 2) use a combination of automated ap-
proaches; 3) use data collected previously from other projects.
SB11 and CoClass are mainly used in Sweden, and to the
best of our knowledge, there are no publicly available require-
ments annotated with either of the classification systems, thus
ruling out the third option. Although it can be argued that
manually establishing the ground truth (the first option) is a
large investment of resources, however, combining automated
approaches (the second option) may not give accurate results.
The effort put into establishing the ground truth can be justified
by considering the application of the recommender, which is
to classify thousands of requirements that are usually used in
multiple projects. Thus, we went with the first option.

TABLE 1
PARTICIPANTS IN BUILDING THE GROUND TRUTH WITH YEARS OF
EXPERIENCE IN THE DOMAIN AND IN RESEARCH

Team Affiliation Role Domain Research
A BTH Researcher none 13
A HOCHTIEF Civil engineer <1 <1
B BTH Researcher (curator) none 3
B HOCHTIEF BIM manager and consultant 5 4
C BTH Researcher none 14
C HOCHTIEF BIM and information manager 7 1

a) Dataset: We sampled 129 requirements, 92 generic
requirements from TRVInfra, and 37 requirements from the
Eastlink project. The sample was selected by the second
author, a senior researcher with knowledge in the infrastructure
domain, to be representative of the population (infrastructure
projects requirements).

b) Farticipants: Six people were involved in building the
ground truth, three domain experts and three researchers. In
Table I, we list the participants’ roles and years of domain and
research experience.

¢) Process: Figure 1 depicts the steps that we followed
to build the ground truth. We split the group into three teams
of two (one researcher and one practitioner) and followed the
steps below:

1) Step I - Annotation. Each team received a unique subset
of the sampled requirements, and each team member
was asked to individually annotate the same subset with
classes from SB11 and CoClass.

2) Step 2 - Curation. The first author (curator) curated the
annotations from each team. When team members dis-
agreed on a requirement’s annotation, the requirement is
discussed in a team meeting; otherwise, the requirement
is added to the review list.

3) Step 3 - Team meeting. The curator compiled annotation
disagreements per team and ran teams meetings. In a
team meeting, the curator displayed the requirements
with the suggested annotations from each team member
and asked the team members to discuss and dissolve the
disagreement. When consensus couldn’t be reached, the
requirement was brought to a group meeting to discuss

4)

5)

1. Annotation
(individually)

|

2. Curation
(curator)

Yes
Agreement?

No

3. Team meeting
(per team + curator)

Agreement? ves

No

Y

4. Group meeting 5. Re.V|e.w. process
(everyone) (individual)

!

6. Group meeting
(everyone)

Fig. 1. The process of building the ground truth

it. Otherwise, the requirement was added to the review
list.

Step 4 - Group meeting. All participants attended the
group meeting. The curator prepared a list of require-
ments with disagreements in annotations from all teams
and grouped them into themes. The requirements were
presented, and the group was asked for their opinion.
Step 5 - Review process. Each team was assigned a
requirements subset to review that was annotated by
another team. The review was done individually by each

team member.

6) Step 6 - Group meeting. The outcomes of the reviews
were compiled and discussed in the group meeting.
The reviewers and annotators of a requirement were
asked to discuss their annotations. The other group
members participated in the discussion when needed
until consensus was reached.

We conducted the process of building the ground truth

iteratively. A total of four rounds were conducted.

IV. THE RECOMMENDER SYSTEM

The purpose of the recommender system is to help domain
experts to classify requirements quicker and more accurately.
The inputs to the recommender are the requirement’s infor-
mation, document title, section titles, and requirement’s text,
and a classification system. The recommender calculates the
similarities between the requirement and the classes from the
classification system and select the top classes. The outputs of
the recommender are top five classes for this requirement.

We developed the recommender based on the study by
Song et al. [5]. The source code of the recommender is
publicly available on Github!. Furthermore, we have prepared
a demonstrator’> to show how the recommender works. The
source code of the demonstrator/tool is also available on
Github?.

V. COMPARISON BETWEEN COCLASS AND SB11
A. Classification system quality

In previous work [7], we have developed a set of quality
attributes that can be used to objectively compare classification
systems. The seven quality attributes are:

QA1 Comprehensiveness is the ability to classify all known
objects for the domain it was developed for.

Robustness is the ability to differentiate objects of inter-
est.

Conciseness is the ability to classify objects of interest
with the least possible amount of dimensions, categories
and characteristics.

Extensibility is the ability to allow for changes in its
structure, i.e. adding, modifying or deleting dimensions,
categories or characteristics.

Explanatory is the quality to enable the user to locate an
object in the classification system based on its character-
istics, or to deduce from the location of an object what
characteristics it has.

Mutual exclusiveness is the ability to identify an object
uniquely, i.e. that no object exists in the same dimension
under different categories.

Reliability is the ability to support consistent classifica-
tion decisions.

QA2

QA3

QA4

QA5

QA6

QA7

Table II summarizes the evaluation of CoClass and SB11
with respect to these seven quality attributes. In addition, we

Uhttps://github.com/munterkalmsteiner/DatalessClassification/tree/
SB11Classifier

Zhttp://dcat.diptsrv003.bth.se/labeled-data
3https://github.com/waleedabdeen/dcat- demonstrator

also show, for comparison, the evaluation results of two more,
widely used classification systems in the construction industry,
UniClass and OmniClass. For the task of requirements clas-
sification, extensibility is less important. Hence, we discuss
only the results of the remaining six quality attributes.

a) Comprehensiveness: CoClass seems to have a slight
advantage over SBI11 as it originates from a diverse set of
sources (standards ISO 12006-2, IEC 81346-1, IEC 81346-2
ISO 81346-12, as explained in [2]) and the developers have
a diverse background (illustrated by the partners that have
contributed to CoClass*). We could not find information on
whether CoClass and SB11 has been evaluated by external
experts, in contrast to UniClass and OmniClass.

b) Robustness: For the task of classification (whether
manual, semi-automated or fully automated), the ability to
differentiate objects of interest is very important. Both SB11
and CoClass have scored a significantly higher result than
UniClass and OmniClass in this quality attribute. We were
suspicious of these rather high differences, and found that it
can be explained by a weakness how we calculate the score,
in particular the language model we use as a basis for the
analysis. In short, we suspect that both SB11 and CoClass
contain many domain specific terms that do not appear in the
language model that stems from a general purpose document
corpus. Hence, the metric is overly optimistic, compared to the
results from UniClass and OmniClass (for which use the same
language model, but we observed that the terminology uses
less compound, domain-specific terms). To conclude, further
work is needed to increase the confidence in the achieved
evaluation results for robustness.

c) Conciseness: SB11 and CoClass are very similar with
respect to the number of dimensions and categories. However,
SB11 has more characteristics (i.e., leaf nodes in the hierarchy
of the classification tree) and a higher tree depth. This means
that SB11 is likely more specific, fine-grained, while CoClass
has a higher abstraction level. Both SB11 and CoClass are
significantly more concise than UniClass and OmniClass,
which makes them more amenable for manual and semi-
automatic classification tasks.

d) Explanatory: We did not find any information regard-
ing structuring elements besides dimensions that would help
to understand the classification systems. CoClass is unique
among the studied classification systems in that it provides def-
initions for all characteristics and commonly used synonyms.

e) Mutual exclusiveness: Only CoClass mentions explic-
itly [2] that an object can be member in one class only.

f) Reliability: We have evaluated intra-rater reliability
based on the data we collected when developing the ground
truth. Table IIT shows the frequency of agreements and dis-
agreements between the annotators. The reliability of SB11
is slightly higher than CoClass, despite CoClass being more
concise. The annotators have observed that it was easier to
find an exact match in SB11 than in CoClass because the

“https://coclass.byggtjanst.se/about#owners

TABLE II
COMPARISON OF CONSTRUCTION CLASSIFICATION SYSTEMS

Quality attribute Measurement SB11 CoClass Uniclass Omniclass
Does the classification system originate from a diverse set of data No Yes Yes Yes
Comprehensiveness sources?
P Do the classification system creators have a diverse background? No data Yes Yes Yes
Were diverse data analysis methods used to create the classification No data No data No data No data
system?
Has the classification system been evaluated by external experts? No data No data Yes Yes
Robustness R(T) 0.98 0.97 0.63 0.79
Dimensions 3 3 12 11
Categories 352 340 1,827 4,084
Conciseness Characteristics 1725 1089 12,501 14,569
Maximum depth 6 3 5 8
C(T) 0.13 0.14 0.11 0.11
Change process covers the following constructs® No data No data No data ca, ch
Change process covers the following change types® No data No data No data a, m
Extensibility Mandate to change the classification system No data Owners/ext ~ Owners/ext Owners/ext
Customization of the classification system Yes Yes No data No data
RoC5%021—05-04 0.00032 0.02001 0.01079 0.00018
Explanator Structuring elements besides dimensions? No data No data No data No data
p Y Support for choosing dimensions or categories?* di ca di ca ch di di ca
Mutual exclusiveness Classification constraint No data Yes No data No data
Reliability Inter-rater reliability 0.23157 0.22437 Not Implemented ~ Not Implemented

4 di = dimension, ca = category, ch = characteristic
b a = addition, m = modification, d = deletion

terminology used in the requirements text was similar to the
class names in SB11.

B. Classifier performance

We used the ground truth that we prepared (as explained in
Section III-B), to evaluate the performance of the hierarchical
classifier (HC), that we developed in this project. Furthermore,
we compare the HC with the flat classifier (FC), from our
previous work [6]. The main difference between the classifiers
is how the nodes of the classification system are analyzed. In
the HC, the hierarchy of the classification system is considered
during the analysis of the nodes. On the contrary, in the FC
each node is analyzed alone regardless of its place in the
hierarchy.

Figure 2 illustrates the results of comparing the HC with
the FC using SB11 and CoClass. The x-axis represents the
metrics used for evaluations, while the y-axis represents the
value of the metric with maximum value of 1. The ground truth
contained 129 requirements. However, not all requirements
were considered when calculating the evaluation metrics. We
used the requirements labeled using the Byggdelar table from
SB11 (123 requirements) and from CoClass we used those
labeled using Tillgdngssystem (81 requirements).

Overall, the higher recall compared to the precision indi-
cates that the classifier produces fewer false negative than false
positive results. That means that the number of true labels that
are not retrieved is lower than the number of wrong labels
retrieved. In practice, an expert would therefore have to review
and exclude wrong suggestions but can, on the other hand, rely
on that the suggestions are complete.

Metric value
=] =] =
) 3% i
T T T

o
—

O,

||| DIlI DIII Cmllm DIIl oillm |

DoFC-SB110BFC-CoClass IBHC-SB11 IRHC-CoClass \

Fig. 2. Comparison of the Classifiers Performance

In all metrics except the MPrecision and MF1, the use of
CoClass showed a significant improvement in performance of
the flat and hierarchical classifiers compared to the use of
SB11. Therefore, CoClass is a better choice as a classification
system to classify requirements.

TABLE III
AGREEMENTS AND DISAGREEMENTS BETWEEN ANNOTATORS IN THE GROUND TRUTH CREATION

C.S Agreements Disagreements (class) Disagreement (span) No Available Code
SBI11 88 143 149 48
CoClass 81 132 148 43

The low value of MPrecision, averaging of precision per-
class, means that the recommender is better at retrieving some
labels but worse at retrieving others. Here, further analysis
needs to be done to understand if the attributes of the nodes
(e.g., level of depth and number of words in the description)
has any correlation with the per-class precision.

C. Discussion

Based on the classifier performance evaluation results in
Section V-B, CoClass yields better classification results than
SB11. These results can be attributed to CoClass being more
concise, has less categories and characteristics, than SB11.
Moreover, using the hierarchical classification in the recom-
mender yielded higher performance than the flat classifier.

VI. CONCLUSION

We have implemented a recommender system that suggests
labels from two classification systems, SB11 and CoClass, to
classify requirements from TRV-Infra and EastLink. In order to
evaluate the performance of the recommender, we have built a
ground truth that consists of 129 requirements. Furthermore,
we have compared the quality of the classification systems,
SB11 and CoClass. The results show that the developed
recommender using the hierarchical classifier performs better
than the flat classifier. However, more enhancements could
be made. Possible improvements are adding different pre-
processing steps (e.g., word stemming) and trying different
methods to calculate similarities between the classification
system and the requirement.

REFERENCES

[1] E. Bouillon, P. Mider, and I. Philippow. A survey on usage scenarios for
requirements traceability in practice. In International Working Conference
on Requirements Engineering: Foundation for Software Quality, pages
158-173. Springer, 2013.

[2] K. Eckerberg. CoClass - Informationshantering For Byggd Miljo. Svensk
Byggtjanst, 2019.

[3] O. C. Z. Gotel and C. W. Finkelstein. An analysis of the requirements
traceability problem. In Proceedings of IEEE International Conference
on Requirements Engineering, pages 94-101.

[4] A. T. Musirh, A. Bener, B. Caglayan, G. Calikli, and B. Turhan. Field
studies. In M. P. Robillard, W. Maalej, R. J. Walker, and T. Zimmermann,
editors, Recommendation Systems in Software Engineering, pages 329—
355. Springer.

[5] Y. Song and D. Roth. On dataless hierarchical text classification. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 28,
2014.

[6] M. Unterkalmsteiner. TT-RecS: The taxonomic trace recommender
system. In 2020 IEEE Seventh International Workshop on Artificial
Intelligence for Requirements Engineering (AIRE), pages 18-21.

[7] M. Unterkalmsteiner and W. Abdeen. A compendium and evaluation of
taxonomy quality attributes. Expert Systems, 2022.

[8] R.J. Walker and R. Holmes. Simulation. In M. P. Robillard, W. Maalej,
R. J. Walker, and T. Zimmermann, editors, Recommendation Systems in
Software Engineering, pages 301-327. Springer.

